JP2004331416A - Electroconductive glass having mixed conductivity and its manufacturing method - Google Patents

Electroconductive glass having mixed conductivity and its manufacturing method Download PDF

Info

Publication number
JP2004331416A
JP2004331416A JP2003125691A JP2003125691A JP2004331416A JP 2004331416 A JP2004331416 A JP 2004331416A JP 2003125691 A JP2003125691 A JP 2003125691A JP 2003125691 A JP2003125691 A JP 2003125691A JP 2004331416 A JP2004331416 A JP 2004331416A
Authority
JP
Japan
Prior art keywords
glass
mol
conduction
conductivity
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003125691A
Other languages
Japanese (ja)
Other versions
JP4461238B2 (en
Inventor
Tetsuaki Nishida
哲明 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinki University
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kinki University
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinki University, Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kinki University
Priority to JP2003125691A priority Critical patent/JP4461238B2/en
Publication of JP2004331416A publication Critical patent/JP2004331416A/en
Application granted granted Critical
Publication of JP4461238B2 publication Critical patent/JP4461238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/14Compositions for glass with special properties for electro-conductive glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/18Compositions for glass with special properties for ion-sensitive glass

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroconductive glass in which ionic conduction and electronic conduction coexist and which exhibits high electroconductivity, and to provide a method for manufacturing the same. <P>SOLUTION: The electroconductive glass is composed, by mol, of 65 to 85% AgI and Ag<SB>2</SB>O and 15 to 35% V<SB>2</SB>O<SB>5</SB>and Fe<SB>2</SB>O<SB>3</SB>, and exhibits mixed electroconductivity. Alternatively, the electro-conductive glass is composed, by mol, of 30 to 50% LiI and Li<SB>2</SB>O and 50 to 70% V<SB>2</SB>O<SB>5</SB>and Fe<SB>2</SB>O<SB>3</SB>, and exhibits mixed electroconductivity. The electroconductive glass is obtained by mixing the composition composed, by mol, of 65 to 85% AgI and Ag<SB>2</SB>O, and 15 to 35% V<SB>2</SB>O<SB>5</SB>and Fe<SB>2</SB>O<SB>3</SB>or a composition composed, by mol, of 30 to 50% LiI and Li<SB>2</SB>O and 50 to 70% V<SB>2</SB>O<SB>5</SB>and Fe<SB>2</SB>O<SB>3</SB>, and then heating, melting, and quenching the composition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、イオン伝導と電子伝導が共存するいわゆる混合伝導性を有する導電性ガラス及びその製造方法に関する。
【0002】
【従来の技術】
たとえば固体電解質を用いる二次電池の場合、特開2001−243984号公報に開示されているように、電極と電解質の界面で良好なイオンの移動を起こさせまた、正・負電極の活物質と電解質の界面では、酸化・還元反応とともに電子やイオンの良好な移動を起こさせることによって、実用レベルの電池特性が得られている。このように、電極を形成する物質は、イオン伝導性と電子伝導性を併せ有する導電性物質であることが望ましい。
【0003】
一方、導電性を有するガラスは、インジウム酸化物膜を主体とする金属酸化膜ITO(Indium Tin Oxide)をその表面につけたガラスが知られているように、既知である。これら透明で導電性を有するガラス板は、液晶表示の容器材料として広く用いられている。しかし、これら導電性ガラスは電子伝導性に基づくものであり、たとえば前記固体電解質を用いる二次電池の電極等に求められる、イオン伝導性と電子伝導性を併せ有する混合伝導性を有しない。
【0004】
【発明が解決しようとする課題】
イオン伝導性と電子伝導性を併せ有する導電性に優れた材料を簡便に得ることができれば、固体電解質を用いる二次電池や燃料電池等電気化学的反応を伴う装置の電極材料等に好適である。かかるイオン伝導性と電子伝導性を併せ有する混合伝導性材料は、電極でのロスを少なく効率的にすべく既存の二次電池電極材料の電気伝導度(10−6S/cm)よりも優れた電気伝導度を有する材料である必要がある。
【0005】
本発明は、イオン伝導と電子伝導が共存するとともに電気伝導度が従来の二次電池電極材料における電気伝導度よりも格段に高い導電性ガラス及びその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するための請求項1に記載の発明は、AgIおよびAgO:65モル%〜85モル%、VおよびFe:15モル%〜35モル%からなる混合伝導性を有する導電性ガラスである。この発明によれば、Agをキャリアとするイオン伝導と、V(IV)からV(V)へのホッピングによる電子伝導が共存する新規な導電性ガラスを提供することができる。
【0007】
請求項2に記載の発明は、LiIおよびLiOを30モル%〜50モル%、VおよびFe:50モル%〜70モル%からなる混合伝導性を有する導電性ガラスである。この発明によれば、Liをキャリアとするイオン伝導と、V(IV)からV(V)へのホッピングによる電子伝導が共存する新規な導電性ガラスを提供することができる。
【0008】
請求項3に記載の発明は、AgIおよびAgO:65モル%〜85モル%、VおよびFe:15モル%〜35モル%からなる組成物を混合した後、加熱・溶融し、急冷してガラスとすることを特徴とする混合伝導性を有する導電性ガラスの製造方法である。本発明によるときは、イオン伝導と電子伝導が共存するとともに電気伝導度が従来の二次電池電極材料における電気伝導度よりも格段に高い導電性ガラスを、低コスト下に簡潔なプロセスで製造することができる。
【0009】
請求項4に記載の発明は、LiIおよびLiOを30モル%〜50モル%、VおよびFe:50モル%〜70モル%からなる組成物を混合した後、加熱・溶融し、急冷してガラスとすることを特徴とする混合伝導性を有する導電性ガラスの製造方法である。本発明によるときは、イオン伝導と電子伝導が共存するとともに電気伝導度が従来の二次電池電極材料における電気伝導度よりも格段に高い導電性ガラスを、低コスト下に簡潔なプロセスで製造することができる。
【0010】
【発明の実施の形態】
以下、本発明をその好ましい実施形態に則して説明する。
ガラスを機能材料として見ると、次のような特徴を有する。
▲1▼等方性の固体であり、結晶に見られるような粒界がない。従って、単一の相から構成された均質な物質である。このことは、結晶よりもガラス(アモルファス)の方が優れた材料であることを示している。
▲2▼ガラスには融点が存在せず、広い温度域で粘度が10桁以上に亘って連続的に変化する。このことから、ガラスの組成(化学成分比率)や温度を変えることにより、目的に合った材料を得ることができる。
▲3▼過冷却液体の特徴を残しながら、熱力学的には非平衡状態にある。従って、加熱すると構造が変化し、これに伴って電気的な性質や光、磁気などに対する性質が加熱時間とともに変化する。このことは、ガラスを用いて多くの優れた材料を開発することができることを意味している。
▲4▼ガラスの構造を原子レベルで見ると、原子の配列の仕方には長距離的な規則性がない。このため、ガラスを超微粒子の集合体であると考えることもできる。しかし、ガラス全体としては、原子が連続性をもった集合体であるといえる。このことは、ガラスが本質的にネットワークを持った固体であると見做し得る。
▲5▼ガラスの内部には、外から原子や原子団などを取り込める多くの場所が存在する。このことによって、外部から添加された原子は様々なイオンとなることができる。その結果、外部から添加された原子の電気的な性質、光や磁気などに対する性質を目的に応じて変える(制御する)ことができる。
【0011】
ガラスが有するこのような特徴を活かし、ニューガラスの研究・開発が行われ、新しい機能をもつガラスが開発されてきている。それらの中の1つに導電性ガラスがある。通常、ガラスは絶縁体であり、電気伝導度は10−13S/cm程度である。導電性ガラスは、先に述べたように、ガラスの表面にITO等の金属酸化物膜を形成した電子伝導タイプのガラスが主体である。
【0012】
ガラスは、「固体状態にある過冷却液体である。」と定義でき、図1に示すように、凝固点以下に冷却されて結晶化しないままガラス転移温度Tg(glass transition temperature)で初めて固体化したものである。而して、外見は固体であるけれども原子配列は液体のそれであって、非晶質(amorphous)構造を有している。
【0013】
結晶とガラスの構造を比較すると、図2に示すように、結晶(a)は原子が規則的に配列しているのに対し、ガラス(b)はSiOの四面体を保持したままその四面体が不規則に連結している。SiO四面体そのものはガラスのどの部分をとっても類似しており、結晶におけるSiO四面体と比較しても差はない。このことを短距離秩序があるという。しかし、大きなスケールで両者を観察すると、ガラスでは秩序が失われており、長距離秩序がないといえる。従って、結晶は短距離秩序、長距離秩序共に保っているのに対し、ガラスは短距離秩序を保っているが、長距離秩序はないといえる。
【0014】
このように、結晶に比較して隙間の多い構造をもつガラスは、その隙間に様々なイオンを取り込むことが可能である。図2に示したSiO系ガラスにNaOを添加すると、次のような反応が起こる。
【0015】
【化1】
−Si−O−Si+NaO → Si−O…Na…O−Si−
【0016】
このときのガラス構造を図3に示す。このような反応が起こった場合、ガラスの網目骨格(ネットワーク)が切断される。1つの珪素とだけしか結合していない酸素を、非架橋酸素(non bridging oxygen)という。これに対して、2つの珪素と結合している酸素は、架橋酸素(bridging oxygen)と呼ばれる。非架橋酸素の存在は、ガラスの構造と物性に大きな変化をもたらす。非架橋酸素が存在しないときは、ガラスは高温においても粘度が非常に高いが、非架橋酸素があれば、高温において粘度が急激に低下する。また、網目修飾イオンであるNaが移動可能であるため、電気伝導度の向上が期待できる。
このように、外部から新たに添加される成分により物性の制御が可能なガラスは、新規な材料の開発にとって有利である。発明者は、イオン伝導と電子伝導が共存する新規な導電性ガラスを開発すべく研究を進めた。
【0017】
イオンは、電子に比し比較にならないほど大きなサイズと質量をもっているから、液体中ではよく動くことができるけれども固体中を動くのは困難である。しかし、イオンが動くことができる構造上の条件が満たされれば、固体中でも高いイオン伝導度が可能となる。ガラスは乱れた疎な構造をしており、結晶よりも空隙が多い。イオンが動くには、「空隙」が多い方が有利である。図4に示すように、ガラス化することによって電気伝導度が向上する。同じ成分系のガラスと結晶では、電気伝導度に10倍以上の差がある。このように、高いイオン伝導度を実現するためには、ガラス(アモルファス)化することが重要である。
【0018】
固体電解質電池やエレクトロクロミズム分野においては、正・負電極の活物質と電解質の界面での酸化・還元反応と共に電子やイオンの良好な移動を起こさせることが必要である処から、イオン伝導と電子伝導が共存する混合伝導性を有する材料であることが望ましい。イオン伝導と電子伝導は、インターカレーション(intercalation)という特性で説明できる。
【0019】
インターカレーションとは、層状物質の層間に電子供与体或は電子受容体が電荷移動力によって挿入される現象をいう。層状物質は一般に、層を形成する結合は共有結合で主体で強いが、層間はファン・デル・ワールス力など弱い力で結合している。そのため、電子供与体や電子受容体は、層を形成する原子団との間に電子の授受を行って層間に侵入し、層を押し拡げて一種の電荷移動錯体が形成される。この化合物を層間化合物という。挿入は、層状物質に添加する挿入物質の量によってすべての層が満たされる第1ステージから、n層おきに入る第nステージまで多種類に及ぶ。ガラスは疎な構造を有しているため、インターカレーションと同じような反応が起こりやすい。
【0020】
固体電解質電池は一般に、負極/電解質/正極という構造をもっている。このような固体電解質電池においては、電解質にイオン導電体が用いられている。固体電解質電池の正極は、インターカレーション反応によるイオン伝導と電子伝導が共存する混合伝導を利用している。
また、二次電池の場合、放電だけでなく充電も行う。この充放電時、インターカレーションとその反対のデインターカレーション反応が起こる。この反応が起こるとき、体積の増減を伴う。ガラスの構造は、結晶と比較して余分な隙間が多く、この体積変化が小さくて済む。即ち、ガラス(アモルファス)の方が、結晶よりも充放電の繰り返しの回数をより多くできる。また、充放電の容量もアモルファスの方が大きくなる。而して、二次電池の正極材料としてガラス(アモルファス)材料が有望である。
【0021】
イオン伝導と電子伝導が共存するガラスの場合、電気伝導に対するイオン伝導および電子伝導の寄与割合が重要である。混合伝導性ガラスにおいて、全電気伝導度に対するイオン伝導度の寄与割合を求めることは、そのガラスがイオン伝導性を有することを確認する上で重要である。発明者は、後述するように、この寄与割合を決定する方法を見出した。
【0022】
【実施例】
実施例1
xAgI・(75−x)AgO・24V・1Feの組成を有する混合物を、x(mol%)を40、45、50、55、および60に変化させて瑪瑙鉢でよく混合した後、900℃で15分間加熱・溶融し、銅板を用いて急冷してガラスを得た。
【0023】
実施例2
yLiI・(38−y)LiO・56V・6Feの組成を有する混合物を、y(mol%)を13.5、18.5、23.5、および28.5に変化させて瑪瑙鉢でよく混合した後、1200℃で30分間加熱・溶融し、氷水を用いて急冷してガラスを得た。
【0024】
使用した試薬は、以下の通りである。
五酸化バナジウム(V)(99.0%):和光純薬株式会社製
酸化鉄(III)(99%) :和光純薬株式会社製
沃化銀(99.9%) :株式会社レアメタリック製
酸化銀(99.9%) :深川理化学株式会社製
沃化リチウム(97.0%) :Aldrich Chemical Company Inc.製
炭酸リチウム(99.0%) :和光純薬株式会社製
導電ペーストDOTITE(銀ペースト):藤倉化成株式会社製
【0025】
実施例1および実施例2で得られた導電性ガラスについて、各種の測定方法によって電気伝導度を測定した。
(1)直流四端子法による測定
電子伝導が支配的で半導性を示すガラスの電気伝導度の測定には、一般に、直流四端子法が用いられる。ガラスを直方体に削り、その両端に銀ペーストを塗布し60分間乾燥後、銀入り半田を用いて電極を付設した。この電極を付設したガラス試料に流す電流(I)の値を変化させたときの電圧を測定し、I−V曲線の傾きから下記式によって電気伝導度を求めた。
【0026】
【数1】
ρ(Ωcm)=R・S/l−−−−−−−−−−−(1)
R:I−V曲線の傾き
S:ガラス試料の断面積(cm
l:電極間の距離(cm)
1/ρ:電気伝導度σ(S/cm)
【0027】
(2)交流二端子法による測定
交流二端子法は、一般に、イオン伝導体の電気伝導度測定に用いられる。図5に、交流二端子法による電気伝導度測定に用いる交流ブリッジ回路の構成を示す。このブリッジ回路において、Zに未知抵抗値の試料を入れ、cd間に流れる電流Iが0になるように、既知抵抗Z、Z、およびZを変化させる。このときのZ、Z、Z、およびZの関係は、次の通りである。
【0028】
【数2】
=Z ∴Z=Z/Z
【0029】
図6に、実施例1で得られた、Agをキャリアとするイオン伝導性を有するガラスについて、長時間直流電流を流したときの電気伝導度の経時変化を示す。測定開始直後の電気伝導度は、バナジウムのホッピング伝導(電子伝導)と、Agをキャリアとするイオン伝導の双方が観測され高い電気伝導度を示すが、時間の経過とともに低下する。50分間直流電流を流し続けると、電気伝導度の値が低位に安定する。これは、ガラス中のAgが陰極付近に移動し分極したため、Agの濃度勾配が生じてAg濃度が高い方から低い方へ移動し、電流とは反対方向にAgが移動してしまい、結果的にイオン伝導が阻害されるためと考えられる。このように、イオン伝導と電子伝導が共存するガラスでは、直流電流下で分極が生じてしまう。
【0030】
一方、交流ブリッジ法は、交流電流を用いて測定を行う方法であり、イオン伝導体の電気伝導度を測定するに際し分極を生じない。イオン伝導と電子伝導が共存するガラスの電気伝導度を、AgI(mol%)をパラメータとして交流ブリッジ法によって測定した結果を図7に○で示す。イオン伝導と電子伝導が共存する、Agをキャリアとするガラスの電気伝導度は、2.6×10−2S/cm〜3.5×10−4S/cmの範囲内で変化しており、AgI濃度の増加に伴って電気伝導度が低下している。ガラス中に存在するAgは、下記のような構造を採る。
【0031】
【化2】
−O−Ag−O−…Ag Ag…O−Ag−O−
【0032】
上記構造式中のAgはAgI由来のもので、酸素と結合しているAgはAgO由来である。このように、AgIとAgOの比が1:1のとき、移動可能なAgと移動を可能ならしめるスペースが最適であり、高い電気伝導度を示すと考えられる。
【0033】
これに対し、図6において■で示した分極後の電気伝導度の値(図5において、50分間以上直流電流を流したときの電気伝導度の値)は、(6.3〜6.8)×10−6S/cmの間で一定となる。これらの、ガラス中で電子伝導をもたらすVとFeの濃度は全て同じであるから、50分間以上直流電流を流したときイオン伝導の寄与はほぼ0となり、バナジウムのホッピング伝導による電子伝導の寄与のみが観測されて一定になると考えられる。
【0034】
図8に、Liをキャリアとするガラスに長時間直流電流を流したときの電気伝導度の経時変化を示す。Agをキャリアとするガラスの場合と同じように、130分間以上直流電流を流した場合、イオン伝導の寄与はほぼ0となり、電子伝導の寄与のみが観測されて電気伝導度が一定となると考えられる。
【0035】
Liをキャリアとするガラスについて、交流ブリッジを用いた電気伝導度の測定結果を図9に○で示す。図9から明らかなように、Liをキャリアとするイオン伝導とイオン伝導と電子伝導が共存するガラスの電気伝導度は、(5.3〜5.6)×10−6S/cmの範囲内で変化している。これに対し、分極後の電気伝導度(図9における■)は、(5.1〜5.2)×10−6S/cmという狭い範囲で一定となる。
【0036】
そこで、下記式を用いて電気伝導度におけるイオン伝導および電子伝導の寄与度を求めた。
【0037】
【数3】
電子伝導の寄与(%)=(分極後の電気伝導度÷イオン伝導と電子伝導が共存した状態の電気伝導度)×100
イオン伝導の寄与(%)=100−電子伝導の寄与(%)
【0038】
このようにして求めたイオン伝導および電子伝導の寄与度を、図10および図11に示す。図10から明らかなように、Agをキャリアとするガラスは98%以上イオン伝導が寄与しており、AgI濃度が低いほどイオン伝導の寄与が大きい。一方、図11から明らかなように、Liをキャリアとするガラスは、イオン伝導の寄与は数%程度であり、LiIの濃度が高くなると共にイオン伝導の寄与が大きくなる。
【0039】
Agをキャリアとするガラスでは、イオン伝導に寄与するAgIおよびAgOの濃度の合計と、電子伝導に寄与するVおよびFeの濃度の合計との比が、(65〜85):(15〜35)である。そのため、ガラス骨格を形成する成分が少なくなり、V(IV)からV(V)への電子ホッピングの確率が低くなると考えられる。
【0040】
バナジン酸塩ガラスの電気伝導度において、V(IV)からV(V)への電子ホッピングの確率は重要である。ガラス骨格であるVO四面体やVOピラミッドの対称性が増加することによってホッピングの確率が高くなり、電子伝導度の上昇する。また、Agをキャリアとするガラスにおけるように、少ない骨格成分で製造されたガラスは、骨格中に多くの隙間が存在すると考えられる。このように、ホッピングの確率の低下と、隙間の多い構造に起因して電子伝導の寄与は小さくなり、イオン伝導の寄与が大きくなると考えられる。
これに対し、Liをキャリアとするガラスでは、イオン伝導に寄与するLiIおよびLiOの濃度の合計と、電子伝導に寄与するVおよびFeの濃度の合計との比が、(30〜50):(50〜70)である。この系では、骨格成分が多いので、主として電子伝導タイプの導電性が発現すると考えられる。
【0041】
叙上のように、Agをキャリアとするガラスの電気伝導度σは、x=40のときに最高の値を示し、2.6×10−2S/cmである。これは食塩水と同等の電気伝導度であって、既存の二次電池電極材料の電気伝導度10−6S/cmよりも10000倍高い。
【0042】
Liをキャリアとするガラスの電気伝導度は、(5.3〜5.6)×10−6S/cmである。これは、既存の二次電池電極材料の電気伝導度10−6S/cmの5〜6倍である。
【0043】
【発明の効果】
請求項1および請求項2に記載の発明の電気伝導度の高いガラスを用いた電極は、電極のロスが少なく効率的である。このように本発明のイオン伝導と電子伝導が共存する導電性ガラスは、二次電池電極材料や燃料電池における電極材料として好適に用いることができる。
【0044】
請求項3および請求項4に記載の発明によれば、低コスト下にイオン伝導と電子伝導が共存する導電性ガラスを提供できる。
【図面の簡単な説明】
【図1】結晶およびガラス(アモルファス)における温度とモル体積の関係を示すグラフ
【図2】結晶およびガラス(アモルファス)の構造比較を示す模式図
【図3】NaO−SiO系ガラスの構造模式図
【図4】AgI−AgMO系ガラス(アモルファス)と結晶化物の電気伝導度を対比して示すグラフ
【図5】交流ブリッジの構成を示す回路図
【図6】Agをキャリアとするガラスに直流電流を流したときの電気伝導度の経時変化を示すグラフ
【図7】Agをキャリアとするガラスについて、交流ブリッジ法によってAgI(mol%)をパラメータとして電気伝導度を測定した結果および分極後主として電子伝導による電気伝導度を示すグラフ
【図8】Liをキャリアとするガラスに直流電流を流したときの電気伝導度の経時変化を示すグラフ
【図9】Liをキャリアとするガラスについて、交流ブリッジ法によってLiI(mol%)をパラメータとして電気伝導度を測定した結果および分極後主として電子伝導による電気伝導度を示すグラフ
【図10】Agをキャリアとするガラスのイオン伝導の寄与を示すグラフ
【図11】Liをキャリアとするガラスのイオン伝導の寄与を示すグラフ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a conductive glass having a so-called mixed conductivity in which ionic conduction and electron conduction coexist and a method for producing the same.
[0002]
[Prior art]
For example, in the case of a secondary battery using a solid electrolyte, as disclosed in Japanese Patent Application Laid-Open No. 2001-243984, good ion migration is caused at the interface between the electrode and the electrolyte, and the active material of the positive and negative electrodes is At the interface of the electrolyte, a practical level of battery characteristics is obtained by causing good movement of electrons and ions together with oxidation / reduction reactions. Thus, it is desirable that the material forming the electrode is a conductive material having both ionic conductivity and electronic conductivity.
[0003]
On the other hand, a glass having conductivity is known as a glass having a metal oxide film ITO (Indium Tin Oxide) on the surface thereof, which is mainly composed of an indium oxide film. These transparent and conductive glass plates are widely used as container materials for liquid crystal displays. However, these conductive glasses are based on electron conductivity, and do not have mixed conductivity having both ionic conductivity and electron conductivity required for an electrode of a secondary battery using the solid electrolyte, for example.
[0004]
[Problems to be solved by the invention]
If it is possible to easily obtain a highly conductive material having both ionic conductivity and electron conductivity, it is suitable as an electrode material for a secondary battery or a fuel cell using a solid electrolyte, which is an apparatus involving electrochemical reactions. . The mixed conductive material having both the ionic conductivity and the electronic conductivity is superior to the electric conductivity (10 −6 S / cm) of the existing secondary battery electrode material in order to reduce the loss at the electrode and increase the efficiency. It is necessary that the material has good electrical conductivity.
[0005]
An object of the present invention is to provide a conductive glass in which ionic conduction and electronic conduction coexist and the electric conductivity of which is much higher than the electric conductivity of a conventional secondary battery electrode material, and a method for producing the same.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 for solving the above problems, AgI and Ag 2 O: 65 mol% to 85 mol%, V 2 O 5 and Fe 2 O 3: mixture of 15 mol% to 35 mol% It is a conductive glass having conductivity. According to the present invention, it is possible to provide a novel conductive glass in which ionic conduction using Ag + as a carrier and electron conduction by hopping from V (IV) to V (V) coexist.
[0007]
The second aspect of the present invention is a conductive glass having mixed conductivity of 30 mol% to 50 mol% of LiI and Li 2 O, and 50 mol% to 70 mol% of V 2 O 5 and Fe 2 O 3. It is. According to the present invention, it is possible to provide a novel conductive glass in which ionic conduction using Li + as a carrier and electron conduction by hopping from V (IV) to V (V) coexist.
[0008]
The invention according to claim 3 is that, after mixing a composition consisting of AgI and Ag 2 O: 65 mol% to 85 mol%, V 2 O 5 and Fe 2 O 3 : 15 mol% to 35 mol%, heating is performed. A method for producing a conductive glass having mixed conductivity, characterized by melting and quenching to obtain glass. According to the present invention, a conductive glass in which ionic conduction and electron conduction coexist and the electric conductivity is much higher than the electric conductivity in the conventional secondary battery electrode material is manufactured by a simple process at low cost. be able to.
[0009]
The invention according to claim 4 is that, after mixing a composition consisting of 30 mol% to 50 mol% of LiI and Li 2 O, 50 mol% to 70 mol% of V 2 O 5 and Fe 2 O 3 , and then heating the mixture. A method for producing a conductive glass having mixed conductivity, characterized by melting and quenching to obtain glass. According to the present invention, a conductive glass in which ionic conduction and electron conduction coexist and the electric conductivity is much higher than the electric conductivity in the conventional secondary battery electrode material is manufactured by a simple process at low cost. be able to.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on preferred embodiments.
Looking at glass as a functional material, it has the following features.
{Circle around (1)} It is an isotropic solid and has no grain boundaries as seen in crystals. Therefore, it is a homogeneous substance composed of a single phase. This indicates that glass (amorphous) is a better material than crystal.
{Circle around (2)} Glass has no melting point, and its viscosity changes continuously over 10 orders of magnitude over a wide temperature range. From this, it is possible to obtain a material suitable for the purpose by changing the composition (chemical component ratio) and the temperature of the glass.
{Circle around (3)} Thermodynamically non-equilibrium while retaining the characteristics of the supercooled liquid. Therefore, when heated, the structure changes, and accordingly, the electrical properties, the properties for light, magnetism, and the like change with the heating time. This means that many excellent materials can be developed using glass.
(4) Looking at the structure of glass at the atomic level, the arrangement of atoms has no long-range regularity. For this reason, glass can be considered as an aggregate of ultrafine particles. However, it can be said that the whole glass is an aggregate having continuity of atoms. This can be considered that glass is essentially a solid with a network.
{Circle around (5)} There are many places inside glass that can take in atoms and atomic groups from the outside. This allows atoms added from the outside to become various ions. As a result, it is possible to change (control) the electrical properties of the externally added atoms and the properties of light, magnetism and the like according to the purpose.
[0011]
Utilizing such characteristics of glass, research and development of new glass have been performed, and glass having a new function has been developed. One of them is conductive glass. Usually, glass is an insulator, and its electric conductivity is about 10 −13 S / cm. As described above, the conductive glass is mainly an electron conductive type glass in which a metal oxide film such as ITO is formed on the surface of the glass.
[0012]
Glass can be defined as "a supercooled liquid in a solid state." As shown in FIG. 1, the glass is first solidified at a glass transition temperature Tg without being crystallized after being cooled below the freezing point without being crystallized. Things. Thus, although the appearance is a solid, the atomic arrangement is that of a liquid and has an amorphous structure.
[0013]
When the structures of the crystal and the glass are compared, as shown in FIG. 2, the crystal (a) has atoms regularly arranged, whereas the glass (b) has a four-sided structure while retaining the tetrahedral of SiO 4. The body is connected irregularly. The SiO 4 tetrahedron itself is similar everywhere in the glass, and there is no difference when compared with the SiO 4 tetrahedron in the crystal. This is called short-range order. However, when the two are observed on a large scale, it can be said that the order is lost in the glass and there is no long-range order. Therefore, while the crystal maintains both short-range order and long-range order, glass maintains short-range order but does not have long-range order.
[0014]
As described above, glass having a structure with more gaps than crystals can capture various ions in the gaps. When Na 2 O is added to the SiO 4 glass shown in FIG. 2, the following reaction occurs.
[0015]
Embedded image
-Si-O-Si + Na 2 O → Si-O - ... Na + ... O - -Si-
[0016]
FIG. 3 shows the glass structure at this time. When such a reaction occurs, the glass network is broken. Oxygen that is bonded to only one piece of silicon is called non-bridging oxygen. In contrast, oxygen that is bonded to two silicons is called bridging oxygen. The presence of non-bridging oxygen results in significant changes in the structure and properties of the glass. In the absence of non-crosslinked oxygen, the glass has a very high viscosity even at high temperatures, but the presence of non-crosslinked oxygen causes a sharp drop in viscosity at high temperatures. In addition, since the network modifying ion, Na +, can move, an improvement in electric conductivity can be expected.
Thus, a glass whose physical properties can be controlled by a component newly added from the outside is advantageous for the development of a new material. The inventor has conducted research to develop a new conductive glass in which ionic conduction and electronic conduction coexist.
[0017]
Ions, which have a size and mass incomparable to electrons, can move well in liquids but are difficult to move in solids. However, high ionic conductivity can be achieved even in a solid, provided that the structural conditions under which ions can move are satisfied. Glass has a disordered and sparse structure, with more voids than crystals. For ions to move, it is advantageous to have more "voids". As shown in FIG. 4, electric conductivity is improved by vitrification. There is a difference of 10 times or more in electric conductivity between glass and crystal of the same component system. Thus, in order to realize high ionic conductivity, it is important to make the glass (amorphous).
[0018]
In the field of solid electrolyte batteries and electrochromism, ionic conduction and electron transfer are necessary because good transfer of electrons and ions is required along with oxidation and reduction reactions at the interface between the active material of the positive and negative electrodes and the electrolyte. It is desirable that the material has mixed conductivity in which conduction coexists. Ion conduction and electronic conduction can be described by the property of intercalation.
[0019]
Intercalation refers to a phenomenon in which an electron donor or an electron acceptor is inserted between layers of a layered substance by a charge transfer force. In general, the layered substance is mainly composed of a covalent bond that mainly forms a bond, but is bonded by a weak force such as van der Waals force between the layers. Therefore, the electron donor or the electron acceptor exchanges electrons with an atomic group forming a layer, penetrates between the layers, and expands the layer to form a kind of charge transfer complex. This compound is called an interlayer compound. Insertion can be of many types, from the first stage, where all layers are filled by the amount of intercalant added to the layered material, to the n-th stage, which is every nth layer. Since glass has a sparse structure, a reaction similar to intercalation is likely to occur.
[0020]
A solid electrolyte battery generally has a structure of negative electrode / electrolyte / positive electrode. In such a solid electrolyte battery, an ionic conductor is used for the electrolyte. The positive electrode of a solid electrolyte battery utilizes mixed conduction in which ionic conduction and electronic conduction due to an intercalation reaction coexist.
In the case of a secondary battery, not only discharging but also charging is performed. During this charge / discharge, an intercalation reaction and a reverse deintercalation reaction occur. When this reaction occurs, it is accompanied by an increase or decrease in volume. The glass structure has many extra gaps as compared with the crystal, and this volume change is small. That is, glass (amorphous) can increase the number of repetitions of charge and discharge more than crystals. In addition, the charge / discharge capacity of the amorphous state is larger. Thus, glass (amorphous) materials are promising as positive electrode materials for secondary batteries.
[0021]
In the case of glass in which ionic conduction and electronic conduction coexist, the contribution ratio of ionic conduction and electronic conduction to electric conduction is important. In the mixed conductive glass, finding the contribution ratio of the ionic conductivity to the total electric conductivity is important for confirming that the glass has ionic conductivity. The inventor has found a method of determining the contribution ratio as described later.
[0022]
【Example】
Example 1
The xAgI · (75-x) mixture having a composition of Ag 2 O · 24V 2 O 5 · 1Fe 2 O 3, x (mol%) of 40, 45, 50, 55, and 60 is changed to be in an agate pot After mixing well, the mixture was heated and melted at 900 ° C. for 15 minutes, and quenched using a copper plate to obtain glass.
[0023]
Example 2
The yLiI · (38-y) mixture having a composition of Li 2 O · 56V 2 O 5 · 6Fe 2 O 3, y a (mol%) 13.5,18.5,23.5, and 28.5 The mixture was changed and mixed well in an agate bowl, heated and melted at 1200 ° C. for 30 minutes, and quenched using ice water to obtain a glass.
[0024]
The reagents used are as follows.
Vanadium pentoxide (V) (99.0%): Iron oxide (III) (99%) manufactured by Wako Pure Chemical Industries, Ltd .: Silver iodide (99.9%) manufactured by Wako Pure Chemical Industries, Ltd .: Rare Metallic Co., Ltd. Silver oxide (99.9%): Lithium iodide (97.0%) manufactured by Fukagawa Riken Co., Ltd .: Aldrich Chemical Company Inc. Lithium carbonate (99.0%) manufactured by Wako Pure Chemical Industries, Ltd. Conductive paste DOTITE (silver paste): manufactured by Fujikura Kasei Co., Ltd.
With respect to the conductive glasses obtained in Example 1 and Example 2, the electric conductivity was measured by various measuring methods.
(1) Measurement by DC Four-Terminal Method In general, the DC four-terminal method is used to measure the electrical conductivity of glass exhibiting semiconductivity, in which electron conductivity is dominant. The glass was cut into a rectangular parallelepiped, silver paste was applied to both ends of the glass, dried for 60 minutes, and electrodes were attached using silver-containing solder. The voltage was measured when the value of the current (I) passed through the glass sample provided with this electrode was changed, and the electrical conductivity was determined from the slope of the IV curve by the following equation.
[0026]
(Equation 1)
ρ (Ωcm) = R · S / l-------------(-)
R: Slope of IV curve S: Cross-sectional area of glass sample (cm 2 )
l: distance between electrodes (cm)
1 / ρ: Electric conductivity σ (S / cm)
[0027]
(2) Measurement by AC Two-Terminal Method The AC two-terminal method is generally used for measuring the electrical conductivity of an ionic conductor. FIG. 5 shows a configuration of an AC bridge circuit used for measuring electric conductivity by the AC two-terminal method. In the bridge circuit, the sample was placed in the unknown resistance value Z 4, such that the current I D flowing between cd becomes 0, known resistance Z 1, Z 2, and changing the Z 3. The relationship among Z 1 , Z 2 , Z 3 , and Z 4 at this time is as follows.
[0028]
(Equation 2)
Z 1 Z 4 = Z 2 Z 3 ∴Z 4 = Z 2 Z 3 / Z 1
[0029]
FIG. 6 shows the change over time in the electrical conductivity of a glass having ion conductivity using Ag + as a carrier obtained in Example 1 when a direct current is applied for a long time. Immediately after the start of the measurement, both the hopping conduction (electron conduction) of vanadium and the ionic conduction using Ag + as a carrier are observed, and the electric conductivity shows high electric conductivity, but decreases with time. When a direct current is continuously supplied for 50 minutes, the value of the electric conductivity is stabilized at a low level. This is because in the glass Ag + has moved polarized near the cathode, Ag + concentration gradient is caused to move from high to low is Ag + concentration, and moves Ag + in the opposite direction to the current It is considered that the ion conduction is hindered as a result. As described above, in a glass in which ionic conduction and electronic conduction coexist, polarization occurs under a direct current.
[0030]
On the other hand, the AC bridge method is a method of performing measurement using an AC current, and does not cause polarization when measuring the electric conductivity of the ionic conductor. The results of measuring the electrical conductivity of glass in which ionic conduction and electronic conduction coexist by the AC bridge method using AgI (mol%) as a parameter are shown by ○ in FIG. The electrical conductivity of glass using Ag + as a carrier, in which ionic conduction and electron conduction coexist, changes within the range of 2.6 × 10 −2 S / cm to 3.5 × 10 −4 S / cm. And the electrical conductivity decreased with the increase in AgI concentration. Ag present in the glass has the following structure.
[0031]
Embedded image
-O-Ag-O- ... Ag + Ag + ... O - -Ag-O-
[0032]
Ag + in the above structural formula is derived from AgI, and Ag bound to oxygen is derived from Ag 2 O. As described above, when the ratio of AgI to Ag 2 O is 1: 1, it is considered that the movable Ag + and the space enabling the movement are optimal, and exhibit high electric conductivity.
[0033]
On the other hand, the value of the electric conductivity after polarization indicated by ■ in FIG. 6 (the value of the electric conductivity when a direct current is passed for 50 minutes or more in FIG. 5) is (6.3 to 6.8). ) × 10 −6 S / cm. Since the concentrations of V 2 O 5 and Fe 2 O 3 that cause electron conduction in the glass are all the same, the contribution of ion conduction becomes almost zero when a direct current is passed for 50 minutes or more, and the hopping conduction of vanadium It is considered that only the contribution of electron conduction due to is observed and becomes constant.
[0034]
FIG. 8 shows a change with time of the electrical conductivity when a direct current is applied to glass using Li + as a carrier for a long time. As in the case of the glass using Ag + as a carrier, when a direct current is passed for 130 minutes or more, the contribution of ionic conduction is almost zero, and only the contribution of electron conduction is observed, and the electric conductivity is considered to be constant. Can be
[0035]
The measurement result of the electric conductivity of the glass using Li + as a carrier using an AC bridge is shown by a circle in FIG. As is clear from FIG. 9, the electric conductivity of the glass in which ionic conduction using Li + as a carrier and ionic conduction and electronic conduction coexist is in the range of (5.3 to 5.6) × 10 −6 S / cm. Is changing within. On the other hand, the electric conductivity after polarization (■ in FIG. 9) is constant in a narrow range of (5.1 to 5.2) × 10 −6 S / cm.
[0036]
Thus, the contribution of ionic conduction and electronic conduction to electrical conductivity was determined using the following equation.
[0037]
[Equation 3]
Contribution of electron conduction (%) = (electric conductivity after polarization / electric conductivity in a state where ionic conduction and electron conduction coexist) × 100
Contribution of ion conduction (%) = 100-contribution of electron conduction (%)
[0038]
FIGS. 10 and 11 show the degrees of contribution of the ion conduction and the electron conduction obtained in this manner. As is clear from FIG. 10, 98% or more of ionic conduction contributes to glass using Ag + as a carrier, and the lower the AgI concentration, the greater the contribution of ionic conduction. On the other hand, as is clear from FIG. 11, the glass having Li + as a carrier contributes only about several percent of the ion conduction, and as the LiI concentration increases, the contribution of the ion conduction increases.
[0039]
In a glass using Ag + as a carrier, the ratio of the total concentration of AgI and Ag 2 O contributing to ion conduction to the total concentration of V 2 O 5 and Fe 2 O 3 contributing to electron conduction is (65). -85): (15-35). Therefore, it is considered that the number of components forming the glass skeleton decreases, and the probability of electron hopping from V (IV) to V (V) decreases.
[0040]
In the electrical conductivity of the vanadate glass, the probability of electron hopping from V (IV) to V (V) is important. Probability hopping by the symmetry of the VO 4 tetrahedra and VO 5 pyramids is a glass skeleton increases increases, increases the electronic conductivity. Further, it is considered that glass produced with a small number of skeleton components has many gaps in the skeleton, as in glass using Ag + as a carrier. As described above, it is considered that the contribution of the electron conduction is reduced and the contribution of the ionic conduction is increased due to the decrease in the probability of hopping and the structure having many gaps.
On the other hand, in a glass using Li + as a carrier, the ratio of the total concentration of LiI and Li 2 O contributing to ion conduction to the total concentration of V 2 O 5 and Fe 2 O 3 contributing to electron conduction. Is (30 to 50): (50 to 70). In this system, since there are many skeletal components, it is considered that mainly electron conductivity type conductivity is exhibited.
[0041]
As described above, the electric conductivity σ of the glass using Ag + as a carrier shows the highest value when x = 40, and is 2.6 × 10 −2 S / cm. This is an electrical conductivity equivalent to that of a saline solution, and is 10,000 times higher than the electrical conductivity of existing secondary battery electrode materials of 10 −6 S / cm.
[0042]
The electrical conductivity of the glass having Li + as a carrier is (5.3 to 5.6) × 10 −6 S / cm. This is 5 to 6 times the electrical conductivity of the existing secondary battery electrode material of 10 −6 S / cm.
[0043]
【The invention's effect】
The electrode using the glass having high electric conductivity according to the first and second aspects of the invention is efficient with little loss of the electrode. Thus, the conductive glass of the present invention in which ionic conduction and electron conduction coexist can be suitably used as an electrode material for a secondary battery or an electrode material in a fuel cell.
[0044]
According to the third and fourth aspects of the invention, it is possible to provide a conductive glass in which ionic conduction and electronic conduction coexist at low cost.
[Brief description of the drawings]
[1] crystal and glass (amorphous) graph Figure 2 which shows the relationship between the temperature and the molar volume of the crystalline and glass schematic diagram Figure 3 Na 2 O-SiO 2 system glass showing a structural comparison of (amorphous) schematic structure Figure 4 is a circuit diagram showing a graph Figure 5 of the AC bridge configuration AgI-Ag 2 MO 4 glass and (amorphous) shown by comparing the electrical conductivity of the crystallized product [6] the Ag + FIG. 7 is a graph showing a change over time in electric conductivity when a direct current is applied to glass as a carrier. FIG. 7 shows a graph of electric conductivity of Ag + as a carrier, using AgI (mol%) as a parameter by an AC bridge method. electrical when measurement results and graph showing the electric conductivity mainly by electron conduction after polarization [8] the Li + was a direct current flows in the glass to the carrier The glasses according to the graph 9 of Li + carrier showing the time course of Shirubedo, electrical conductivity by LiI (mol%) the electric conductivity mainly electron conductivity after measurement results and polarization as a parameter by the AC bridge method FIG. 10 is a graph showing the ionic conduction contribution of glass using Ag + as a carrier. FIG. 11 is a graph showing the ionic conduction contribution of glass using Li + as a carrier.

Claims (4)

AgIおよびAgO:65モル%〜85モル%、VおよびFe:15モル%〜35モル%からなる混合伝導性を有する導電性ガラス。AgI and Ag 2 O: 65 mol% to 85 mol%, V 2 O 5 and Fe 2 O 3: 15 mol% to 35 mol% mixed conducting glass having a conductive consisting. LiIおよびLiOを30モル%〜50モル%、VおよびFe:50モル%〜70モル%からなる混合伝導性を有する導電性ガラス。A conductive glass having a mixed conductivity of 30 mol% to 50 mol% of LiI and Li 2 O, and 50 mol% to 70 mol% of V 2 O 5 and Fe 2 O 3 . AgIおよびAgO:65モル%〜85モル%、VおよびFe:15モル%〜35モル%からなる組成物を混合した後、加熱・溶融し、急冷してガラスとすることを特徴とする混合伝導性を有する導電性ガラスの製造方法。AgI and Ag 2 O: 65 mol% to 85 mol%, V 2 O 5 and Fe 2 O 3 : 15 mol% to 35 mol% are mixed and then heated, melted, quenched, and mixed with glass. A method for producing a conductive glass having mixed conductivity. LiIおよびLiOを30モル%〜50モル%、VおよびFe:50モル%〜70モル%からなる組成物を混合した後、加熱・溶融し、急冷してガラスとすることを特徴とする混合伝導性を有する導電性ガラスの製造方法。After mixing a composition consisting of 30 mol% to 50 mol% of LiI and Li 2 O, and 50 mol% to 70 mol% of V 2 O 5 and Fe 2 O 3 , the mixture is heated and melted, quenched, and cooled. A method for producing a conductive glass having mixed conductivity.
JP2003125691A 2003-04-30 2003-04-30 Conductive glass having mixed conductivity and method for producing the same Expired - Lifetime JP4461238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125691A JP4461238B2 (en) 2003-04-30 2003-04-30 Conductive glass having mixed conductivity and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125691A JP4461238B2 (en) 2003-04-30 2003-04-30 Conductive glass having mixed conductivity and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004331416A true JP2004331416A (en) 2004-11-25
JP4461238B2 JP4461238B2 (en) 2010-05-12

Family

ID=33502876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125691A Expired - Lifetime JP4461238B2 (en) 2003-04-30 2003-04-30 Conductive glass having mixed conductivity and method for producing the same

Country Status (1)

Country Link
JP (1) JP4461238B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248867A (en) * 2005-03-14 2006-09-21 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Precisely processed electroconductive glass member
WO2008059847A1 (en) 2006-11-13 2008-05-22 Tokai Industry Corp. Electric/electronic circuit system with conductive glass member
US20130270489A1 (en) * 2012-04-17 2013-10-17 Heraeus Precious Metals North America Conshohocken Llc Inorganic Reaction System For Electroconductive Paste Composition
CN104871254A (en) * 2012-12-29 2015-08-26 第一毛织株式会社 Composition for forming electrode of solar cell, and electrode manufactured using same
WO2022191002A1 (en) * 2021-03-08 2022-09-15 公立大学法人大阪 Ion conductor and utilization thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248867A (en) * 2005-03-14 2006-09-21 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Precisely processed electroconductive glass member
JP4517150B2 (en) * 2005-03-14 2010-08-04 財団法人北九州産業学術推進機構 Method for manufacturing plasma generating electrode
WO2008059847A1 (en) 2006-11-13 2008-05-22 Tokai Industry Corp. Electric/electronic circuit system with conductive glass member
US20130270489A1 (en) * 2012-04-17 2013-10-17 Heraeus Precious Metals North America Conshohocken Llc Inorganic Reaction System For Electroconductive Paste Composition
CN103377753A (en) * 2012-04-17 2013-10-30 赫劳斯贵金属北美康舍霍肯有限责任公司 Inorganic reaction system for electroconductive paste composition
US9257578B2 (en) * 2012-04-17 2016-02-09 Heraeus Precious Metals North America Conshohocken Llc Inorganic reaction system for electroconductive paste composition
TWI594268B (en) * 2012-04-17 2017-08-01 賀利氏貴金屬北美康舍霍肯有限責任公司 Inorganic reaction system for electroconductive paste composition
CN104871254A (en) * 2012-12-29 2015-08-26 第一毛织株式会社 Composition for forming electrode of solar cell, and electrode manufactured using same
KR101802546B1 (en) * 2012-12-29 2017-11-30 제일모직주식회사 Composition for forming solar cell and electrode prepared using the same
US9911872B2 (en) 2012-12-29 2018-03-06 Cheil Industries, Inc. Composition for forming electrode of solar cell, and electrode manufactured using same
WO2022191002A1 (en) * 2021-03-08 2022-09-15 公立大学法人大阪 Ion conductor and utilization thereof

Also Published As

Publication number Publication date
JP4461238B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
Wang et al. Fundamentals of electrolytes for solid-state batteries: challenges and perspectives
Chen et al. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application
Fan et al. Electrodeposition kinetics in Li-S batteries: effects of low electrolyte/sulfur ratios and deposition surface composition
Whiteley et al. Empowering the lithium metal battery through a silicon-based superionic conductor
Sano et al. Effect of current density on morphology of lithium electrodeposited in ionic liquid-based electrolytes
Aihara et al. The electrochemical characteristics and applicability of an amorphous sulfide-based solid ion conductor for the next-generation solid-state lithium secondary batteries
Chen et al. All-solid-state lithium battery fitted with polymer electrolyte enhanced by solid plasticizer and conductive ceramic filler
JP2002109955A (en) Sulfide crystallized glass, solid electrolyte, and fully solid secondary cell
Kjeldsen et al. Electronic conductivity of vanadium-tellurite glass-ceramics
CA2779071A1 (en) Metal fluoride compositions for self formed batteries
JP2020516029A (en) System and method for forming a simple lithium metal anode interface with a solid electrolyte
Fitzhugh et al. Modulation of Ionic Current Limitations by Doping Graphite Anodes
Mizuno et al. Effects of conductive additives in composite positive electrodes on charge-discharge behaviors of all-solid-state lithium secondary batteries
Tanibata et al. Improvement of rate performance for all-solid-state Na15Sn4/amorphous TiS3 cells using 94Na3PS4· 6Na4SiS4 glass-ceramic electrolytes
Lin et al. Resistance switching behavior of ZnO resistive random access memory with a reduced graphene oxide capping layer
Zhang et al. Layered perovskite lithium yttrium titanate as a low‐potential and ultrahigh‐rate anode for lithium‐ion batteries
Xia et al. Improving linear alkyl carbonate electrolytes with electrolyte additives
JP6694133B2 (en) All solid state battery
Brandell et al. Polymer-based Solid State Batteries
Liao et al. Achieving superior ionic conductivity of Li6PS5I via introducing LiCl
Venkateswarlu et al. AC conductivity studies of silver based fast ion conducting glassy materials for solid state batteries
Gandi et al. Na–Ge glass anode network mixed with bismuth oxide nanocrystallites: a high capacity anode material for use in advanced sodium-ion battery design
Tron et al. Synthesis of the solid electrolyte Li2O–LiF–P2O5 and its application for lithium-ion batteries
Tateishi et al. Graphene oxide lead battery (GOLB)
Pravarthana et al. Reversible control of magnetic anisotropy and magnetization in amorphous Co 40 Fe 40 B 20 thin films via all-solid-state Li-ion redox capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060428

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4461238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term