JP2004330804A - Control method of vehicular air conditioner and vehicular air conditioner - Google Patents

Control method of vehicular air conditioner and vehicular air conditioner Download PDF

Info

Publication number
JP2004330804A
JP2004330804A JP2003125166A JP2003125166A JP2004330804A JP 2004330804 A JP2004330804 A JP 2004330804A JP 2003125166 A JP2003125166 A JP 2003125166A JP 2003125166 A JP2003125166 A JP 2003125166A JP 2004330804 A JP2004330804 A JP 2004330804A
Authority
JP
Japan
Prior art keywords
temperature
outside air
vehicle
correction
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003125166A
Other languages
Japanese (ja)
Other versions
JP3833628B2 (en
Inventor
Akito Yamamoto
昭人 山本
Tadao Suzuki
忠夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003125166A priority Critical patent/JP3833628B2/en
Publication of JP2004330804A publication Critical patent/JP2004330804A/en
Application granted granted Critical
Publication of JP3833628B2 publication Critical patent/JP3833628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of a vehicular air conditioner and the vehicular air conditioner capable of accurately performing solar radiation correction inside a cabin dispensing with a solar radiation sensor. <P>SOLUTION: In the method for controlling the vehicular air conditioner performing temperature control in the cabin, switching of stages of a multistage air blowing fan 11 blowing air into the cabin is controlled in accordance with a prescribed control pattern, and whether the stage determined in accordance with the control pattern is corrected or not is determined based on the temperature of air outside the cabin detected with an outside air temperature sensor 32. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車等の車両に搭載される車両用空調装置の制御方法、及び車両用空調装置に関するものである。
【0002】
【従来の技術】
車両内における空調、特に冷房を行う際には、日射による影響を考慮しなくてはならない。すなわち日射量が増大すると、車室内の空調温度が設定通りとなっていても、乗員等の空調感が低下してしまうこととなるので、車室内への風量を大きくすること等で、空調感を維持する必要がある。
【0003】
日射による影響を補正(日射補正)するために、日射センサをダッシュボードの上部等に設けて、フロントウィンドウから入射する日射量を検出できるような構成とされている車両用空調装置が広く用いられている。例えば特許文献1に記載の発明においては、日射センサが検出した日射量を空調制御装置へと送り、空調制御装置では、この日射量に基づいてブロア(ファン)の回転数(段数)を変化させて、風量制御特性の補正を行うような日射補正制御を行う。このように日射量に応じて風量制御特性を補正し、車室内への風量を変化させることで、日射量が増大しても車室内の空調感を一定に維持することができる。
【0004】
【特許文献1】
特開2001−260629号公報
【0005】
【発明が解決しようとする課題】
このように日射センサを用いることで、車室内の乗員等の空調感を常に一定に維持することができるよう、きめ細かな日射補正が可能となる。しかしその反面、このような日射センサは高価であるため、より低コストで容易に日射補正制御を行い得ることが求められていた。
【0006】
本発明は上記事情に鑑みてなされたもので、高価な日射センサを不要として、車室内の日射補正を的確に行い得る車両用空調装置の制御方法、及び車両用空調装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、車室内の温度を検出する室内温度センサと、車室外の温度を検出する外気温度センサと、車室内への送風を行う多段式のファンと、当該ファンを制御する制御装置とを備える車両用空調装置を制御する制御方法であって、前記制御装置が、前記室内温度センサが検出した室内温度と前記外気温度センサが検出した外気温度と設定温度とに基づき前記車室内への送風を行う多段式のファンの基準段数を基準段数設定データテーブルに従って決定し、当該基準段数設定データテーブルに従って決定された基準段数に補正を行うか否かを、前記外気温度センサが検出した外気温度に基づいて判定することを特徴とする。
【0008】
このように、外気温度センサが検出した車室外の外気温度に基づいて、ファンの段数の補正を行うか否かを判定するようにしているので、日射センサを不要としても、車室内の日射補正を的確に行うことができる。すなわち、外気温度と日射量とは密接に関係しているため、外気温度から日射量を予測することができ、これに従って日射補正を行う、つまり所定の制御パターン(基準段数設定データテーブル)に従って決定された段数をアップ(又はダウン)させて風量を調節することで、日射量が大きい場合でも車室内の空調感を向上させることができる。
【0009】
請求項2に記載の発明は、請求項1に記載の車両用空調装置の制御方法であって、前記制御装置が、補正を行なうと判定した場合には、前記室内温度センサが検出した室内温度と設定温度との温度差に応じて前記ファンの基準段数を補正する補正段数を決定することを特徴とする。
【0010】
日射補正を行なうと判断した場合に、温度差に応じて補正段数を決定することにより、車室内で好適な空調感を与える日射補正を、的確に行い得ることができる。
【0011】
請求項3に記載の発明は、請求項2に記載の車両用空調装置の制御方法であって、前記制御装置は、外気温度に応じた前記ファンの補正段数を規定した補正相関パターンを複数有しており、当該制御装置が、前記外気温度センサが検出した外気温度に応じて当該補正相関パターンを選択することを特徴とする。
【0012】
複数の補正相関パターンから外気温度に応じて好適な補正相関パターンを選択するので、日射量や外気温度の多様な変化にも、柔軟に対応していくことができる。
【0013】
請求項4に記載の発明は、請求項1乃至3に記載の車両用空調装置の制御方法であって、前記制御装置が、前記温度差に応じて複数段の段数補正を決定した場合に、段階的に補正段数を増減させることを特徴とする。
【0014】
前記温度差に応じて複数段の段数補正を決定した場合に、段階的に補正段数を増減させることにより、車室内の乗員等に日射補正処理に移行したことを意識させないようにして、日射補正をより好適に行うことができる。
【0015】
請求項5に記載の発明は、車室内の温度制御を行う車両用空調装置であって、前記車室内への送風を行う多段式のファンと、前記車室外の外気温度を検出する外気温度センサと、前記ファンの段数切換を所定の制御パターンに従って制御し、該制御パターンに従って決定された段数に補正を行うか否かを、前記外気温度センサが検出した前記外気温度に基づいて判定する制御装置と、を備えたことを特徴とする。
【0016】
車両用空調装置が前記ファンの段数切換を所定の制御パターンに従って制御し、当該制御パターンに従って決定された段数に補正を行うか否かを、前記外気温度センサが検出した前記外気温度に基づいて判定する制御装置を備えるので、日射センサを不要としても、車室内の日射補正を的確に行うことができ、日射量が大きい場合でも車室内の空調感を向上させることができる。
【0017】
請求項6に記載の発明は、車室内の温度を検出する室内温度センサと、車室外の温度を検出する外気温度センサと、車室内への送風を行う多段式のファンと、当該ファンを制御する制御装置とを備える車両用空調装置であって、前記制御装置は、前記室内温度センサが検出した室内温度と前記外気温度センサが検出した外気温度と設定温度とに応じた前記ファンの基準段数を規定した基準段数設定データテーブルと、前記室内温度と設定温度との温度差に応じた前記ファンの基準段数を補正する補正段数を規定した補正データテーブルと、を有することを特徴とする。
【0018】
本発明では、制御装置は、室内温度センサが検出した室内温度と前気温度センサが検出した外気温度と設定温度とに応じたファンの基準段数を規定した基準段数設定データテーブルと、前記室内温度と設定温度との温度差に応じた前記ファンの基準段数を補正する補正段数を規定した補正データテーブルと、を有するので、日射センサを備えない車両用空調装置であっても、外気温度を判断指標として日射量に応じた基準段数の補正を行なうことができる
【0019】
【発明の実施の形態】
以下、本発明に係る車両用空調装置の実施の一形態について、図1乃至図4を用いて説明する。
図1は、本実施形態における、自動車(車両)に搭載されている車両用空調装置1を示す概略構成図である。図1に示したように、この車両用空調装置1は、装置本体としてのケーシング2に、制御装置30、室内温度センサ31、外気温度センサ32、及び操作スイッチ33を付加した構成となっている。
ここで、ケーシング2は、車室内又は車室外から吸入した空気を空調し、この空調空気を車室内へと送風するべく、多段式の送風ファン(ファン)11、エバポレータ13、及びヒータコア15といった、各種機器が収容されている。
【0020】
送風ファン11は、ケーシング2の一端側に形成された外気吸入口21又は内気吸入口22から、車室内又は車室外の空気をケーシング2内へと吸入し、エバポレータ13などが設けられた側、詳しくはケーシング2内部の流過方向における下流側へと送風するものである。この送風ファン11は、送風ファン用モータ11aによって駆動される多段式であって、段数は16段となっている。具体的には、送風ファン11は、制御装置30からの制御信号に基づき、送風ファン用モータ11aの回転数を16段階で変化させて風量を調節することによって車室内への空調空気流入量を制御し、車室内の温度(室内温度)を調節するように動作する。この段数制御は、制御装置30からの制御信号によって行われる。
【0021】
外気吸入口21は車外と連通しており、また内気吸入口22は車室内と連通している。これら外気吸入口21と内気吸入口22との間には、内外気切替ダンパ12が備えられており、内外気切替ダンパ12の回動動作に応じて外気吸入口21が閉塞されると内気吸入口22が開口して車内の空気がケーシング2内に取り込まれ、また内気吸入口22が閉塞されると外気吸入口21が開口して外気が取り込まれる。
【0022】
エバポレータ13は、吸入した空気との間で熱交換を行うものであり、その下流側には温調ダンパ14、及びエンジン冷却用の冷却水を取り入れるヒータコア15が設けられている。エバポレータ13を通過して熱交換がなされた空調空気は、制御装置30の制御の下、温調ダンパ14の回動動作によって、ヒータコア15を通過する流れと通過しない流れとに、適宜分配される。これらの空気は、温調チャンバCに各々流入し、互いに混合されて温調空気とされる。
【0023】
温調チャンバCの下流側であるケーシング2の他端側には、車室内の異なる箇所に空調空気を提供するための複数の吹出口として、DEF吹出口23、FACE吹出口24及びFOOT吹出口25が、各々形成されている。DEF吹出口23は、ダッシュボード(図示省略)の上部等に連通し開口することで、フロントウィンドウ(図示省略)に向かって温調チャンバC内の温調空気を吹出し、デフロストを行うためのものである。またFACE吹出口24は、ダッシュボードの前面等に連通し開口することで、車室内の中央及び上方に向かって温調空気を吹出すためのものである。更にFOOT吹出口25は、ダッシュボードの下方等に連通し開口することで、車内の下方に向かって温調空気を吹出すためのものである。これらDEF吹出口23、FACE吹出口24及びFOOT吹出口25には、各々ダンパ16〜18が設けられており、これらダンパ16〜18を回動させることで各々の吹出口を開閉して、温調空気の吹出方向を適宜設定することができる。
【0024】
制御装置30は、車両用空調装置1の運転を総括的に制御するものである。具体的には、送風ファン11の段数制御の他、エバポレータ13に連結された圧縮機(図示省略)の動作制御、ダンパ14,16〜18を各々回動させるダンパ用モータ(図示省略)の動作制御を行う。この制御装置30には、ダッシュボードのインスツルメントパネル等に設けられた操作スイッチ33からの操作信号が入力されるとともに、室内温度センサ31及び外気温度センサ32からの各々の検出値、つまり室内温度及び外気温度が、各々入力され、この入力信号に応じて上述した各機器の動作制御が実現される。
【0025】
室内温度センサ31は、車室内において室内温度を好適に検出しうる場所に設置されており、また外気温度センサ32は、車室外において外気温度を好適に検出しうる場所に設置されている。
【0026】
操作スイッチ33は、乗員の操作・設定に応じて、車両用空調装置1の運転モード(AUTOモード又はMANUALモード)の切換、あるいは風量や吹出方向の切換等の各種制御信号を生成し、制御装置30へ生成した制御信号を入力するものである。AUTOモードの場合であれば、設定温度が入力され、またMAMUALモードの場合であれば、温調空気の吹出方向や風量等が、乗員等の所望の通りに適宜入力される。こうして操作スイッチ33から各操作に応じた信号が制御装置30へと送られ、制御装置30は、これら操作信号に基づき、不図示の記憶手段に格納されたデータテーブルや制御プログラムを参照し、所定の制御パターンに従って、送風ファン11の段数、圧縮機の動作、あるいはダンパ16〜18の開閉を制御し、各運転モードに応じた車両用空調装置1の運転を行う。
【0027】
以上説明した各種機器を備える構成の車両用空調装置1を用いて車室内の冷房を行う際の、一連の制御の流れについて、図2乃至図4を用いて説明する。なお、以下に説明する温度制御は、車両用空調装置1の制御モードをAUTOモードに設定した場合に実現される。なお、図4に示した温度制御処理を開始する前に、制御装置30は、車室内の乗員による操作スイッチ33の操作に応じた入力信号に基づき車室内の設定温度を予め取得し、不図示の記憶手段に設定温度情報として参照可能に格納する設定温度取得処理を行なう。
【0028】
図4に示したように、制御装置30は、先ず、室内温度センサ31からの室内温度を時間t毎にサンプリングして取り込む(S101)。詳細には、本実施形態においては室内温度のサンプリング周期tを3秒に設定し、制御装置30が内蔵クロックを参照してtが経過したか否かを判別し、tを経過した場合には、次のステップへと移行する(S101)。
【0029】
次に、制御装置30は、室内温度センサ31から受け付けた室内温度や外気温度センサ32から受け付けた外気温度をサンプリングし、サンプリングした室内温度、外気温度、及び先に取得した設定温度に基づいて、設定温度に室内温度を到達させるために必要となる送風ファン11の基準段数を決定する(S102)。
【0030】
詳細には、制御装置30は、不図示の記憶手段に格納された基準段数設定データテーブルを参照し、所定の制御パターンに従って送風ファン11のファン段数を決定し、その段数とするように送風ファン用モータ11aの制御を行う(S102)。ここで、本実施形態においては、基準段数設定データテーブルは、室内温度、外気温度、設定温度をパラメータとして送風ファン11のファン段数を規定する既知のデータベース構造を採用する。
【0031】
このように、本実施形態では、室内温度及び外気温度の変化に伴って、室内温度を設定温度に合わせるように基準段数を定めるべく、所定の制御パターンに従って、3秒毎にきめ細かにファン段数を決定する制御形態を、基本的なAUTOモードに採用する。
【0032】
上述した基準段数設定処理(S101,S102)に引き続き、制御装置30は、日射補正シーケンスに移行する。日射補正シーケンスの第一段階として、まず、日射補正を行なうか否かを判定する日射補正要否判定処理を行なう(S103,S104)。
【0033】
詳細には、制御装置30は、内蔵クロック等を参照し、時間tが経過したか否かを判別し、tを経過した場合には、次のステップへと移行する(S103)。本実施形態では、この外気温度のサンプリング周期tを60秒に設定する。
【0034】
ここで、本発明者等の検討によれば、外気温度をサンプリングする周期を60秒未満に設定すると、制御系にハンチングが発生し易くなることが判明した。特に30秒以下のタイミングでは、その傾向は顕著となる。そのためこの場合には、60秒に設定すれば、制御系のハンチングを的確に防止することができる。ただしこの周期は、車室形状等に左右されるため、車種毎に実測することが望ましい。
【0035】
続いて、制御装置30は、外気温度センサ32からの外気温度をサンプリングし、このt毎にサンプリングされた外気温度(演算用外気温度)に基づき所定の設定値(日射補正要否判定温度)と比較して、図2に示した日射補正処理の開始判定もしくは継続判定を行なう(S104)。本実施形態では、日射補正要否判定温度に1℃の温度ヒステリシスを設け、ファン段数の補正を行う日射補正処理の開始を判定する温度と日射補正処理の継続を判定する温度を異ならせたかたちで、日射補正するか否かを判定する。
【0036】
詳細には、日射補正を行なっておらず、かつ、サンプリングされた外気温度が15℃以上となれば日射補正を行う(補正あり)と判定し、日射補正を行なっており、かつ、14℃以下となれば日射補正を行わない(補正なし)と判定する(S104)。制御装置30が補正なしと判定した場合には、前述した基準段数設定処理におけるS102のステップによって決定された送風ファン11の基準段数をそのまま維持する制御を行うものとして、処理を終了する。一方、制御装置30が補正ありと判定した場合には、後述するように、S102のステップによって決定された送風ファン11の段数をアップ又はダウンするように、送風ファン11の段数の補正を行う日射補正処理を実行する。
【0037】
一般的に、外気温度が15℃以上となった場合には、車室内の乗員等は、日射による影響を受けて空調感が低下し、実際の室内温度よりも暑いと体感してしまうことが多い。特に20℃以上となった場合には、その傾向は顕著である。また逆に、外気温度が15℃未満である場合には、乗員は日射による影響を殆ど受けなくなり、実際の室内温度と体感温度とに殆ど差が無くなることが多い。特に10℃以下となった場合には、その傾向は顕著である。
【0038】
こうしたことから、上述した乗員の空調感が変化する遷移温度域を考慮し、本実施形態では15℃を境界条件として、その前後で補正を行うか否かを判定するようにし、車室内で好適な空調感を与える日射補正を的確に行い得るようにしている。なお、図2に示すように1℃の範囲内で温度ヒステリシスを設けているのは、日射補正のON/OFFを切換える際に、制御系のハンチング(乱調)が発生することを防止するためである。
【0039】
また、車両走行時には車外環境の変化が激しいので、この変化への追従性を高く維持するためには、外気温度のサンプリング周期tは、制御系にハンチングが発生しない範囲内で、できる限り短周期に設定することが求められる。したがって、この追従性とハンチング抑制とを両立させるようにサンプリング周期tが設定されることになる。
【0040】
続いて、制御装置30は、S103のステップにおいて補正ありと判定した場合には、室内センサ演算値(室内センサ31が検出した室内温度)と設定温度との差(=ΔT)を演算し、算出した室内温度と設定温度との算出温度差ΔTを不図示の記憶手段に格納する(S105)。
【0041】
そして、本発明においては、日射センサを有する場合と同等の日射補正を実現すべく、室内温度と設定温度との算出温度差ΔTと補正ファン段数との補正相関パターンを複数定めた補正データテーブルを、制御装置30が備える構成を採用する。本実施形態では、図3に示したように、ΔT1とΔT2という2種類の補正相関パターンを定めた補正データテーブルを用いる。
ここで、制御装置30は、補正相関パターン選択のため、演算用外気温度が、境界温度としてのTx(℃)以上となっているか否かを判定する(S106)。本実施形態では、Txは30℃とした。
【0042】
ここで、境界温度Txを30℃としたのは、車外が高外気温環境になった場合には、車両自体が熱を帯びたり、日射しが強くなったりすることなどと相俟って車両内の乗員の空調感が変化することに起因する。
この空調感の変化に対処すべく、本実施形態では、高外気温環境の場合に設定温度よりも低めに実際の制御目標温度を設定することになるが、この制御を行なうか否かの判定を外気温度30℃を境界条件として行なっている。ゆえに、この外気温度30℃以上の場合には、室内温度と設定温度との差がない状態でも、日射補正として段数をアップさせる制御を行う制御形態を採用した。
【0043】
具体的には、図3に示したように、ファン段数に日射補正をかける場合に参照する補正データテーブルには、30℃以下の補正相関テーブルとして算出温度差が−0.5℃ではアップさせず、0.75℃で一段、2.0℃で二段、3.25℃で三段の増加段数補正を規定する。一方、すでに増段補正を行なっている場合には、算出温度差が2℃になったときに三段から二段に減段させ、0.75℃になったときに二段から一段に減段させる減少段数補正を規定する。この場合の温度ヒステリシスはすべて等しく1.25℃としている。
一方、30℃以上の補正相関テーブルとして算出温度差が−2.0℃ではアップさせず、−1.0℃で一段、0℃で二段、1.75℃で三段の増加段数補正を規定する。一方、すでに増段補正を行なっている場合には、算出温度差が0℃になったときに三段から二段に減段させ、−1℃になったときに二段から一段に減段させる減少段数補正を規定する。この場合の温度ヒステリシスは、一段、二段の際には1℃、三段の場合に1.75℃としている。これは、高外気温時においてプラスの算出温度差が有る場合は、室内温度が安定し難い状態にあり、ハンチングが起きやすくなるので、これを抑制するためである。
【0044】
以下のステップにおいては、制御装置30は、この境界温度Txを境界条件として、その前後、つまり演算用外気温度が30℃以上である場合と30℃未満である場合とで、日射補正時のファン段数の補正パターンを変化させる。具体的には、図3に示すように温度ヒステリシスを設け、算出温度差に応じて送風ファン11の段数を増加・減少させる日射補正処理を実行する。
【0045】
制御装置30は、演算用外気温度が30℃以上であると判断した場合には(S106)、図3にΔT1として示す補正相関パターンに基づいて、算出したΔTに応じた送風ファン11の段数のアップ・ダウン数を決定し、前述した基準段数を増減させる補正を行ない最終的な送風ファン11の段数を決定する(S107)。すなわち、図3に示すように、演算用外気温度が30℃以上の場合であるから、制御装置30はΔTが−1.0℃となれば一段アップ、0℃となれば二段アップ、1.75℃となれば三段アップとなるように、各々補正段数を決定し、車両用空調装置1における日射補正に代わる補正処理として送風ファン11の段数補正を行う。
【0046】
一方、制御装置30は、演算用外気温度が30℃未満であると判断した場合には(S106)、同図にΔT2として示す補正相関パターンに基づいて、ΔTに応じた送風ファン11の段数のアップ・ダウン数を決定し、最終的な送風ファン11の段数を決定する(S108)。すなわち、図3に示すように、演算用外気温度が30℃未満の場合であるから、制御装置30はΔTが0.75℃となれば一段アップ、2.0℃となれば二段アップ、3.25℃となれば三段アップとなるように、各々補正段数を決定し、車両用空調装置1における日射補正に代わる補正処理として送風ファン11の段数補正を行う。
【0047】
なお、送風ファン11のアップ数が多段、つまり二段以上となる場合には、目的となる段数になるよう即座に送風ファンモータ11aの回転数を変化させてもよいが、段階的に漸次段数変化させることが望ましい。本実施形態では、サンプリング周期t2が60秒であるので、30秒/一段、好ましくは20秒/一段のタイミングで順次切換える制御を採用する。
【0048】
補正を行うことにより、ファンの段数切換が複数段にわたる場合に、一気に切換えるとすると、風量が急激に変化したり、ファンの回転音が急激に大きくなること等により、車内の乗員等は違和感や不快感を感じてしまうおそれがある。そこで、ファンの段数を段階的に所定のタイミングで順次切換えていけば、車室内にて風量や回転音の急激な変化を殆ど生じさせずに、乗員等に違和感や不快感を感じさせることなく、好適に日射補正に相当する補正を行うことができる。
【0049】
なお、送風ファン11の段数切換のタイミングをより長くする場合には、それに伴って外気温度のサンプリング周期も長くする必要がある。例えば段数切換のタイミングを30秒/一段とした場合には、外気温度のサンプリング周期を90秒に設定する。このように、外気温度のサンプリング周期と段数切換のタイミングとの間に一定の関係を持たせておけば、制御系のハンチングを的確に防止することができる。
【0050】
本実施形態に係る車両用空調装置1においては、車室内への送風を行う多段式の送風ファン11と、車室内の温度を検出する室内温度センサ31と、車室外の外気温度を検出する外気温度センサ32と、制御装置30とを備えるようにしている。そして、この車両用空調装置1の制御方法においては、制御装置30によって、送風ファン11の段数切換を所定の制御パターン(基準段数設定データテーブル)に従って制御し、この制御パターンに従って決定された段数の補正を行うか否かを、外気温度センサ32が検出した外気温度に基づいて判定するようにしている。このため、日射センサを不要としても、車室内の日射補正を的確に行うことができる。すなわち、外気温度と日射量とは密接に関係しているため、外気温度から日射量を予測することができ、これに従って日射補正を行うことで、日射量が大きい場合でも車室内の空調感を向上させることができる。このように、高価な日射センサを用いた場合と同等以上に好適且つ的確に日射補正を行うことができるので、装置構成を簡易なものとして、車両の製造コストやメンテナンスコストを低廉化することができる。
【0051】
また、外気温度センサ32が検出した外気温度が15℃以上となった場合に、日射補正を行うと判定するようにしているので、車室内で好適な空調感を与える日射補正を的確に行い得ることができる。
【0052】
更に、上述した境界温度Txの前後で日射補正のパターンを変化させるようにしているので、日射量や外気温度の多様な変化にも、柔軟に対応していくことができ、車室内の空調感を更に向上させることができる。これにより、車室内の空調感を更に向上させることができるとともに、多数の外気温度センサを必要とせず、メンテナンスコスト等を更に低廉化することができる。
【0053】
更に、外気温度を60秒毎にサンプリングし、日射補正を行う場合には、送風ファン11の段数切換のタイミングを20秒/一段とするようにしている。外気温度のサンプリング周期とファン段数切換のタイミングとを、このように設定することで、制御系にハンチング(乱調)が発生するのを防止し、また車室内の乗員等に日射補正処理に移行したことを意識させないようにして、違和感や不快感等を殆ど感じさせることなく、日射補正をより好適に行うことができる。これにより、車両用空調装置1の運転時における安定性、信頼性を高めることができるとともに、車室内の乗員等に高い快適感を与えることができる。
【0054】
【発明の効果】
以上説明したように、本発明に係る車両用空調装置の制御方法、及び車両用空調装置によれば、上記の如き構成を採用しているので、高価な日射センサを不要としても、日射センサを用いた場合と同等以上に好適且つ的確に、車室内の日射補正を行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る車両用空調装置の全体を示す概略構成図である。
【図2】演算用外気温度と日射補正の有無を温度により判定制御する制御動作図である。
【図3】室内センサ演算値と設定温度との差に基づき日射補正時のファン段数を決定する制御動作図である。
【図4】制御装置における制御を示すフローチャート図である。
【符号の説明】
1 車両用空調装置
11 送風ファン(ファン)
11a 送風ファン用モータ
30 制御装置
31 室内温度センサ
32 外気温度センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for controlling a vehicle air conditioner mounted on a vehicle such as an automobile, and a vehicle air conditioner.
[0002]
[Prior art]
When performing air conditioning, particularly cooling, in a vehicle, the effects of solar radiation must be considered. That is, if the amount of solar radiation increases, the air conditioning feeling of the occupants and the like will be reduced even if the air conditioning temperature in the vehicle interior is as set. Need to be maintained.
[0003]
2. Description of the Related Art In order to correct the influence of solar radiation (solar radiation correction), a vehicle air conditioner having a configuration in which a solar radiation sensor is provided at an upper portion of a dashboard or the like and which can detect an amount of solar radiation incident from a front window is widely used. ing. For example, in the invention described in Patent Document 1, the amount of solar radiation detected by the solar radiation sensor is sent to the air conditioning control device, and the air conditioning control device changes the rotation speed (number of stages) of the blower (fan) based on the amount of solar radiation. Then, solar radiation correction control for correcting the air volume control characteristics is performed. As described above, by correcting the airflow control characteristic according to the amount of solar radiation and changing the airflow into the vehicle interior, it is possible to maintain a constant air conditioning feeling in the vehicle interior even if the amount of solar radiation increases.
[0004]
[Patent Document 1]
JP 2001-260629 A
[0005]
[Problems to be solved by the invention]
By using the solar radiation sensor in this manner, it is possible to perform fine solar radiation correction so that the air conditioning feeling of the occupants and the like in the vehicle cabin can always be kept constant. However, on the other hand, since such a solar radiation sensor is expensive, it has been demanded that the solar radiation correction control can be easily performed at a lower cost.
[0006]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a control method of a vehicle air conditioner and a vehicle air conditioner that can accurately correct solar radiation in a vehicle cabin without using an expensive solar radiation sensor. And
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, an indoor temperature sensor for detecting a temperature in a vehicle interior, an outside air temperature sensor for detecting a temperature outside the vehicle interior, a multistage fan for blowing air into the vehicle interior, and controlling the fan A control method for controlling a vehicle air conditioner, comprising: a control device configured to control the vehicle air conditioner based on a room temperature detected by the room temperature sensor, an outside air temperature detected by the outside air temperature sensor, and a set temperature. The reference temperature of the multistage fan that blows air into the vehicle interior is determined according to the reference speed setting data table, and the outside air temperature sensor determines whether or not to correct the reference speed determined according to the reference speed setting data table. The determination is made based on the detected outside air temperature.
[0008]
As described above, it is determined whether or not to correct the number of fan stages based on the outside air temperature outside the vehicle cabin detected by the outside air temperature sensor. Can be performed accurately. That is, since the outside air temperature and the amount of insolation are closely related, the amount of insolation can be predicted from the outside air temperature, and the insolation is corrected accordingly, that is, determined in accordance with a predetermined control pattern (reference stage number setting data table). By adjusting the air flow rate by increasing (or decreasing) the number of steps performed, the feeling of air conditioning in the vehicle compartment can be improved even when the amount of solar radiation is large.
[0009]
The invention according to claim 2 is the control method of the vehicle air conditioner according to claim 1, wherein when the control device determines to perform the correction, the indoor temperature detected by the indoor temperature sensor The number of correction stages for correcting the reference stage number of the fan is determined according to a temperature difference between the fan and a set temperature.
[0010]
When it is determined that the solar radiation correction is to be performed, by determining the number of correction stages according to the temperature difference, it is possible to accurately perform the solar radiation correction for providing a suitable air-conditioning feeling in the vehicle interior.
[0011]
The invention according to claim 3 is the control method for a vehicle air conditioner according to claim 2, wherein the control device has a plurality of correction correlation patterns that define the number of correction stages of the fan according to the outside air temperature. The control device selects the correction correlation pattern according to the outside air temperature detected by the outside air temperature sensor.
[0012]
Since a suitable correction correlation pattern is selected from a plurality of correction correlation patterns according to the outside air temperature, it is possible to flexibly cope with various changes in the amount of solar radiation and the outside air temperature.
[0013]
The invention according to claim 4 is the control method for a vehicle air conditioner according to any one of claims 1 to 3, wherein the control device determines correction of a plurality of stages according to the temperature difference. The number of correction stages is increased or decreased stepwise.
[0014]
When the correction of the number of stages is determined in accordance with the temperature difference, the number of correction stages is increased or decreased in a stepwise manner so that occupants and the like in the vehicle cabin are not aware that the process has shifted to the insolation correction process. Can be performed more suitably.
[0015]
The invention according to claim 5 is a vehicular air conditioner that controls the temperature in the vehicle interior, wherein a multi-stage fan that blows air into the vehicle interior and an outside air temperature sensor that detects an outside air temperature outside the vehicle interior. A control device that controls switching of the number of stages of the fan according to a predetermined control pattern, and determines whether or not to correct the number of stages determined according to the control pattern based on the outside air temperature detected by the outside air temperature sensor. And characterized in that:
[0016]
The vehicle air conditioner controls the switching of the number of stages of the fan according to a predetermined control pattern, and determines whether to correct the number of stages determined according to the control pattern based on the outside air temperature detected by the outside air temperature sensor. Therefore, even if a solar radiation sensor is not required, it is possible to accurately correct the solar radiation in the vehicle interior, and to improve the air conditioning feeling in the vehicle interior even when the amount of solar radiation is large.
[0017]
According to a sixth aspect of the present invention, there is provided an indoor temperature sensor for detecting a temperature in a vehicle interior, an outside air temperature sensor for detecting a temperature outside the vehicle interior, a multistage fan for blowing air into the vehicle interior, and controlling the fan. A control device for controlling the fan, the control device comprising: a reference stage number of the fan corresponding to a room temperature detected by the room temperature sensor, an outside air temperature detected by the outside air temperature sensor, and a set temperature. And a correction data table that defines the number of correction stages for correcting the reference stage number of the fan according to the temperature difference between the room temperature and the set temperature.
[0018]
In the present invention, the control device includes: a reference stage number setting data table that defines a reference stage number of the fan according to the room temperature detected by the room temperature sensor, the outside air temperature detected by the front temperature sensor, and the set temperature; And a correction data table that defines the number of correction steps for correcting the reference step number of the fan according to the temperature difference between the set temperature and the set temperature, so that even if the vehicle air conditioner does not include a solar radiation sensor, the outside air temperature is determined. The reference stage number can be corrected according to the amount of solar radiation as an index
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a vehicle air conditioner according to the present invention will be described with reference to FIGS.
FIG. 1 is a schematic configuration diagram showing a vehicle air conditioner 1 mounted on an automobile (vehicle) in the present embodiment. As shown in FIG. 1, the vehicle air conditioner 1 has a configuration in which a control device 30, an indoor temperature sensor 31, an outside air temperature sensor 32, and an operation switch 33 are added to a casing 2 as an apparatus main body. .
Here, the casing 2 air-conditions the air taken in from the vehicle interior or exterior, and in order to blow the air-conditioned air into the vehicle interior, the casing 2 includes a multi-stage ventilation fan (fan) 11, an evaporator 13, and a heater core 15. Various devices are housed.
[0020]
The blower fan 11 sucks air inside or outside the vehicle compartment into the casing 2 from an outside air intake port 21 or an inside air intake port 22 formed on one end side of the casing 2, and a side provided with the evaporator 13 and the like. Specifically, the air is blown to the downstream side in the flow direction inside the casing 2. The blower fan 11 is a multistage type driven by a blower fan motor 11a, and has 16 stages. Specifically, based on a control signal from control device 30, blower fan 11 changes the number of rotations of blower fan motor 11a in 16 steps to adjust the airflow, thereby reducing the amount of air-conditioned air flowing into the vehicle interior. It operates to control and adjust the temperature inside the vehicle (indoor temperature). This stage number control is performed by a control signal from the control device 30.
[0021]
The outside air suction port 21 communicates with the outside of the vehicle, and the inside air suction port 22 communicates with the vehicle interior. An inside / outside air switching damper 12 is provided between the outside air suction port 21 and the inside air suction port 22, and when the outside air suction port 21 is closed in accordance with the turning operation of the inside / outside air switching damper 12, the inside air suction is performed. The opening 22 is opened and air in the vehicle is taken into the casing 2, and when the inside air suction port 22 is closed, the outside air suction port 21 is opened and outside air is taken in.
[0022]
The evaporator 13 exchanges heat with the inhaled air, and is provided downstream with a temperature control damper 14 and a heater core 15 for taking in cooling water for cooling the engine. The conditioned air that has undergone heat exchange through the evaporator 13 is appropriately distributed to a flow that passes through the heater core 15 and a flow that does not pass by the rotation of the temperature control damper 14 under the control of the control device 30. . These airs flow into the temperature control chamber C, respectively, and are mixed with each other to be temperature controlled air.
[0023]
On the other end side of the casing 2, which is downstream of the temperature control chamber C, as a plurality of outlets for supplying conditioned air to different locations in the vehicle compartment, a DEF outlet 23, a FACE outlet 24, and a FOOT outlet. 25 are each formed. The DEF outlet 23 communicates with an upper portion of a dashboard (not shown) or the like and opens to blow out temperature-controlled air in the temperature-controlled chamber C toward a front window (not shown) to perform defrost. It is. The FACE outlet 24 is for communicating with the front face of the dashboard or the like and opening it to blow out the temperature-controlled air toward the center and upward in the passenger compartment. Further, the FOOT blowout port 25 communicates and opens below the dashboard and the like to blow out the temperature-controlled air downward in the vehicle. The DEF outlet 23, the FACE outlet 24, and the FOOT outlet 25 are provided with dampers 16 to 18, respectively. The blowing direction of the conditioned air can be set as appropriate.
[0024]
The control device 30 controls the overall operation of the vehicle air conditioner 1. Specifically, in addition to controlling the number of stages of the blower fan 11, operation control of a compressor (not shown) connected to the evaporator 13, operation of a damper motor (not shown) for rotating the dampers 14, 16 to 18 respectively. Perform control. The control device 30 receives an operation signal from an operation switch 33 provided on an instrument panel or the like of a dashboard, and detects respective values from the indoor temperature sensor 31 and the outside air temperature sensor 32, that is, the indoor device. The temperature and the outside air temperature are respectively input, and the operation control of each device described above is realized according to the input signals.
[0025]
The indoor temperature sensor 31 is installed in a place where the indoor temperature can be suitably detected in the vehicle interior, and the outside air temperature sensor 32 is installed in a place where the outdoor air temperature can be appropriately detected outside the vehicle interior.
[0026]
The operation switch 33 generates various control signals such as switching of an operation mode (AUTO mode or MANUAL mode) of the vehicle air conditioner 1 or switching of an air volume and a blowing direction according to the operation and setting of the occupant. The generated control signal is input to the control unit 30. In the case of the AUTO mode, the set temperature is input, and in the case of the MAMUAL mode, the blowing direction and the air volume of the temperature-controlled air are input as desired by the occupant and the like. In this way, a signal corresponding to each operation is transmitted from the operation switch 33 to the control device 30, and the control device 30 refers to a data table or a control program stored in a storage unit (not shown) based on these operation signals, and According to this control pattern, the number of stages of the blower fan 11, the operation of the compressor, or the opening and closing of the dampers 16 to 18 are controlled to operate the vehicle air conditioner 1 according to each operation mode.
[0027]
A series of control flows when cooling the vehicle interior using the vehicle air conditioner 1 having the above-described various devices will be described with reference to FIGS. 2 to 4. The temperature control described below is realized when the control mode of the vehicle air conditioner 1 is set to the AUTO mode. Before starting the temperature control process shown in FIG. 4, control device 30 previously acquires a set temperature in the vehicle interior based on an input signal corresponding to an operation of operation switch 33 by an occupant in the vehicle interior, not shown. A set temperature acquisition process for storing the set temperature information in the storage means so that it can be referred to is performed.
[0028]
As shown in FIG. 4, the control device 30 firstly controls the room temperature from the room temperature sensor 31 for a time t. 1 It is sampled and taken in every time (S101). Specifically, in the present embodiment, the sampling cycle t of the room temperature is used. 1 Is set to 3 seconds, and the control device 30 refers to the internal clock and 1 Is determined as to whether or not t has elapsed, and t 1 Has elapsed, the process proceeds to the next step (S101).
[0029]
Next, the control device 30 samples the room temperature received from the room temperature sensor 31 and the outside air temperature received from the outside air temperature sensor 32, and based on the sampled room temperature, outside air temperature, and the previously acquired set temperature, The number of reference stages of the blower fan 11 required to reach the room temperature to the set temperature is determined (S102).
[0030]
In detail, the control device 30 refers to the reference step number setting data table stored in the storage means (not shown), determines the fan step number of the blower fan 11 according to a predetermined control pattern, and sets the blower fan to the determined step number. The motor 11a is controlled (S102). Here, in the present embodiment, the reference stage number setting data table employs a known database structure that defines the number of fan stages of the blower fan 11 using the indoor temperature, the outside air temperature, and the set temperature as parameters.
[0031]
As described above, in the present embodiment, in accordance with a change in the indoor temperature and the outside air temperature, the fan stage number is finely adjusted every three seconds in accordance with a predetermined control pattern in order to determine the reference stage number so that the indoor temperature matches the set temperature. The control form to be determined is adopted in the basic AUTO mode.
[0032]
Subsequent to the above-described reference stage number setting process (S101, S102), the control device 30 proceeds to a solar radiation correction sequence. As a first stage of the solar radiation correction sequence, first, a solar radiation correction necessity determining process for determining whether or not to perform the solar radiation correction is performed (S103, S104).
[0033]
Specifically, the control device 30 refers to a built-in clock or the like and 2 Is determined as to whether or not t has elapsed, and t 2 If has elapsed, the process proceeds to the next step (S103). In the present embodiment, the sampling cycle t of the outside air temperature is used. 2 Is set to 60 seconds.
[0034]
Here, according to the study by the present inventors, it has been found that when the cycle for sampling the outside air temperature is set to less than 60 seconds, hunting is easily generated in the control system. In particular, at a timing of 30 seconds or less, the tendency becomes remarkable. Therefore, in this case, if the time is set to 60 seconds, hunting of the control system can be accurately prevented. However, since this cycle depends on the shape of the cabin and the like, it is desirable to actually measure the cycle for each vehicle type.
[0035]
Subsequently, the control device 30 samples the outside air temperature from the outside air temperature sensor 32, and 2 A start determination or a continuation determination of the insolation correction process shown in FIG. 2 is performed by comparing with a predetermined set value (insolation correction necessity determination temperature) based on the outside air temperature sampled every time (operation outside air temperature) (S104). ). In the present embodiment, a temperature hysteresis of 1 ° C. is provided for the temperature for determining whether or not the solar radiation correction is necessary, and the temperature for determining the start of the solar radiation correction process for correcting the number of fan stages and the temperature for determining the continuation of the solar radiation correction process are different. Then, it is determined whether or not to correct the solar radiation.
[0036]
In detail, when the solar radiation correction is not performed, and when the sampled outside air temperature becomes 15 ° C. or more, it is determined that the solar radiation correction is performed (with correction), the solar radiation correction is performed, and the solar radiation correction is performed and 14 ° C. or less. Then, it is determined that the solar radiation correction is not performed (no correction) (S104). If the control device 30 determines that there is no correction, the process ends, assuming that control is performed to maintain the reference stage number of the blower fan 11 determined in step S102 in the above-described reference stage number setting process. On the other hand, when the control device 30 determines that there is correction, as described later, the solar radiation for correcting the number of stages of the blower fan 11 so as to increase or decrease the number of stages of the blower fan 11 determined in step S102. Execute the correction process.
[0037]
In general, when the outside air temperature becomes 15 ° C. or higher, occupants and the like in the vehicle cabin may be affected by the sunshine to reduce the air-conditioning sensation, and experience a sense of being hotter than the actual room temperature. Many. In particular, when the temperature is 20 ° C. or higher, the tendency is remarkable. Conversely, when the outside air temperature is lower than 15 ° C., the occupant is hardly affected by the solar radiation, and the difference between the actual room temperature and the sensible temperature is often almost eliminated. In particular, when the temperature is lower than 10 ° C., the tendency is remarkable.
[0038]
In view of the above, in consideration of the above-mentioned transition temperature range in which the occupant's feeling of air conditioning changes, in the present embodiment, it is determined that correction is performed before and after the boundary condition of 15 ° C. The solar radiation correction that gives a comfortable air conditioning feeling can be accurately performed. The reason why the temperature hysteresis is provided within the range of 1 ° C. as shown in FIG. 2 is to prevent hunting (turbulence) of the control system from occurring when switching ON / OFF of the solar radiation correction. is there.
[0039]
Further, since the environment outside the vehicle changes drastically when the vehicle is running, the sampling period of the outside air temperature t 2 Is required to be set as short as possible within a range where hunting does not occur in the control system. Therefore, the sampling period t is set so as to achieve both the tracking performance and the hunting suppression. 2 Is set.
[0040]
Subsequently, when it is determined in step S103 that there is a correction, the control device 30 calculates and calculates a difference (= ΔT) between the indoor sensor calculation value (the indoor temperature detected by the indoor sensor 31) and the set temperature. The calculated temperature difference ΔT between the room temperature and the set temperature is stored in a storage unit (not shown) (S105).
[0041]
In the present invention, a correction data table in which a plurality of correction correlation patterns between the calculated temperature difference ΔT between the room temperature and the set temperature and the number of correction fan stages are determined in order to realize the same solar radiation correction as that having the solar radiation sensor. , The configuration of the control device 30 is adopted. In the present embodiment, as shown in FIG. 3, a correction data table that defines two types of correction correlation patterns, ΔT1 and ΔT2, is used.
Here, the control device 30 determines whether or not the calculation outside air temperature is equal to or higher than the boundary temperature Tx (° C.) for selecting the correction correlation pattern (S106). In the present embodiment, Tx was set to 30 ° C.
[0042]
Here, the reason why the boundary temperature Tx is set to 30 ° C. is that when the outside of the vehicle is in a high outside temperature environment, the vehicle itself becomes hot or the sunshine becomes strong, etc. The air conditioning feeling of the occupant changes.
In order to cope with this change in the air conditioning feeling, in the present embodiment, the actual control target temperature is set to be lower than the set temperature in a high outside air temperature environment, and it is determined whether or not to perform this control. Is performed with an outside air temperature of 30 ° C. as a boundary condition. Therefore, in the case where the outside air temperature is 30 ° C. or higher, a control mode of performing control to increase the number of stages as solar radiation correction even when there is no difference between the room temperature and the set temperature is adopted.
[0043]
Specifically, as shown in FIG. 3, the correction data table referred to when applying the solar radiation correction to the number of fan stages is a correction correlation table of 30 ° C. or less, and the calculated temperature difference is increased when the calculated temperature difference is −0.5 ° C. First, an increase in the number of stages is defined at 0.75 ° C., two stages at 2.0 ° C., and three stages at 3.25 ° C. On the other hand, if the step increase correction has already been performed, the step is reduced from three steps to two steps when the calculated temperature difference reaches 2 ° C., and reduced from two steps to one step when the calculated temperature difference reaches 0.75 ° C. The number of steps to be reduced is specified. In this case, the temperature hysteresis is equal to 1.25 ° C.
On the other hand, as the correction correlation table of 30 ° C. or more, the calculated temperature difference is not increased when the temperature difference is −2.0 ° C., but is increased by one step at −1.0 ° C., two steps at 0 ° C., and three steps at 1.75 ° C. Stipulate. On the other hand, if the step increase correction has already been performed, the step is reduced from three steps to two steps when the calculated temperature difference becomes 0 ° C, and reduced from two steps to one step when the calculated temperature difference becomes -1 ° C. The number of steps to be reduced is specified. In this case, the temperature hysteresis is 1 ° C. for the first and second stages, and 1.75 ° C. for the third stage. This is because if there is a positive calculated temperature difference at a high outside air temperature, the indoor temperature is in a state where it is difficult to stabilize, and hunting is likely to occur.
[0044]
In the following steps, the control device 30 sets the boundary temperature Tx as a boundary condition, and determines whether the fan for the solar radiation correction before and after the boundary temperature Tx, that is, when the calculation outside air temperature is 30 ° C. or higher and lower than 30 ° C. The correction pattern of the number of steps is changed. Specifically, as shown in FIG. 3, a temperature hysteresis is provided, and a solar radiation correction process of increasing or decreasing the number of stages of the blower fan 11 according to the calculated temperature difference is executed.
[0045]
If the control device 30 determines that the calculation outside air temperature is equal to or higher than 30 ° C. (S106), the control device 30 determines the number of stages of the blower fan 11 according to the calculated ΔT based on the correction correlation pattern shown as ΔT1 in FIG. The number of up / down is determined, and the above-mentioned correction for increasing / decreasing the reference number of steps is performed to determine the final number of steps of the blowing fan 11 (S107). That is, as shown in FIG. 3, since the calculation outside air temperature is 30 ° C. or higher, the controller 30 increases the step by one step when ΔT becomes −1.0 ° C., increases the step by two steps when ΔT becomes 0 ° C. The number of correction stages is determined so as to increase the number of stages by 0.75 ° C., and the number of stages of the blower fan 11 is corrected as a correction process in place of the solar radiation correction in the vehicle air conditioner 1.
[0046]
On the other hand, if the control device 30 determines that the calculation outside air temperature is lower than 30 ° C. (S106), the control device 30 determines the number of stages of the blower fan 11 according to ΔT based on the correction correlation pattern shown as ΔT2 in FIG. The up / down number is determined, and the final number of stages of the blower fan 11 is determined (S108). That is, as shown in FIG. 3, since the calculation outside air temperature is lower than 30 ° C., the control device 30 increases the step by one step when ΔT becomes 0.75 ° C., increases the step by two steps when ΔT becomes 2.0 ° C. The number of correction stages is determined so that the number of stages increases by 3.25 ° C., and the number of stages of the blower fan 11 is corrected as a correction process in place of the solar radiation correction in the vehicle air conditioner 1.
[0047]
In addition, when the number of up of the blower fan 11 is multi-stage, that is, two or more stages, the rotation speed of the blower fan motor 11a may be changed immediately so as to reach the target number of stages. It is desirable to change. In the present embodiment, since the sampling cycle t2 is 60 seconds, a control of sequentially switching at a timing of 30 seconds / step, preferably 20 seconds / step is employed.
[0048]
By performing the correction, if the number of fan stages changes over a plurality of stages, and if it is switched at once, if the air volume changes suddenly or the fan rotation noise suddenly increases, the occupants in the vehicle will feel uncomfortable and There is a risk of feeling uncomfortable. Therefore, if the number of stages of the fan is sequentially switched at a predetermined timing in a stepwise manner, a sudden change in the air volume and the rotation sound hardly occurs in the passenger compartment, and the occupants and the like do not feel uncomfortable or uncomfortable. Thus, it is possible to preferably perform the correction corresponding to the solar radiation correction.
[0049]
If the timing of switching the number of stages of the blower fan 11 is made longer, the sampling cycle of the outside air temperature must be made longer accordingly. For example, when the timing of switching the number of stages is 30 seconds / one stage, the sampling cycle of the outside air temperature is set to 90 seconds. As described above, if a constant relationship is provided between the sampling cycle of the outside air temperature and the timing of switching the number of stages, hunting of the control system can be accurately prevented.
[0050]
In the vehicle air conditioner 1 according to the present embodiment, a multi-stage blower fan 11 that blows air into a vehicle interior, an indoor temperature sensor 31 that detects a temperature in the vehicle interior, and an outside air that detects an outside air temperature outside the vehicle interior. A temperature sensor 32 and a control device 30 are provided. In the control method of the vehicle air conditioner 1, the control device 30 controls the switching of the number of stages of the blower fan 11 according to a predetermined control pattern (reference stage number setting data table). Whether or not to perform the correction is determined based on the outside air temperature detected by the outside air temperature sensor 32. Therefore, even if the solar radiation sensor is not required, the solar radiation in the vehicle compartment can be accurately corrected. That is, since the outside air temperature and the amount of insolation are closely related, the amount of insolation can be predicted from the outside air temperature, and by performing the insolation correction in accordance therewith, even if the amount of insolation is large, the feeling of air conditioning in the vehicle compartment can be improved. Can be improved. As described above, the solar radiation correction can be performed more suitably and accurately than the case of using an expensive solar radiation sensor, so that the apparatus configuration can be simplified and the manufacturing cost and maintenance cost of the vehicle can be reduced. it can.
[0051]
In addition, when the outside air temperature detected by the outside air temperature sensor 32 becomes equal to or higher than 15 ° C., it is determined that the solar radiation correction is to be performed. Therefore, the solar radiation correction for giving a suitable air-conditioning feeling in the vehicle compartment can be accurately performed. be able to.
[0052]
Furthermore, since the pattern of the solar radiation correction is changed before and after the above-mentioned boundary temperature Tx, it is possible to flexibly cope with various changes in the amount of solar radiation and the outside air temperature, and to provide a feeling of air conditioning in the vehicle cabin. Can be further improved. As a result, the feeling of air conditioning in the vehicle compartment can be further improved, and a large number of outside air temperature sensors are not required, so that maintenance costs and the like can be further reduced.
[0053]
Further, when the outside air temperature is sampled every 60 seconds and the solar radiation correction is performed, the timing of switching the number of stages of the blower fan 11 is set to 20 seconds / one stage. By setting the sampling cycle of the outside air temperature and the timing of switching the number of fan stages in this way, it is possible to prevent hunting (turbulence) from occurring in the control system, and to shift to the solar radiation correction processing for occupants and the like in the vehicle compartment. By making the user not aware of this, the solar radiation correction can be performed more favorably with almost no discomfort or discomfort. As a result, stability and reliability during operation of the vehicle air conditioner 1 can be improved, and high comfort can be given to occupants and the like in the vehicle interior.
[0054]
【The invention's effect】
As described above, according to the vehicle air conditioner control method and the vehicle air conditioner according to the present invention, since the above-described configuration is employed, even if an expensive solar radiation sensor is unnecessary, the solar radiation sensor can be used. The solar radiation correction in the vehicle compartment can be performed more suitably and accurately than in the case of using it.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an entire vehicle air conditioner according to an embodiment of the present invention.
FIG. 2 is a control operation diagram for judging and controlling the outside air temperature for calculation and the presence or absence of solar radiation correction based on the temperature.
FIG. 3 is a control operation diagram for determining the number of fan stages at the time of solar radiation correction based on a difference between an indoor sensor calculation value and a set temperature.
FIG. 4 is a flowchart illustrating control in a control device.
[Explanation of symbols]
1 Vehicle air conditioner
11 blower fan (fan)
11a Motor for blower fan
30 Control device
31 Indoor temperature sensor
32 Outside air temperature sensor

Claims (6)

車室内の温度を検出する室内温度センサと、車室外の温度を検出する外気温度センサと、車室内への送風を行う多段式のファンと、当該ファンを制御する制御装置とを備える車両用空調装置を制御する制御方法であって、
前記制御装置が、前記室内温度センサが検出した室内温度と前記外気温度センサが検出した外気温度と設定温度とに基づき前記車室内への送風を行う多段式のファンの基準段数を基準段数設定データテーブルに従って決定し、
当該基準段数設定データテーブルに従って決定された基準段数に補正を行うか否かを、前記外気温度センサが検出した外気温度に基づいて判定することを特徴とする車両用空調装置の制御方法。
A vehicle air conditioner including an indoor temperature sensor for detecting the temperature in the vehicle interior, an outside air temperature sensor for detecting the temperature outside the vehicle interior, a multistage fan for blowing air into the vehicle interior, and a control device for controlling the fan. A control method for controlling a device,
The controller sets a reference stage number of a multi-stage fan that blows air into the vehicle interior based on a room temperature detected by the room temperature sensor and an outside air temperature detected by the outside air temperature sensor and a set temperature. Decide according to the table,
A method for controlling an air conditioner for a vehicle, comprising: determining whether or not to correct the reference stage number determined according to the reference stage number setting data table based on the outside air temperature detected by the outside air temperature sensor.
前記制御装置が、補正を行なうと判定した場合には、前記室内温度センサが検出した室内温度と設定温度との温度差に応じて前記ファンの基準段数を補正する補正段数を決定することを特徴とする請求項1に記載の車両用空調装置の制御方法。When the control device determines that the correction is to be performed, the control device determines a correction step number for correcting the reference step number of the fan according to a temperature difference between the room temperature detected by the room temperature sensor and a set temperature. The method for controlling a vehicle air conditioner according to claim 1. 前記制御装置は、外気温度に応じた前記ファンの補正段数を規定した補正相関パターンを複数有しており、当該制御装置が、前記外気温度センサが検出した外気温度に応じて当該補正相関パターンを選択することを特徴とする請求項2に記載の車両用空調装置の制御方法。The control device has a plurality of correction correlation patterns that define the number of correction stages of the fan according to the outside air temperature, and the control device generates the correction correlation pattern according to the outside air temperature detected by the outside air temperature sensor. 3. The control method for a vehicle air conditioner according to claim 2, wherein the selection is performed. 前記制御装置が、前記温度差に応じて複数段の段数補正を決定した場合に、段階的に補正段数を増減させることを特徴とする請求項1乃至3に記載の車両用空調装置の制御方法。The control method for a vehicle air conditioner according to any one of claims 1 to 3, wherein when the control device determines correction of a plurality of stages according to the temperature difference, the number of correction stages is increased or decreased stepwise. . 車室内の温度制御を行う車両用空調装置であって、
前記車室内への送風を行う多段式のファンと、
前記車室外の外気温度を検出する外気温度センサと、
前記ファンの段数切換を所定の制御パターンに従って制御し、当該制御パターンに従って決定された段数の補正を行うか否かを、前記外気温度センサが検出した前記外気温度に基づいて判定する制御装置と、
を備えたことを特徴とする車両用空調装置。
A vehicle air conditioner that performs temperature control of a vehicle interior,
A multi-stage fan for blowing air into the vehicle interior,
An outside air temperature sensor that detects an outside air temperature outside the vehicle compartment;
A control device that controls switching of the number of stages of the fan according to a predetermined control pattern, and determines whether to correct the number of stages determined according to the control pattern, based on the outside air temperature detected by the outside air temperature sensor,
A vehicle air conditioner comprising:
車室内の温度を検出する室内温度センサと、車室外の温度を検出する外気温度センサと、車室内への送風を行う多段式のファンと、当該ファンを制御する制御装置とを備える車両用空調装置であって、
前記制御装置は、前記室内温度センサが検出した室内温度と前記外気温度センサが検出した外気温度と設定温度とに応じた前記ファンの基準段数を規定した基準段数設定データテーブルと、前記室内温度と設定温度との温度差に応じた前記ファンの基準段数を補正する補正段数を規定した補正データテーブルと、を有することを特徴とする車両用空調装置。
A vehicle air conditioner including an indoor temperature sensor for detecting the temperature in the vehicle interior, an outside air temperature sensor for detecting the temperature outside the vehicle interior, a multistage fan for blowing air into the vehicle interior, and a control device for controlling the fan. A device,
The control device, a reference stage number setting data table that defines a reference stage number of the fan according to the room temperature detected by the room temperature sensor, the outside air temperature detected by the outside air temperature sensor, and the set temperature, and the room temperature and An air conditioner for a vehicle, comprising: a correction data table that defines a correction step number for correcting the reference step number of the fan according to a temperature difference from a set temperature.
JP2003125166A 2003-04-30 2003-04-30 Control method for vehicle air conditioner, and vehicle air conditioner Expired - Fee Related JP3833628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125166A JP3833628B2 (en) 2003-04-30 2003-04-30 Control method for vehicle air conditioner, and vehicle air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125166A JP3833628B2 (en) 2003-04-30 2003-04-30 Control method for vehicle air conditioner, and vehicle air conditioner

Publications (2)

Publication Number Publication Date
JP2004330804A true JP2004330804A (en) 2004-11-25
JP3833628B2 JP3833628B2 (en) 2006-10-18

Family

ID=33502510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125166A Expired - Fee Related JP3833628B2 (en) 2003-04-30 2003-04-30 Control method for vehicle air conditioner, and vehicle air conditioner

Country Status (1)

Country Link
JP (1) JP3833628B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290130A (en) * 2005-04-08 2006-10-26 Japan Climate Systems Corp Blower voltage control system of automobile
JP2011105191A (en) * 2009-11-19 2011-06-02 Suzuki Motor Corp Control device for vehicle
JPWO2017119138A1 (en) * 2016-01-08 2018-08-30 三菱電機株式会社 Air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109720167B (en) * 2018-12-29 2022-01-18 曼德电子电器有限公司 Vehicle air conditioner control system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290130A (en) * 2005-04-08 2006-10-26 Japan Climate Systems Corp Blower voltage control system of automobile
JP4705798B2 (en) * 2005-04-08 2011-06-22 株式会社日本クライメイトシステムズ Automotive blower voltage control system
JP2011105191A (en) * 2009-11-19 2011-06-02 Suzuki Motor Corp Control device for vehicle
JPWO2017119138A1 (en) * 2016-01-08 2018-08-30 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP3833628B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
JP2006089018A (en) Air conditioner for vehicle
JPH11348526A (en) Air conditioner for vehicle
JP3833628B2 (en) Control method for vehicle air conditioner, and vehicle air conditioner
JP2007176203A (en) Vehicular air conditioner
JP4313175B2 (en) Air conditioner for vehicles
KR20100022693A (en) The control method of air conditioner for vehicle
KR20050105664A (en) Method for controlling air temperature of air conditioner by temperature of coolant
JP2021059234A (en) Temperature regulation device control unit of convertible vehicle
JP2002144840A (en) Vehicular air conditioner
KR101758720B1 (en) Air conditioner for vehicles
JPH07237432A (en) Method to control air conditioner for electric automobile
JP4613942B2 (en) Air conditioner for vehicles
JPH07172139A (en) Vehicular front and rear seat independent temperature regulation controller
JP3419011B2 (en) Vehicle air conditioner
JP4360196B2 (en) Air conditioner for vehicles
KR101220970B1 (en) The control method of intake and temperature door in air conditioner for vehicle
JP2522215B2 (en) Air conditioning controller for vehicles
JP3417249B2 (en) Automotive air conditioners
JPH0367718A (en) Air conditioning controller for vehicle
JP3225324B2 (en) Fluctuation control device for vehicle air conditioner
JPH09169208A (en) Air-conditioning control device for vehicle
JP2005238908A (en) Air-conditioner for vehicle
JPH0231911A (en) Air quantity control method at automobile air conditioner
JPH06171344A (en) Control device for automotive air-conditioner
JPH0399926A (en) Controller of air conditioner for vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050725

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060124

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060324

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Effective date: 20060719

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130728

LAPS Cancellation because of no payment of annual fees