JP2004331687A - Transparent hard coat film - Google Patents

Transparent hard coat film Download PDF

Info

Publication number
JP2004331687A
JP2004331687A JP2003124983A JP2003124983A JP2004331687A JP 2004331687 A JP2004331687 A JP 2004331687A JP 2003124983 A JP2003124983 A JP 2003124983A JP 2003124983 A JP2003124983 A JP 2003124983A JP 2004331687 A JP2004331687 A JP 2004331687A
Authority
JP
Japan
Prior art keywords
hard coat
particles
coat layer
coat film
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003124983A
Other languages
Japanese (ja)
Inventor
Isao Oguri
勲 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2003124983A priority Critical patent/JP2004331687A/en
Publication of JP2004331687A publication Critical patent/JP2004331687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hard coat film excellent in antistatic properties, transparency, and antiglare properties. <P>SOLUTION: The transparent hard coat film has a hard coat layer composed of an ionizing radiation curable resin containing spherical particles and electroconductive particles on at least one surface of a transparent base film. The thickness of the ionizing radiation curable resin portion in the hard coat layer is 50-90% of the average particle diameter of the spherical particles. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、帯電防止性能と防眩性とを兼ね備える透明ハードコートフィルムに関する。
【0002】
【従来の技術】
一般に、高分子材料やガラスは、絶縁特性に優れている一方、帯電しやすいという特性を有する。そのため、これらの材料からなる製品の表面において、埃などの付着による汚れが目立つ場合があった。また、これらの材料を使用した精密機械においては、この材料に起因する帯電により、障害が発生するという問題があった。
【0003】
【特許文献1】
特開平10−25388号公報
【0004】
【特許文献2】
特開平10−147739号公報
【0005】
【発明が解決しようとする課題】
本発明の目的は、帯電防止性と透明性および防眩性に優れたハードコートフィルムを提供することにある。
【0006】
【課題を解決するための手段】
本発明者は、上述の課題を解決するべく、鋭意検討したところ、ハードコード層に球状粒子と導電性粒子を組み合わせて配合することにより、実質的に導電性粒子同士の接触が起こりやすくなり導電性が増し、上記課題を解決することができることを知見した。
【0007】
すなわち本発明は、透明基材フィルムの少なくとも片面に、球状粒子と導電性粒子とを含む高分子バインダーからなる防眩性ハードコート層を備える透明ハードコートフィルムであって、防眩性ハードコート層における高分子バインダー部分の厚さが球状粒子の平均粒径の50〜90%であることを特徴とする、透明ハードコートフィルムである。
【0008】
以下、本発明を詳細に説明する。
[透明基材フィルム]
透明基材フィルムとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、アクリル、トリアセチルセルロース等のプラスチックフィルムが使用できる。延伸加工、特に二軸延伸されたものは、機械的強度、寸法安定性に優れるために好ましい。透明基材フィルムは、透過率が例えば60%以上、好ましくは80%以上のフィルムである。透明基材フィルムの厚さは素材に応じて適宜選択することができるが、通常25〜500μmである。
【0009】
この透明基材フィルムは、ハードコート層を伴ってもよい。この場合のハードコート層は、以下に説明する防眩性ハードコート層とは別のハードコート層であり、通常は、主として熱硬化型樹脂もしくは電離放射線硬化型樹脂からなる高分子バインダーにより形成することができる。この場合「透明基材フィルム」は、プラスチックフィルムのうえにハードコート層が設けられた構成体を指す。
【0010】
[防眩性ハードコード層]
透明基材フィルム上には防眩性ハードコード層が形成される。この防眩性ハードコート層は、防眩性および帯電防止性という性質を一挙に付与する役割を果たす。
【0011】
本発明において、防眩性ハードコート層は、高分子バインダーならびに球状粒子および導電性粒子により形成することができる。高分子バインダーとしては、熱硬化型樹脂もしくは電離放射線硬化型樹脂を用いることができ、作業環境性、生産性の点で電離放射線硬化型樹脂が好ましい。
【0012】
本発明においては、防眩性ハードコート層における高分子バインダー部分の膜厚を合成樹脂粒子の平均粒径の50〜90%の範囲に、好ましくは60〜80%の範囲になるように調整する。50%より薄いと合成樹脂粒子が欠落しやすくなり、また塗膜強度も低下してしまい、90%より厚いと合成樹脂粒子が塗膜に埋まってしまい十分な防眩性を得ることができない。
【0013】
[高分子バインダー]
高分子バインダーとしては、電離放射線硬化型樹脂が好ましく、これは少なくとも電子線あるいは紫外線照射により硬化される樹脂を含有する塗料から形成される。具体的には、光重合性プレポリマー、光重合性モノマー、光重合開始剤を含有し、さらに必要に応じて増感剤、非反応性樹脂、レベリング剤等の添加剤、溶剤を含有してもよい。
【0014】
光重合性プレポリマーは、その構造、分子量が電離放射線硬化型塗料の硬化に関係し、電離放射線硬化型樹脂の接着性、硬度、耐クラック性等の特性を定めるものである。光重合性プレポリマーは骨格中に導入されたアクリロイル基が電離放射線照射されることにより、ラジカル重合する。ラジカル重合により硬化するものは硬化速度が速く、樹脂設計の自由度も大きいため、特に好ましい。
【0015】
光重合性プレポリマーとしては、アクリロイル基を有するアクリル系プレポリマーが特に好ましく、これは1分子中に2個以上のアクリロイル基を有し、3次元網目構造となるものである。アクリル系プレポリマーとしては、例えばウレタンアクリレート、エポキシアクリレート、メラミンアクリレート、ポリエステルアクリレートが使用できる。
【0016】
光重合性モノマーは、高粘度の光重合性プレポリマーを希釈し、粘度を低下させ、作業性を向上させるために、また、架橋剤として塗膜強度を付与するために使用される。
【0017】
光重合性モノマーとしては、2−エチルヘキシルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、ブトキシエチルアクリレート等の単官能アクリルモノマー、1、6−ヘキサジオールアクリレート、ネオペンチルグリコールジアクリレート、ヒドロキシパビリン酸エステルネオペンチルグリコールアクリレート等の2官能アクリルモノマー、ジペンタエリスリトールヘキサアクリレート、トリメチルプロパントリアクリレート、ペンタエリスリトールトリアクリレート等の多官能アクリルモノマーを、例えば使用することができる。これらは1種で用いてもよく、2種以上を用いてもよい。
【0018】
また、光重合性モノマーの混合量が多くなると塗膜は必要以上に硬くなるため、所望の硬度、あるいは所望の可撓性が得られるよう、混合割合は適宜選択するとよい。例えば、本発明の透明ハードコートフィルムを曲げる用途に使用する場合は、可撓性に優れた熱硬化性、熱可塑性アクリル樹脂、エポキシ樹脂等の非反応性樹脂を混合することにより、硬度を調節することができる。
【0019】
光重合開始剤は、電離放射線の照射によりアクリロイル基の反応を短時間で開始させ、反応を促進させるために添加され、触媒的な作用を有する。光重合開始剤は、特に紫外線照射により硬化を行なう場合に必要とされ、高いエネルギーの電子線を照射する時には必要としない場合もある。光重合開始剤の種類としては、開裂することによりラジカル重合させるもの、水素を引き抜くことによりラジカル重合させるもの、あるいはイオンを発生させることによりカチオン重合させるものがある。
【0020】
光重合開始剤としては、ベンゾインエーテル系、ケタール系、アセトフェノン系、チオキサントン系等のラジカル型光重合開始剤、ジアゾニウム塩、ジアリールヨードニウム塩、トリアリールスルホニウム塩等や複合系のカチオン型光重合開始剤を、例えば使用することができる。これらは1種で用いてもよく、2種以上で用いてもよい。光重合開始剤は、樹脂固型分に対して、例えば2〜10重量%、好ましくは3〜6重量%混合して使用する。
【0021】
電離放射線硬化型塗料を硬化させるには、電子線あるいは紫外線を照射する。電子線を照射する場合、走査型あるいはカーテン型の電子線加速器を用い、加速電圧1000keV以下、好ましくは100〜300keVのエネルギーを有し、100nm以下の波長領域の電子線を照射して行うことができる。紫外線を照射する場合、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等を用い、100〜400nm、好ましくは200〜400nmの波長領域で、50〜300kcal/molのエネルギーを有する紫外線を照射する。
【0022】
[球状粒子]
本発明で防眩性ハードコード層に配合して用いる球状粒子としては、好ましくは合成樹脂粒子を用いる。この合成樹脂粒子として、例えば、アクリル樹脂粒子、シリコーン樹脂粒子、ナイロン樹脂粒子、スチレン樹脂粒子、ポリエチレン樹脂粒子、ベンゾグアナミン樹脂粒子、ウレタン樹脂粒子が挙げられる。これらのなかでもアクリル樹脂粒子が好ましく、例えばポリアクリル酸エステル粒子、ポリメタクリル酸エステル粒子を用いることができる。
【0023】
球状粒子の形状は、球状もしくは球状に近い形状のものが好まい。分級されたものがさらに好ましく、分級された球状の合成樹脂粒子を使用することにより、ハードコート層の表面に、より均一な凹凸を得ることができる。
【0024】
球状粒子の平均粒径は、通常0.5〜10μm、好ましくは2〜8μm、さらに好ましくは4〜6μmである。0.5μmより小さいと、形成されたハードコート層表面に凹凸が十分に付与されないために防眩性能を十分に発揮できず、また10μmより大きいと、合成樹脂粒子のハードコート層中に占める割合が多くなり、高分子バインダーの合成樹脂粒子結着能力の低下を来たし、塗膜強度が低下してしまい好ましくない。
【0025】
球状粒子の添加量は、防眩性ハードコード層の樹脂固型分に対して、好ましくは0.3〜5重量%、さらに好ましくは0.5〜4重量%である。0.3重量%未満であると十分な防眩性が得られず、5重量%を超えるとヘーズが高くなってしまい、透過性が悪くなり好ましくない。
【0026】
[導電性粒子]
本発明で防眩性ハードコード層に配合して用いる導電性粒子としては、光の散乱を起こさないように、通常は1〜500nm、好ましくは1〜100nm、さらに好ましくは1〜50nmの平均粒径の粒子を用いる。導電性粒子としては、例えばITO、ATO、SnO、ZnO等の金属酸化物、例えばAu、Ag、Cu等の金属を用いることができる。これらの中でも透明性の点から、ITO、ATOが好ましい。導電性粒子は、ハードコート層の全体の質量のうち、好ましくは10〜80%、さらに好ましくは30〜60%の割合で配合される。
【0027】
[防眩性ハードコート層の形成]
防眩性ハードコート層を形成するには、高分子バインダーとして電離放射線硬化型樹脂を用いた場合、球状粒子を含有する電離放射線硬化型樹脂塗料をプラスチックフィルムに塗布し、電子線あるいは紫外線を照射して形成する。
【0028】
電離放射線硬化塗料をプラスチックフィルムに塗布するには、通常の塗布方法、例えば、バー、ブレード、グラビア、スピン、スプレー等のコーティングにより行うことができる。
【0029】
電離放射線硬化塗料に電子線あるいは紫外線を照射して硬化する場合、酸素の存在および塗膜の厚さが硬化と密接に関係する。電離放射線が照射されて発生したラジカルは酸素を補足するため、硬化を抑制してしまう。このため、塗膜の厚さが薄いと、塗膜体積に占める表面積が大きくなり、空気中の酸素により硬化阻害を受けやすい。また、塗膜の厚さが厚いと、電離放射線が内部まで透過しにくく、表面が硬化しても、内部の硬化が十分でなく、塗布界面の未硬化部分の存在のため、ハードコート層と透明基材との密着不良を生じてしまう。このような硬化阻害、未硬化を防止するため、特に電子線照射の場合はNガス等の不活性ガス下で照射を行うことができる。また、塗膜の厚さを調整し、硬化速度の速い光重合性プレポリマー、光重合性モノマーを選択し、光重合開始剤の混合量を増加することにより硬化阻害を防止することができる。
【0030】
[低屈折率層]
本発明においては、ハードコード層のうえに、低屈折率層が設けられていることが好ましい。低屈折率層の屈折率は好ましくは1.38〜1.49、さらに好ましくは1.38〜1.44である。この低屈折率層は、下記数式(I)を満たすことが低反射率化の点で好ましい。
【0031】
【数1】
(mλ/4)×0.7<n<(mλ/4)×1.3 (I)
式中、mは正の奇数であり、nは低屈折率層の屈折率であり、そして、dは低屈折率層の膜厚(nm)である。また、λは波長であり、500〜550nmの範囲の値である。なお、上記式(I)を満たすとは、上記波長の範囲において数式(I)を満たすm(正の奇数、通常1である)が存在することを意味する。
【0032】
低屈折率層は、低屈折率バインダーからなる。この低屈折率バインダーは、好ましくは含フッ素化合物の架橋物からなる。含フッ素化合物の架橋物は、好ましくは架橋性の含フッ素高分子化合物を加熱または電離放射線照射により形成される架橋物である。また、低屈折率層には、膜強度向上のために無機微粒子が含有されることが好ましい。
【0033】
低屈折率層のバインダーとして、好ましく用いられる含フッ素化合物の架橋物を形成するための架橋性の含フッ素高分子化合物としては、パーフルオロアルキル基含有シラン化合物(例えば(ヘプタデカフルオロ−1,1,2,2−テトラデシル)トリエトキシシラン)を挙げることができ、さらに含フッ素モノマーと架橋性基付与のためのモノマーを構成単位とする含フッ素共重合体を挙げることができる。
【0034】
含フッ素モノマーとしては、例えば、フルオロオレフィン(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体(例えばビスコート6FM(大阪有機化学製)、M−2020(ダイキン製))、完全または部分フッ素化ビニルエーテルを挙げることができる。
【0035】
架橋性基付与のためのモノマーとしては、例えば、グリシジルメタクリレートのように分子内にあらかじめ架橋性官能基を有する(メタ)アクリレートモノマー、カルボキシル基、ヒドロキシル基、アミノ基、スルホン酸基等を有する(メタ)アクリレートモノマー(例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレートを挙げることができる。
【0036】
後者は共重合の後、架橋構造を導入できることが特開平10−25388号公報および特開平10−147739号公報に知られている。
【0037】
また上記含フッ素モノマーを構成単位とするポリマーだけでなく、フッ素原子を含有しないモノマーとの共重合体を用いてもよい。併用可能なモノマー単位には特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロ二トリル誘導体等を挙げることができる。
【0038】
低屈折率層に用いられる無機微粒子としては、低屈折率のものが好ましく用いられる。無機微粒子としては、例えばシリカ、フッ化マグネシウムを挙げることができ、シリカが好ましい。
【0039】
無機微粒子は平均粒子サイズが1〜200nmの範囲のものが好ましく、1〜50nmの範囲のものがさらに好ましい。微粒子の粒径はなるべく均一(単分散)であることが好ましい。無機微粒子の添加量は、低屈折率層の全量の5〜90重量%の範囲であることが好ましく、10〜70重量%の範囲であることがさらに好ましく、10〜50重量%の範囲であるが最も好ましい。
【0040】
無機微粒子は表面処理を施して用いることも好ましい。表面処理法としてはプラズマ放電処理やコロナ放電処理のような物理的表面処理とカップリング剤を使用する化学的表面処理があるが、カップリング剤の使用が好ましい。カップリング剤としては、オルガノアルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。該無機微粒子がシリカの場合はシランカップリング処理が特に有効である。
【0041】
【実施例】
以下に実施例を挙げて本発明を詳細に説明する。塗布液の調整は下記の方法に従い、物性の評価は下記の方法に従った。
【0042】
ハードコート層用塗布液の調整:
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)75g、ビス(4−メタクリロイルチオフェニル)スルフィド(MPSMA、住友精化(株)製)75g、439gのメチルエチルケトン/シクロヘキサノン(50%/50%)混合溶媒に溶解した。得られた溶液に、光重合開始剤(イルガキュア907、チバガイギー(株)製)5.0gおよび光増感剤(カヤキュアーDETX、日本化薬(株)製)3.0gを49gのメチルエチルケトンに溶解した溶液を加えて、ハードコード層用の塗布液を調整した。
【0043】
防眩性ハードコート層用塗布液の調整:
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)75g、ビス(4−メタクリロイルチオフェニル)スルフィド(MPSMA、住友精化(株)製)75g、平均粒径50nmのITO粒子(シーアイ化成(株)製)100gを、439gのメチルエチルケトン/シクロヘキサノン(50%/50%)混合溶媒に溶解した。得られた溶液に、光重合開始剤(イルガキュア907、チバガイギー(株)製)5.0gおよび光増感剤(カヤキュアーDETX、日本化薬(株)製)3.0gを49gのメチルエチルケトンに溶解した溶液を加えた。さらにこの溶液に平均粒径2μmの架橋ポリスチレン粒子(商品名:SX−200H、綜研化学(株)製)10gを添加して、高速ディスパにて5000rpmで1時間攪拌、分散した後、孔径30μmのポリプロピレン製フィルターでろ過して防眩性ハードコート層用の塗布液を調製した。
【0044】
低屈折率層用塗布液の調製:
屈折率1.42の熱架橋性含フッ素ポリマー(オプスターJN7228、JSR(株)製、固形分濃度6%)210gにシリカゾル(MIBK−ST、平均粒径10〜20nm、固形分濃度30%、日産化学(株)製)15.2gおよびメチルイソブチルケトン174gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液を調製した。
【0045】
表面抵抗率:
三菱化学(株)製の表面抵抗測定器loresta−GP(MCD−T600)により測定した。
【0046】
ヘイズ:
得られたフィルムのヘイズをヘイズメーターPOIC(株)性、SEP−HS−D1型により測定した。
【0047】
防眩性評価:
作成した防眩性フィルムにルーバーなしのむき出し蛍光灯(8000cd/m)を映し、その反射像のボケの程度を以下の基準で評価した。
◎:蛍光灯の輪郭が全くわからない
○:蛍光灯の輪郭がわずかにわかる
△:蛍光灯はぼけているが、輪郭は識別できる
×:蛍光灯がほとんどぼけない。
【0048】
[実施例1]
100μmの厚さの2軸延伸ポリエチレンテレフタレートフィルム(OPFW、帝人(株)製)に、上記のハードコート層用塗布液をバーコーターを用いて塗布し、120℃で乾燥の後、160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm、照射量300mJ/cmの紫外線を照射して塗布層を硬化させ、厚さ2.5μmのハードコート層を形成した。その上に、上記防眩性ハードコート層用塗布液をバーコーターを用いて塗布し、上記ハードコート層と同条件にて乾燥、紫外線硬化して、高分子バインダー部分の厚さが1.5μmの防眩性ハードコート層を形成した。その上に、上記低屈折率層用塗布液をバーコーターを用いて塗布し、80℃で乾燥の後、さらに120℃で10分間熱架橋し、厚さ0.096μmの低屈折率層を形成した。
評価結果を表1に示す。
【0049】
[比較例1]
防眩性ハードコート層にITOの粒子を加えなかった以外は実施例1と同様に行った。評価結果を表1に示す。
【0050】
[比較例2]
防眩性ハードコート層に球状粒子を加えなかった以外は実施例1と同様に行った。評価結果を表1に示す。
【0051】
【表1】

Figure 2004331687
【0052】
【発明の効果】
本発明によれば、帯電防止性と透明性および防眩性に優れたハードコートフィルムを提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a transparent hard coat film having both antistatic performance and antiglare properties.
[0002]
[Prior art]
In general, polymer materials and glass have excellent insulation properties, but are easily charged. Therefore, on the surface of a product made of these materials, dirt due to adhesion of dust or the like may be conspicuous. Further, in precision machines using these materials, there is a problem that a failure occurs due to charging caused by the materials.
[0003]
[Patent Document 1]
JP-A-10-25388
[Patent Document 2]
JP 10-147739 A
[Problems to be solved by the invention]
An object of the present invention is to provide a hard coat film having excellent antistatic properties, transparency and antiglare properties.
[0006]
[Means for Solving the Problems]
The inventor of the present invention has conducted intensive studies to solve the above-described problems. As a result, the hard code layer is combined with spherical particles and conductive particles, and the conductive particles are substantially easily brought into contact with each other. It has been found that the properties can be increased and the above problem can be solved.
[0007]
That is, the present invention is a transparent hard coat film having an antiglare hard coat layer comprising a polymer binder containing spherical particles and conductive particles on at least one surface of the transparent base film, wherein the antiglare hard coat layer Wherein the thickness of the polymer binder portion is 50 to 90% of the average particle size of the spherical particles.
[0008]
Hereinafter, the present invention will be described in detail.
[Transparent substrate film]
As the transparent substrate film, a plastic film such as polyethylene terephthalate, polyethylene naphthalate, polycarbonate, acryl, triacetyl cellulose and the like can be used. Stretching, particularly biaxially stretched, is preferred because of its excellent mechanical strength and dimensional stability. The transparent substrate film is a film having a transmittance of, for example, 60% or more, preferably 80% or more. The thickness of the transparent substrate film can be appropriately selected according to the material, but is usually 25 to 500 μm.
[0009]
The transparent substrate film may have a hard coat layer. The hard coat layer in this case is a hard coat layer different from the antiglare hard coat layer described below, and is usually formed of a polymer binder mainly composed of a thermosetting resin or an ionizing radiation-curable resin. be able to. In this case, the “transparent substrate film” refers to a structure in which a hard coat layer is provided on a plastic film.
[0010]
[Anti-glare hard cord layer]
An antiglare hard code layer is formed on the transparent substrate film. This antiglare hard coat layer plays a role in providing properties such as antiglare property and antistatic property all at once.
[0011]
In the present invention, the antiglare hard coat layer can be formed of a polymer binder, spherical particles, and conductive particles. As the polymer binder, a thermosetting resin or an ionizing radiation-curable resin can be used, and an ionizing radiation-curable resin is preferable in view of work environment and productivity.
[0012]
In the present invention, the thickness of the polymer binder portion in the antiglare hard coat layer is adjusted so as to fall within a range of 50 to 90%, preferably 60 to 80% of the average particle size of the synthetic resin particles. . If the thickness is less than 50%, the synthetic resin particles tend to drop off, and the coating strength is reduced. If the thickness is more than 90%, the synthetic resin particles are buried in the coating film and sufficient antiglare property cannot be obtained.
[0013]
[Polymer binder]
The polymer binder is preferably an ionizing radiation-curable resin, which is formed from a paint containing at least a resin which is cured by irradiation with an electron beam or ultraviolet rays. Specifically, it contains a photopolymerizable prepolymer, a photopolymerizable monomer, a photopolymerization initiator, and further contains a sensitizer, a non-reactive resin, an additive such as a leveling agent, and a solvent, if necessary. Is also good.
[0014]
The structure and molecular weight of the photopolymerizable prepolymer relate to the curing of the ionizing radiation-curable coating material, and determine the properties of the ionizing radiation-curable resin, such as adhesiveness, hardness, and crack resistance. The photopolymerizable prepolymer undergoes radical polymerization when the acryloyl group introduced into the skeleton is irradiated with ionizing radiation. Those cured by radical polymerization are particularly preferred because they have a high curing rate and a high degree of freedom in resin design.
[0015]
As the photopolymerizable prepolymer, an acrylic prepolymer having an acryloyl group is particularly preferable, which has two or more acryloyl groups in one molecule and has a three-dimensional network structure. As the acrylic prepolymer, for example, urethane acrylate, epoxy acrylate, melamine acrylate, and polyester acrylate can be used.
[0016]
The photopolymerizable monomer is used for diluting a high-viscosity photopolymerizable prepolymer, lowering the viscosity and improving workability, and for imparting coating strength as a crosslinking agent.
[0017]
Examples of the photopolymerizable monomer include monofunctional acrylic monomers such as 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and butoxyethyl acrylate, 1,6-hexadiol acrylate, neopentyl glycol diacrylate, and hydroxypropyl acrylate. For example, bifunctional acrylic monomers such as biphosphate neopentyl glycol acrylate, and polyfunctional acrylic monomers such as dipentaerythritol hexaacrylate, trimethylpropane triacrylate, and pentaerythritol triacrylate can be used. These may be used alone or in combination of two or more.
[0018]
In addition, when the mixing amount of the photopolymerizable monomer increases, the coating film becomes harder than necessary. Therefore, the mixing ratio may be appropriately selected so as to obtain a desired hardness or a desired flexibility. For example, when used for bending the transparent hard coat film of the present invention, the hardness is adjusted by mixing a non-reactive resin such as a thermosetting resin having excellent flexibility, a thermoplastic acrylic resin, or an epoxy resin. can do.
[0019]
The photopolymerization initiator is added to start the reaction of the acryloyl group in a short time by irradiation with ionizing radiation and promote the reaction, and has a catalytic action. The photopolymerization initiator is required particularly when curing is performed by ultraviolet irradiation, and may not be required when irradiating a high energy electron beam. Types of photopolymerization initiators include those that undergo radical polymerization by cleavage, those that undergo radical polymerization by extracting hydrogen, and those that undergo cationic polymerization by generating ions.
[0020]
Examples of the photopolymerization initiator include benzoin ether-based, ketal-based, acetophenone-based, thioxanthone-based radical-type photopolymerization initiators, diazonium salts, diaryliodonium salts, triarylsulfonium salts, and the like, and composite-type cationic photopolymerization initiators. Can be used, for example. These may be used alone or in combination of two or more. The photopolymerization initiator is used, for example, by mixing 2 to 10% by weight, preferably 3 to 6% by weight, based on the solid resin component.
[0021]
In order to cure the ionizing radiation-curable paint, it is irradiated with an electron beam or ultraviolet rays. Irradiation with an electron beam can be performed by using a scanning or curtain type electron beam accelerator and irradiating an electron beam having an acceleration voltage of 1000 keV or less, preferably energy of 100 to 300 keV, and a wavelength region of 100 nm or less. it can. When irradiating ultraviolet rays, an ultrahigh-pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a carbon arc, a metal halide lamp, or the like is used. Irradiate.
[0022]
[Spherical particles]
In the present invention, as the spherical particles used in the antiglare hard cord layer, synthetic resin particles are preferably used. Examples of the synthetic resin particles include acrylic resin particles, silicone resin particles, nylon resin particles, styrene resin particles, polyethylene resin particles, benzoguanamine resin particles, and urethane resin particles. Among these, acrylic resin particles are preferable, and for example, polyacrylate particles and polymethacrylate particles can be used.
[0023]
The shape of the spherical particles is preferably spherical or nearly spherical. Classified particles are more preferable, and by using the classified spherical synthetic resin particles, more uniform unevenness can be obtained on the surface of the hard coat layer.
[0024]
The average particle size of the spherical particles is usually 0.5 to 10 μm, preferably 2 to 8 μm, and more preferably 4 to 6 μm. If it is smaller than 0.5 μm, the surface of the formed hard coat layer is not sufficiently provided with irregularities, so that the antiglare performance cannot be sufficiently exhibited. If it is larger than 10 μm, the ratio of the synthetic resin particles in the hard coat layer And the binding ability of the polymer binder to the synthetic resin particles is reduced, and the strength of the coating film is undesirably reduced.
[0025]
The addition amount of the spherical particles is preferably 0.3 to 5% by weight, more preferably 0.5 to 4% by weight, based on the solid resin content of the antiglare hard cord layer. If it is less than 0.3% by weight, sufficient anti-glare properties cannot be obtained, and if it exceeds 5% by weight, the haze increases, and the transmittance deteriorates, which is not preferable.
[0026]
[Conductive particles]
The conductive particles used in the present invention in combination with the antiglare hard cord layer are usually 1 to 500 nm, preferably 1 to 100 nm, more preferably 1 to 50 nm so as not to cause light scattering. Use particles of a diameter. As the conductive particles, for example, metal oxides such as ITO, ATO, SnO 2 , and ZnO, for example, metals such as Au, Ag, and Cu can be used. Among these, ITO and ATO are preferable from the viewpoint of transparency. The conductive particles are preferably blended in a ratio of 10 to 80%, more preferably 30 to 60%, of the total mass of the hard coat layer.
[0027]
[Formation of antiglare hard coat layer]
When an ionizing radiation-curable resin is used as a polymer binder to form an antiglare hard coat layer, an ionizing radiation-curable resin coating containing spherical particles is applied to a plastic film and irradiated with an electron beam or ultraviolet rays. Formed.
[0028]
The application of the ionizing radiation-curable paint to the plastic film can be performed by a usual coating method, for example, coating with a bar, blade, gravure, spin, spray or the like.
[0029]
When an ionizing radiation-curable paint is cured by irradiation with an electron beam or ultraviolet rays, the presence of oxygen and the thickness of the coating film are closely related to the curing. Radicals generated by the irradiation with ionizing radiation supplement oxygen, thereby suppressing curing. For this reason, when the thickness of the coating film is small, the surface area occupying the coating film volume increases, and the coating is easily affected by curing in the air. In addition, when the thickness of the coating film is large, ionizing radiation hardly penetrates to the inside, and even when the surface is cured, the inside is not sufficiently cured, and the presence of an uncured portion at the coating interface causes the hard coating layer to be hardened. Poor adhesion to the transparent substrate occurs. In order to prevent such curing inhibition and uncuring, especially in the case of electron beam irradiation, irradiation can be performed under an inert gas such as N 2 gas. In addition, curing inhibition can be prevented by adjusting the thickness of the coating film, selecting a photopolymerizable prepolymer and a photopolymerizable monomer having a high curing rate, and increasing the mixing amount of the photopolymerization initiator.
[0030]
[Low refractive index layer]
In the present invention, it is preferable that a low refractive index layer is provided on the hard code layer. The refractive index of the low refractive index layer is preferably from 1.38 to 1.49, and more preferably from 1.38 to 1.44. The low refractive index layer preferably satisfies the following formula (I) from the viewpoint of reducing the reflectance.
[0031]
(Equation 1)
(Mλ / 4) × 0.7 <n 1 d 1 <(mλ / 4) × 1.3 (I)
In the formula, m is a positive odd number, n 1 is the refractive index of the low refractive index layer, and d 1 is the thickness (nm) of the low refractive index layer. Λ is a wavelength, which is a value in the range of 500 to 550 nm. Satisfying the above formula (I) means that m (positive odd number, usually 1) that satisfies the formula (I) exists in the above wavelength range.
[0032]
The low refractive index layer is made of a low refractive index binder. This low refractive index binder is preferably made of a crosslinked product of a fluorine-containing compound. The crosslinked product of the fluorine-containing compound is preferably a crosslinked product formed by heating or ionizing radiation irradiation of a crosslinkable fluorine-containing polymer compound. Further, the low refractive index layer preferably contains inorganic fine particles for improving the film strength.
[0033]
As a crosslinkable fluorine-containing polymer compound for forming a crosslinked product of a fluorine-containing compound, which is preferably used as a binder for the low refractive index layer, a perfluoroalkyl group-containing silane compound (for example, (heptadecafluoro-1,1,1) , 2,2-tetradecyl) triethoxysilane), and a fluorine-containing copolymer having a fluorine-containing monomer and a monomer for providing a crosslinking group as constituent units.
[0034]
Examples of the fluorinated monomer include fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole), (meth) Partial or fully fluorinated alkyl ester derivatives of acrylic acid (for example, Biscoat 6FM (manufactured by Osaka Organic Chemicals), M-2020 (manufactured by Daikin)), and fully or partially fluorinated vinyl ethers can be mentioned.
[0035]
Examples of the monomer for providing a crosslinkable group include a (meth) acrylate monomer having a crosslinkable functional group in the molecule in advance, such as glycidyl methacrylate, a carboxyl group, a hydroxyl group, an amino group, and a sulfonic acid group ( (Meth) acrylate monomers (for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, and allyl acrylate can be exemplified.
[0036]
It is known from JP-A-10-25388 and JP-A-10-147739 that the latter can introduce a crosslinked structure after copolymerization.
[0037]
Further, not only a polymer having the above-mentioned fluorine-containing monomer as a constitutional unit but also a copolymer with a monomer containing no fluorine atom may be used. There is no particular limitation on the monomer units that can be used in combination, and for example, olefins (ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.), acrylates (methyl acrylate, methyl acrylate, ethyl acrylate, acrylic acid 2) -Ethylhexyl), methacrylates (methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.), styrene derivatives (styrene, divinylbenzene, vinyltoluene, α-methylstyrene, etc.), vinyl ethers (methyl Vinyl ethers), vinyl esters (vinyl acetate, vinyl propionate, vinyl cinnamate, etc.), acrylamides (N-tertbutylacrylamide, N-cyclohexylacrylamide, etc.), methacrylamides, Krilo nitrile derivatives and the like can be mentioned.
[0038]
As the inorganic fine particles used for the low refractive index layer, those having a low refractive index are preferably used. Examples of the inorganic fine particles include silica and magnesium fluoride, and silica is preferable.
[0039]
The average particle size of the inorganic fine particles is preferably in the range of 1 to 200 nm, more preferably 1 to 50 nm. It is preferable that the particle size of the fine particles is as uniform (monodispersed) as possible. The addition amount of the inorganic fine particles is preferably in the range of 5 to 90% by weight, more preferably in the range of 10 to 70% by weight, and more preferably in the range of 10 to 50% by weight of the total amount of the low refractive index layer. Is most preferred.
[0040]
The inorganic fine particles are also preferably subjected to a surface treatment before use. As the surface treatment method, there are a physical surface treatment such as a plasma discharge treatment or a corona discharge treatment and a chemical surface treatment using a coupling agent, but the use of a coupling agent is preferable. As the coupling agent, an organoalkoxy metal compound (eg, a titanium coupling agent, a silane coupling agent) is preferably used. When the inorganic fine particles are silica, silane coupling treatment is particularly effective.
[0041]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples. Preparation of the coating solution was performed according to the following methods, and evaluation of physical properties was performed according to the following methods.
[0042]
Preparation of coating solution for hard coat layer:
75 g of a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (DPHA, manufactured by Nippon Kayaku Co., Ltd.) and 75 g and 439 g of bis (4-methacryloylthiophenyl) sulfide (MPSMA, manufactured by Sumitomo Seika Co., Ltd.) It was dissolved in a mixed solvent of methyl ethyl ketone / cyclohexanone (50% / 50%). In the resulting solution, 5.0 g of a photopolymerization initiator (Irgacure 907, manufactured by Ciba Geigy Co., Ltd.) and 3.0 g of a photosensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) were dissolved in 49 g of methyl ethyl ketone. The solution was added to prepare a coating solution for the hard cord layer.
[0043]
Preparation of coating solution for antiglare hard coat layer:
75 g of a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (DPHA, manufactured by Nippon Kayaku Co., Ltd.), 75 g of bis (4-methacryloylthiophenyl) sulfide (MPSMA, manufactured by Sumitomo Seika Co., Ltd.), average particle size 100 g of ITO particles having a diameter of 50 nm (manufactured by CI Kasei Co., Ltd.) was dissolved in 439 g of a mixed solvent of methyl ethyl ketone / cyclohexanone (50% / 50%). In the resulting solution, 5.0 g of a photopolymerization initiator (Irgacure 907, manufactured by Ciba Geigy Co., Ltd.) and 3.0 g of a photosensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) were dissolved in 49 g of methyl ethyl ketone. The solution was added. Further, 10 g of crosslinked polystyrene particles having an average particle size of 2 μm (trade name: SX-200H, manufactured by Soken Chemical Co., Ltd.) was added to the solution, and the mixture was stirred and dispersed at 5000 rpm for 1 hour with a high-speed disperser. The mixture was filtered through a polypropylene filter to prepare a coating solution for an antiglare hard coat layer.
[0044]
Preparation of coating liquid for low refractive index layer:
To 210 g of a thermally crosslinkable fluoropolymer having a refractive index of 1.42 (OPSTAR JN7228, manufactured by JSR Corporation, solid content concentration 6%), silica sol (MIBK-ST, average particle size 10 to 20 nm, solid content concentration 30%, Nissan) After adding 15.2 g and 174 g of methyl isobutyl ketone, and stirring, the mixture was filtered through a polypropylene filter having a pore size of 1 μm to prepare a coating solution for a low refractive index layer.
[0045]
Surface resistivity:
It was measured by a surface resistance measuring device loresta-GP (MCD-T600) manufactured by Mitsubishi Chemical Corporation.
[0046]
Haze:
The haze of the obtained film was measured with a haze meter POIC Co., Ltd., SEP-HS-D1 type.
[0047]
Anti-glare evaluation:
An exposed fluorescent lamp (8000 cd / m 2 ) without a louver was projected on the produced antiglare film, and the degree of blurring of the reflected image was evaluated according to the following criteria.
:: The outline of the fluorescent lamp is completely unknown. :: The outline of the fluorescent lamp is slightly recognized. △: The fluorescent lamp is blurred, but the outline is discernable. X: The fluorescent lamp is hardly blurred.
[0048]
[Example 1]
The above coating liquid for a hard coat layer is applied to a biaxially oriented polyethylene terephthalate film (OPFW, manufactured by Teijin Limited) having a thickness of 100 μm using a bar coater, dried at 120 ° C., and dried at 160 W / cm. Using an air-cooled metal halide lamp (manufactured by I-Graphics Co., Ltd.), the coating layer is cured by irradiating ultraviolet rays with an illuminance of 400 mW / cm 2 and an irradiation amount of 300 mJ / cm 2 to form a hard coat layer having a thickness of 2.5 μm. Formed. The coating liquid for the antiglare hard coat layer was applied thereon using a bar coater, dried and cured under the same conditions as the hard coat layer, and the thickness of the polymer binder portion was 1.5 μm. To form an antiglare hard coat layer. The low-refractive-index layer coating solution is applied thereon using a bar coater, dried at 80 ° C., and then thermally crosslinked at 120 ° C. for 10 minutes to form a low-refractive-index layer having a thickness of 0.096 μm. did.
Table 1 shows the evaluation results.
[0049]
[Comparative Example 1]
The procedure was performed in the same manner as in Example 1 except that no ITO particles were added to the antiglare hard coat layer. Table 1 shows the evaluation results.
[0050]
[Comparative Example 2]
The same procedure was performed as in Example 1 except that no spherical particles were added to the antiglare hard coat layer. Table 1 shows the evaluation results.
[0051]
[Table 1]
Figure 2004331687
[0052]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the hard-coat film excellent in antistatic property, transparency, and anti-glare property can be provided.

Claims (5)

透明基材フィルムの少なくとも片面に、球状粒子と導電性粒子とを含む高分子バインダーからなる防眩性ハードコート層を備える透明ハードコートフィルムであって、防眩性ハードコート層における高分子バインダー部分の厚さが球状粒子の平均粒径の50〜90%であることを特徴とする、透明ハードコートフィルム。A transparent hard coat film having an antiglare hard coat layer made of a polymer binder containing spherical particles and conductive particles on at least one surface of the transparent substrate film, wherein the polymer binder portion in the antiglare hard coat layer Wherein the thickness of the transparent hard coat film is 50 to 90% of the average particle size of the spherical particles. 高分子バインダーが電離放射線硬化型樹脂である、請求項1記載の透明ハードコートフィルム。The transparent hard coat film according to claim 1, wherein the polymer binder is an ionizing radiation-curable resin. 導電性粒子が、粒径1〜100nmの透明導電性粒子である、請求項1記載の透明ハードコートフィルム。The transparent hard coat film according to claim 1, wherein the conductive particles are transparent conductive particles having a particle size of 1 to 100 nm. 球状粒子が合成樹脂粒子である、請求項1記載の透明ハードコートフィルム。The transparent hard coat film according to claim 1, wherein the spherical particles are synthetic resin particles. 防眩性ハードコート層の上に低屈折率層が設けられている、請求項1記載のハードコートフィルム。The hard coat film according to claim 1, wherein a low refractive index layer is provided on the antiglare hard coat layer.
JP2003124983A 2003-04-30 2003-04-30 Transparent hard coat film Pending JP2004331687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003124983A JP2004331687A (en) 2003-04-30 2003-04-30 Transparent hard coat film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003124983A JP2004331687A (en) 2003-04-30 2003-04-30 Transparent hard coat film

Publications (1)

Publication Number Publication Date
JP2004331687A true JP2004331687A (en) 2004-11-25

Family

ID=33502379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003124983A Pending JP2004331687A (en) 2003-04-30 2003-04-30 Transparent hard coat film

Country Status (1)

Country Link
JP (1) JP2004331687A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100710961B1 (en) 2005-05-06 2007-04-24 주식회사 수성케미칼 Method for Manufacturing Anti-Glare Film with Anti-Static Function
JP2007119561A (en) * 2005-10-26 2007-05-17 Sumitomo Bakelite Co Ltd Resin composition and semiconductor device manufactured with resin composition
JP2014196461A (en) * 2013-03-02 2014-10-16 三菱樹脂株式会社 Laminated polyester film
JP2017126077A (en) * 2017-02-24 2017-07-20 東レフィルム加工株式会社 Laminated film for molding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100710961B1 (en) 2005-05-06 2007-04-24 주식회사 수성케미칼 Method for Manufacturing Anti-Glare Film with Anti-Static Function
JP2007119561A (en) * 2005-10-26 2007-05-17 Sumitomo Bakelite Co Ltd Resin composition and semiconductor device manufactured with resin composition
JP2014196461A (en) * 2013-03-02 2014-10-16 三菱樹脂株式会社 Laminated polyester film
JP2017126077A (en) * 2017-02-24 2017-07-20 東レフィルム加工株式会社 Laminated film for molding

Similar Documents

Publication Publication Date Title
JP5961049B2 (en) Optical film and manufacturing method thereof
WO2011046149A1 (en) Optical film and display panel
TW201300821A (en) Optical film and method for producing the same
TWI597517B (en) Display element front with film and surface elements attached to the display element
TWI635358B (en) Hard coating film and display element with surface member
WO2019116664A1 (en) Anti-glare film, method for producing same, and use thereof
JP4595925B2 (en) Antiglare antistatic hard coat resin composition, hard coat film and hard coat film-formed article
TWI394662B (en) Optical laminates
WO2020054249A1 (en) Anti-glare film, and production method and use therefor
JP2003053878A (en) Glare-protective film
KR101949558B1 (en) Optical laminate and method for manufacturing thereof
JP2019113877A (en) Antiglare film and method for producing the same, and application
JP2002167576A (en) Composition for high-refractive electroconductive material, transparent electroconductive material and reflection-reducing material
JP2006343630A (en) Glare-proof film
JP2004331687A (en) Transparent hard coat film
JP2001281410A (en) Glare proof antireflection film and image display device
JP2002040204A (en) Antidazzle antireflection film, polarizing plate and liquid crystal display
JP2005247939A (en) Hard coat film and method for producing the same
JP2007269993A (en) Glare-proof antistatic hard coat resin composition and glare-proof antistatic hard coat film formed body coated with the same
JP2010054785A (en) Method for manufacturing multifunction-composite light beam control member
JP2019105694A (en) Antiglare film, and method for producing the same and application
JP2005290230A (en) Antireflection film with antistatic layer and coating composition for forming antistatic layer
JP4296098B2 (en) Anti-glare film
JP2004309898A (en) Antireflection film
JP2006171724A (en) Antiglare film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A977 Report on retrieval

Effective date: 20071214

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A02 Decision of refusal

Effective date: 20081216

Free format text: JAPANESE INTERMEDIATE CODE: A02