JP2004330109A - Method for manufacturing metal-deposited oxide - Google Patents

Method for manufacturing metal-deposited oxide Download PDF

Info

Publication number
JP2004330109A
JP2004330109A JP2003130583A JP2003130583A JP2004330109A JP 2004330109 A JP2004330109 A JP 2004330109A JP 2003130583 A JP2003130583 A JP 2003130583A JP 2003130583 A JP2003130583 A JP 2003130583A JP 2004330109 A JP2004330109 A JP 2004330109A
Authority
JP
Japan
Prior art keywords
oxide
metal
precursor
supported
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003130583A
Other languages
Japanese (ja)
Inventor
Yoshimi Okada
佳巳 岡田
Masashi Saito
政志 斉藤
Toshiji Makabe
利治 真壁
Hiroaki Nishijima
裕明 西島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP2003130583A priority Critical patent/JP2004330109A/en
Publication of JP2004330109A publication Critical patent/JP2004330109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an industrially advantageous metal-deposited oxide simply with ease without using a solubility improving agent and without necessitating a solvent removing step even when a metallic compound has low solubility. <P>SOLUTION: The metal-deposited oxide in which the metallic compound is deposited on an oxide carrier is manufactured by adding powder of the metallic compound to a wet cake of a hydrous oxide which is an oxide precursor to be fired and has a moisture content suitable for kneading, kneading them so that the powder of the metallic compound is dissolved in the moisture in the wet cake and the metallic compound is adsorbed on the hydrous oxide, and compacting, drying and firing the kneaded material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、酸化物担体に金属化合物を担持させて金属担持酸化物を製造するための方法に係り、特に制限されるものではないが、水に対する溶解度の低い原料金属化合物を用いて脱硝触媒等の触媒として有用な金属担持酸化物を製造するのに好適な金属担持酸化物の製造方法に関する。
【0002】
【従来の技術】
一般に、脱硝触媒等の触媒として有用な金属担持酸化物を製造する方法として、アルミナ、チタニア、ジルコニア等の酸化物を原料として用い、この酸化物を所定の剤形に成形し、乾燥し、焼成して酸化物担体を調製し、次いでこの酸化物担体に触媒金属の金属化合物溶液を含浸せしめ、溶媒を除去して焼成することにより製造する含浸法と、成形する際に適した量の水分に予め必要量の触媒金属の金属化合物を溶解し、この金属化合物の溶液を原料の酸化物に添加して混練し、所定の剤形に成形し、乾燥し、焼成することにより製造する混練法とが知られている。
【0003】
ここで、前者の含浸法で金属担持酸化物を製造する場合、酸化物担体に含浸させた金属化合物溶液の溶媒を除去する溶媒除去工程が不可避的に必要になり、溶媒を除去する工程のために製造コストが上昇するとともに、製造期間が長くなるという問題がある。
これに対して、後者の混練法は、成形に適した量の水分を用いるだけなので、含浸法のように溶媒除去工程が必要でなく、工業的に有利な方法であるといえる。
【0004】
しかしながら、後者の混練法においては、バナジウム化合物、タングステン化合物、ニオブ化合物、鉛化合物等のように触媒金属の金属化合物が難溶性でその溶解度が低い場合、酸化物担体に担持させる触媒金属に相当する金属化合物の必要量を溶解させるのに多量の溶媒が必要になり、結局は混練後に成形に適した水分含有量に調整するための溶媒除去工程が必要になり、低溶解度の金属化合物については混練法の長所を生かすことができないという問題があった。
【0005】
そこで、従来においては、このような問題を解決するため、例えば触媒金属がバナジウムである場合、バナジン酸アンモニウム等のバナジウム化合物をシュウ酸等の溶解度向上剤と共に成形に適した量の水分に溶解させてバナジウム化合物溶液を調製し、このバナジウム化合物溶液を用いて混練法によりバナジウム担持酸化物を製造することが行われている。また、触媒金属がタングステンの場合は、パラタングステン酸アンモニウム等のタングステン化合物とともに、エタノールアミン等のアミン化合物が溶解度向上剤として用いられ、バナジウムとタングステンを同時に担持する場合には、これらの化合物とともにシュウ酸やエタノールアミンの溶解度向上剤を同時に添加して均一な金属化合物溶液を調製して含浸や混練することが行われている。(例えば、非特許文献1、特許文献1、2、6及び7参照)。
【0006】
しかしながら、この方法においては、低溶解度の金属化合物を混練に適した量の溶媒中に溶解させるためにシュウ酸やアミン類等の溶解度向上剤の使用が必須であり、使用試薬のコストが増大するとともに、試薬の溶解工程が必要であり、また、アミン類等を用いる場合は、溶解度向上剤から焼成時に発生するガスの無害化のための設備が必要となり、製造コストを上昇させるという問題があった。
【0007】
ところで、触媒担体としては、アルミナ等の金属酸化物が用いられることが多い。これらの酸化物担体は金属化合物を含む酸性の水溶液にアンモニア等の塩基性試薬を添加することによって水酸基を有する酸化物前駆体として析出させ、このケーキを洗浄後に、調湿、乾燥、焼成して酸化物担体とする方法が一般的である。この様にして得られた前駆体は、種類によって様々な名称があるが、いずれも水酸化物か、又は水酸基の一部が脱水縮合した縮合体で残留水酸基を有する化合物である。ここではこれらの水酸基の一部が脱水縮合した縮合体で残留水酸基を有する化合物を総称して含水酸化物と記載し、酸性金属水溶液から析出させた、水酸化物及び含水酸化物を総称して酸化物前駆体と記載することとする。
【0008】
そして、金属酸化物担体に活性金属を担持する方法としては、担体に金属化合物水溶液を含浸して、乾燥、焼成する方法が一般的である。しかしながら、焼成前の酸化物前駆体である含水酸化物を用いる方法も知られている。例えば、チタンの含水酸化物(ゾル化したメタチタン酸)に、パラタングステン酸アンモニウムを含む10%−メチルアミン溶液、モリブデン酸アンモニウムを含むメチルアミン溶液、又はメタバナジン酸アンモニウムとシュウ酸の水溶液を添加し、混練したのち、成形し、乾燥し、焼成して金属担持酸化物を製造する方法(特許文献3及び4参照)や、メタチタン酸スラリーに、メタバナジン酸アンモニウムとパラタングステン酸アンモニウムの水溶液を添加し、生成したスラリー溶液を蒸発乾固し、得られた固体に第三成分のスラリー溶液又は水を添加して混練したのち、成形し、乾燥し、焼成して金属担持酸化物を製造する方法(特許文献5参照)が提案されている。
【0009】
しかしながら、これらの方法においても、メチルアミンやシュウ酸等の溶解度向上剤の使用やスラリー溶液の蒸発乾固の操作が行われており、上述した従来の方法と同様の問題点を抱えている。
【0010】
【非特許文献1】株式会社講談社昭和49年11月10日発行「触媒調製」148〜160頁
【特許文献1】特開昭58−143,838号公報
【特許文献2】特開昭58−143,839号公報
【特許文献3】特開昭59−35,026号公報
【特許文献4】特開昭59−35,028号公報
【特許文献5】特開平1−151,940号公報
【特許文献6】特開平8−229,412号公報
【特許文献7】特開2000−464号公報
【0011】
【発明が解決しようとする課題】
そこで、本発明者らは、溶解度向上剤の使用や溶媒除去工程の採用による金属担持酸化物製造上の問題点を解決し、簡便で容易に、かつ、工業的に有利な金属担持酸化物の製造方法を開発すべく鋭意検討した結果、たとえ低溶解度の金属化合物であっても、水に溶解した金属化合物は焼成前の酸化物前駆体である含水酸化物と接触することにより、この含水酸化物に吸着されて容易にその固相中に移行することを突き止め、たとえ少量の水の使用であっても、混練操作と組み合わせることによって、この少量の水を溶媒として溶解分が固相中に移行して、未溶解分が新たに溶解して前駆体に吸着することが、前駆体の吸着容量に達するまで連続的に進行することを突き止め、これらの原理を応用することにより上記の問題点を一挙に解決できることを見い出し、本発明を完成した。
【0012】
従って、本発明の目的は、たとえ低溶解度の金属化合物であっても、溶解度向上剤の使用や溶媒除去工程を必要とすることなく、簡便で容易にかつ工業的に有利な金属担持酸化物の製造方法を提供することにある。
【0013】
【課題を解決するための手段】
すなわち、本発明は、焼成前の酸化物前駆体であって成形に適した水分含有量を有する酸化物前駆体の湿潤ケーキに金属化合物粉末を添加し、混練して湿潤ケーキ中の水分に上記金属化合物粉末を溶解させると共に、この湿潤ケーキの含水酸化物に金属化合物を吸着せしめ、次いで成形し、乾燥し、焼成して金属化合物が酸化物担体に担持された金属担持酸化物を製造する、金属担持酸化物の製造方法である。
【0014】
本発明において、焼成前の酸化物前駆体については、最終的に焼成されて触媒金属等の所望の金属を担持する酸化物担体となり得るものであればよく、触媒の酸化物担体として好適に使用されるベーマイト等の含水酸化アルミニウム、チタン酸、含水酸化チタン、水酸化ジルコニウム、水酸化珪素等で特に制限されるものではない。これらは単独で用いることができるほか、2種以上の酸化物の複合酸化物の前駆体混合物として用いることもできる。例えば、触媒担体としてアルミナ−シリカ、チタニア−シリカ、ジルコニア−シリカ、アルミナ−チタニア−シリカ等の複合酸化物を担体として用いることは、その触媒が備えるべき要件に応じて一般的であり、本発明はこれらの複合酸化物担体の焼成前の酸化物前駆体に対しても適用することができる。
【0015】
また、このような含水酸化物の調製方法についても特に制限はなく、一般的には、例えばアルミニウム、チタン、ジルコニウム等の金属を含む原料化合物の均一酸性溶液にアンモニア等の塩基化合物を添加してpH調整を行い、溶液中に水酸化物又は水酸基を有する含水酸化物を沈殿せしめ、固液分離して、必要により洗浄、脱水することにより容易に得られる。
【0016】
ここで、上記の原料化合物としては、例えばアルミニウム、チタン、ジルコニウム等の塩化物、弗化物、臭化物、ヨウ化物、硝酸塩、硫酸塩、炭酸塩、酢酸塩、燐酸塩、ホウ酸塩、蓚酸塩、フッ酸塩、ケイ酸塩、ヨウ素酸塩、オキソ酸塩、アンモニウム塩、アルコキシド類等を挙げることができ、その1種のみを単独で使用できるほか、2種以上の混合物として使用することもできる。
【0017】
このようにして調製された酸化物前駆体については、混練して所望の剤形に成形するのに適した水分量を有する湿潤ケーキとされる。この湿潤ケーキに含まれる水分は、例えば触媒金属の金属化合物粉末と混練された際に、この金属化合物粉末の一部を溶解し、この溶解した金属化合物を含水酸化物中に移行させて吸着せしめる作用をするものである。すなわち、未溶解分の試薬が存在しても、酸化物前駆体が溶解した試薬を吸着する能力を有することから、溶解分が前駆体に吸着することによって固体相に移行し、新たに未溶解分が水分に溶解して更に吸着することが前駆体の吸着容量に達するまで連続的に進行する。このため、焼成前の前駆体を用いることによって、少量の水分でもそれを溶媒として有効に利用することができる。
【0018】
ここで、混練して所望の剤形に成形するのに適した水分含有量は、通常30重量%以上150重量%以下、好ましくは50重量%以上90重量%以下である。水分含有量が30重量%より少ないと成形性が悪くなるという問題が起こり易く、反対に、150重量%を超えると調湿工程を必要として触媒調製期間が長くなるという問題が起こり易くなる。なお、ここでいう水分含有量は、遊離水分と焼成時の脱水縮合反応によって生じる水分の両方を含む総合的な水分量であり、具体的には、酸化物前駆体を400℃以上、好ましくは500℃以上の温度で焼成して酸化物としたときの重量減少によって測定される水分含有量である。水以外の溶媒においても本発明は適用できるが、工業的には経済性の観点からほとんどの場合、溶媒としては水が使用される。
【0019】
上記酸化物前駆体の湿潤ケーキに添加する金属化合物については、担持させる金属を含む化合物であればよく、製造される金属担持酸化物の用途等により適宜選択することができるが、本発明の方法は酸化物担体に低溶解度金属化合物を担持させる際に特に好適な方法であるので、好ましくは金属分の水に対する溶解度が10,000mg/L以下、より好ましくは100mg/L以上5,000mg/L以下の金属化合物である。本発明の原理は微量でも溶媒に対して溶解する化合物であれば適用できることができるが、溶解はしても100mg/L以下の場合は吸着、溶解の連続進行に時間を要するために工業的な実施の観点から現実的ではない。また、10,000mg/L以上の金属分を溶解できる場合は、成形に適した水分量に担持金属の所望量を全て溶解できる場合が多い。
【0020】
このような低溶解度金属化合物の具体例としては、例えば、バナジウム化合物、タングステン化合物のほか、ニオブ化合物、ジルコニウム化合物、鉛化合物、水銀化合物、タリウム化合物等が挙げられる。これらの金属化合物の形態としては、塩化物、弗化物、臭化物、ヨウ化物、硝酸塩、硫酸塩、シュウ酸塩、炭酸塩、酢酸塩、燐酸塩、ホウ酸塩、蓚酸塩、フッ酸塩、ケイ酸塩、ヨウ素酸塩、オキソ酸塩、アンモニウム塩、アルコキシド類等を挙げることができるが、同じ金属化合物でもこれらの形態によって、溶解度は大きく異なる。触媒の調製等に際しては、溶解度が高ければどのような形態の化合物を用いてもよいわけではなく、調製工程で処理が容易なものや調製後の触媒に悪い影響を与えない化合物を用いることが有利である。しかしながら、用いたい形態の化合物が必ずしも大きな溶解度をもつとは限らず、溶解度が低いために用いることができなかったり、溶解度向上剤を必要とする場合がある。本発明の適用が有利となる化合物としては、バナジン酸アンモニウム等のバナジン酸塩、タングステン酸アンモニウム等のタングステン酸塩、オキシ塩化ジルコニウム、オキシ塩化ニオブ等のオキシ塩、シュウ酸鉛、蓚酸ニオブ、シュウ酸マンガン等のシュウ酸塩等を例示することができる。
【0021】
本発明においては、上記酸化物前駆体の湿潤ケーキ中に上記金属化合物粉末を添加し、混練して湿潤ケーキ中の水分に上記金属化合物粉末を溶解させると共にこの湿潤ケーキ中の酸化物前駆体に金属化合物を吸着せしめる。ここで、上記湿潤ケーキと金属化合物粉末との混練は、従来この種の金属担持酸化物を製造する際に行われていたと同様の装置や条件で行うことができ、具体的には、自動混練器等の装置を用い、常温、常圧の通常の条件で行うことができる。
【0022】
以上のようにして得られた湿潤ケーキと金属化合物粉末との混練物については、次いで成形し、乾燥し、焼成して金属化合物が酸化物担体に担持された金属担持酸化物とされる。
ここで、成形、乾燥、焼成の条件については、製造される金属担持酸化物の用途に応じて設定され、従来この種の金属担持酸化物を製造する際に行われていたと同様の条件で行うことができる。
【0023】
本発明の方法により製造された金属担持酸化物は、従来の含浸法や混練法で製造されるものと変わりなく、例えば、バナジウム金属を担持した酸化触媒、バナジウム及びモリブデン又はタングステン等を担持した脱硝触媒等の用途に好適に用いられる。
【0024】
【発明の実施の形態】
以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明する。
【0025】
〔実施例1〕(アルミナ前駆体ゲルの調製)
硝酸アルミニウム・9水和物(Al(NO・9HO)800gを純水に溶解して1Lの硝酸アルミニウム水溶液(溶液A)とした。また、アルミン酸ナトリウム(NaAl=81.97)250gを純水に溶解して1Lのアルミン酸ナトリウム水溶液(溶液B)を調製した。次に35Lのホーロー容器に純水を20L入れて電磁加熱器で加熱し、湯温が75℃になったら硝酸アルミニウム水溶液(溶液A)250mlを投入して攪拌した。このときのpH値は2.5であった。続いてアルミン酸ナトリウム水溶液(溶液B)800ccを1度に投入してpH値を10とした。この操作によって溶液中にアルミナ前駆体が析出しスラリー溶液となった。更に5分間攪拌した後にスラリー溶液を濾過してアルミナ前駆体の湿潤ケーキを得た。このケーキを再び20Lに純水に分散して30分攪拌した後に再度濾過を行う洗浄操作を3回実施して析出時に生じる硫酸ナトリウムを除去した。3回洗浄後の濾過ケーキを特段の調湿操作をせずに、そのまま採取して500℃で焼成し、重量減少分を水分としてケーキの含水率を測定したところ86.0重量%であった。
【0026】
〔実施例2〕(バナジン酸アンモニウムの飽和溶解濃度の測定)
120mlの純水にバナジン酸アンモニウム試薬(NHVO)4.54gを投入して、室温で3時間攪拌した。溶液中には多量の未溶解分の試薬が残留していた。この溶液を濾過した濾液を1晩静置した後に溶液の上部からサンプルを分取して原子吸光光度計にてバナジウムの濃度を測定したところ2,800mg/Lであり、投入した総バナジウム分1.98gのうち0.34gが溶解した。
【0027】
〔実施例3〕(アルミナ前駆体ゲルの平衡吸着量測定)
実施例2と同量のバナジン酸アンモニウム試薬(NHVO)4.54g(バナジウム分として1,980mg)を均一に溶解させるのに十分な2,500mlの純水に完全に溶解させ、実施例1で得たゲル140gを投入して室温で3時間攪拌した後に濾別した。濾液中のバナジウム濃度を原子吸光光度計にて測定したところ329mg/Lであった。この濃度と系内に存在する水分2.63L(仕込み水2,500mlとゲルに含まれる水分120ml)から求めた未吸着バナジウム分の量は863mgであった。これより、実施例1で調製したアルミナ前駆体のバナジウム吸着容量は前駆体ゲル(含水率86重量%)1g当たり7.98mgで焼成後のアルミナ1g当たり57.0mgであることがわかった。
【0028】
これより、実施例1で得たアルミナ前駆体ゲル140g(500℃焼成後に19.6gのTiOとなる。)は1,117mgのバナジウムを吸着し、ゲル中に含まれる水分120mlは実施例2の飽和溶解量より336mgのバナジウムを溶解し得ることから、特段の調湿操作を行わない洗浄濾過後のケーキに対して、1,453mgのバナジウム分を含む3.33gのバナジン酸アンモニウム試薬をシュウ酸等の溶解度向上剤を用いないで直接混練によって溶解させて担持することが可能と考えられる。
【0029】
〔実施例4〕(V/Al触媒の調製)
実施例1で得たアルミナ前駆体ゲル140gに、バナジン酸アンモニウム試薬(NHVO)2.78g(バナジウム分1,213mg)を直接混練して黄色の均一なゲルを得た。次に、特段の調湿を行うことなく押出し成形器にかけてゲルを成形した後、恒温乾燥器にて120℃で3時間乾燥した。この乾燥体を適当な長さに粉砕した後に空気を流通させたマッフル炉にて500℃で3時間焼成した。このようにして調製した触媒に担持されたV量を原子吸光光度計で定量したところ、V/Al=10/90の重量比であった。また物理性状を測定したところ、BET表面積147cm/g、水銀圧入法による細孔容積0.54ml/g、平均細孔径15.3nmであった。
【0030】
〔実施例5〕(V/Al触媒の反応試験)
実施例4で得たV/Al触媒を粉砕して0.85〜1.15mmの目開きの篩で整粒した触媒1.0mlを反応管に充填して、脱硝反応試験を行った。触媒層の温度を170℃として、NO:250ppm及びO:5%を含むNガスをGHSV=30,000(30NL/h)でアンモニア(NH3/NOモル比=1.0)とともにFeedした。出口ガス中のNO濃度をNOx計にて測定したところ、103ppmであり、脱硝率は58.8%であった。ここで、脱硝率は次式より算出した。
脱硝率(%)=[[(入口NO濃度)−(出口NO濃度)]/(入口NO濃度)]×100
【0031】
〔実施例6〕(チタニア前駆体ゲルの調製)
四塩化チタン(TiCl)500gを純水から製造した氷を粉砕したものと混合した後に、純水で1,000mlとして四塩化チタン水溶液(溶液C)を得た。また28重量%のアンモニア水を同重量の純水で希釈して14重量%のアンモニア水(溶液D)を調製した。
【0032】
次に35Lのホーロー容器に純水20Lを入れて電磁加熱器で加熱し、湯温が75℃になったら四塩化チタン水溶液(溶液C)500mlを投入して攪拌した。このときのpH値は1.1であった。続いてアンモニア水溶液(溶液D)710ccを1度に投入してpH値を8.5とした。この操作によって溶液中にチタニア前駆体が析出しスラリー溶液となった。更に5分間攪拌した後にスラリー溶液を濾過してチタニア前駆体の湿潤ケーキを得た。このケーキを再び20Lの純水に分散して30分攪拌した後に再度濾過を行う洗浄操作を3回実施して析出時に生じる塩化アンモニウムを除去した。3回洗浄後の濾過ケーキを特段の調湿操作をせずに、そのまま採取して500℃で焼成し、重量減少分を水分としてケーキの含水率を測定したところ85.0重量%であった。
【0033】
〔実施例7〕(モリブデン共存下でのバナジウム飽和溶解濃度の測定)
実施例6で得たゲル200g中に含まれる水分量と等しい170mlの純水にバナジン酸アンモニウム試薬(NHVO)4.54g及びモリブデン酸アンモニウム((NHMo24・4HO)10.0gを投入して、室温で3時間攪拌した。溶液中には多量の未溶解分の試薬が残留していた。この溶液を濾過した濾液を1晩静置した後に溶液の上部からサンプルを分取して原子吸光光度計にてバナジウム濃度及びモリブデン濃度を測定したところ2,800mg/L及び32,000mg/Lであり、投入した総バナジウム分1.98gのうち0.34gが溶解し、総モリブデン分5,430mgは全て溶解していた。
【0034】
〔実施例8〕(チタニア前駆体ゲルのモリブデン存在下のバナジウム平衡吸着量測定)
実施例2と同量のバナジン酸アンモニウム試薬(NHVO)4.54g(バナジウム分として1,980mg)と共に、モリブデン酸アンモニウム((NHMo24・4HO)2.16g(モリブデン分として1,173mg)を均一に溶解させるのに十分な2,500mlの純水に完全に溶解させ、実施例6で得たゲル200gを投入して室温で3時間攪拌した後に濾別した。濾液中のバナジウム濃度及びモリブデン濃度を原子吸光光度計にて測定したところ17mg/L及び435mg/Lであった。この濃度と系内に存在する水分2.67L(仕込み水2,500mlとゲルに含まれる水分170ml)から求めた未吸着バナジウム分及びモリブデン分の量は45mg及び1,161mgであった。これより、実施例6で調製したチタニア前駆体のバナジウム吸着容量は前駆体ゲル(含水率85重量%)1g当たり9.8mgで焼成後のチタニア1g当たり65.0mgで、モリブデン吸着量はわずかであり、モリブデン共存下においてもバナジウムが良好に吸着した。
【0035】
これより、実施例6で得たチタニア前駆体ゲルは多量のモリブデンが共存してもバナジウムを選択的に吸着する。従って、バナジウムとともにモリブデンを担持する場合においても、特段の調湿操作を行わない洗浄濾過後のケーキに対して、バナジウム試薬とともにモリブデン試薬を混練することで、シュウ酸等の溶解度向上剤を用いないで担持することができる。このときのモリブデンの担持限界量はゲル中に含まれる水分のモリブデン飽和溶解量にほぼ相当する量までとなる。
【0036】
〔実施例9〕(V−MoO/TiO触媒の調製)
実施例6で得たチタニア前駆体ゲル200gをプラスチック製のバットに広げて2日間静置することによって調湿し、総重量を82gとして、含水率を63%とした。このゲルに、バナジン酸アンモニウム試薬(NHVO)4.54g(バナジウム分として1,980mg)及びモリブデン酸アンモニウム((NHMo24・4HO)2.16g(モリブデン分として1,173mg)の粉末を混合して直接混練することによって、黄緑色の均一なゲルを得た。次に、このゲルを押出し成形器にかけてゲルを成形した後、恒温乾燥器にて120℃で3時間乾燥した。この乾燥体を適当な長さに粉砕した後に空気を流通させたマッフル炉にて500℃で3時間焼成した。このようにして調製した触媒に担持されたV量及びMoO量を原子吸光光度計で定量したところ、V/MoO/TiO=10/5/85の重量比であった。また物理性状を測定したところ、BET表面積81cm/g、水銀圧入法による細孔容積0.151ml/g、平均細孔径27.2nmであった。
【0037】
〔実施例10〕(V−MoO/TiO触媒の脱硝反応試験)
実施例9で得たV−MoO/TiO触媒を用いた以外は実施例5と同様にして脱硝反応試験をした結果、出口ガス中のNO濃度は15.5ppmであり、脱硝率は93.8%であった。
【0038】
〔実施例11〕(パラタングステン酸アンモニウムの飽和溶解濃度の測定)
実施例6で得たゲル200g中に含まれる水分量と等しい170mlの純水にパラタングステン酸アンモニウム試薬((NH101241・5HO)2.0gを投入して、室温で3時間攪拌した。溶液中には多量の未溶解分の試薬が残留していた。この溶液を濾過した濾液を1晩静置した後に溶液の上部からサンプルを分取して原子吸光光度計にてタングステン濃度を測定したところ6,800mg/Lであり、投入した総タングステン分1.41gのうち1.16gが溶解していた。
【0039】
〔実施例12〕(チタニア前駆体ゲルのバナジウム存在下でのタングステン平衡吸着量測定)
バナジン酸アンモニウム試薬(NHVO)4.54g(バナジウム分として1,980mg)及びパラタングステン酸アンモニウム((NH101241・5HO)2.00g(タングステン分として1,410mg)を均一に溶解させるのに十分な2,500mlの純水に完全に溶解させ、実施例6で得たゲル200gを投入して室温で3時間攪拌した後に濾別した。濾液中のバナジウム濃度及びタングステン濃度を原子吸光光度計にて測定したところ25mg/L及び224mg/Lであった。この濃度と系内に存在する水分2.67L(仕込み水2,500mlとゲルに含まれる水分170ml)から求めた未吸着バナジウム分及びタングステン分の量は67mg及び600mgであった。これより、実施例6で調製したチタニア前駆体は前駆体ゲル(含水率85重量%)1g当たり9.6mgのバナジウムを吸着し、同時に4.0mgのタングステン分を吸着した。
【0040】
これより、モリブデンの代わりにタングステンを用いた場合にタングステンが前駆体ゲルに吸着されることからアミン等の溶解度向上剤を用いなくても混練によって担持することができると考えられ、実施例6で調製したチタニア前駆体ゲルのタングステン分の担持限界量は、ゲル200g(TiO 30g相当)当り、吸着分として800mg、ゲルに含まれる水分170gに対する飽和溶解分として1,156mgの合計1,956mgとなる。
【0041】
〔実施例13〕(V−WO/TiO触媒の調製)
実施例6で得たチタニア前駆体ゲル200gをプラスチック製のバットに広げて2日間静置することによって調湿し、総重量を82gとして、含水率を63%とした。このゲルに、バナジン酸アンモニウム試薬(NHVO)4.54g(バナジウム分として1,980mg)及びパラタングステン酸アンモニウム((NH101241・5HO)2.00g(タングステン分として1,410mg)の粉末を混合して直接混練した。次に、このゲルを押出し成形器にかけてゲルを成形した後、恒温乾燥器にて120℃で3時間乾燥した。この乾燥体を適当な長さに粉砕した後に空気を流通させたマッフル炉にて500℃で3時間焼成した。このようにして調製した触媒に担持されたV量及びWO量を原子吸光光度計で定量したところ、V/WO/TiO=10/5/85の重量比であった。また物理性状を測定したところ、BET表面積82cm/g、水銀圧入法による細孔容積0.240ml/g、平均細孔径26.1nmであった。
【0042】
〔実施例14〕(V−WO/TiO触媒の脱硝反応試験)
実施例9で得たV−WO/TiO触媒を用いた以外は実施例5と同様にして脱硝反応試験をした結果、出口ガス中のNO濃度は17.5ppmであり、脱硝率は93.0%であった。
【0043】
〔実施例15〕(チタニア−シリカ複合前駆体ゲルの調製)
四塩化ケイ素(SiCl)30.0gをメタノール100mlに溶解した(溶液E)。この溶液Eを実施例6で調製した1,500mlの溶液Cに混合して1,600mlとした(溶液F)。この溶液Fの533mlを実施例6の溶液C(500ml)の代わりに用いた以外は実施例6と同様にして、チタニア−シリカ前駆体の湿潤ケーキを得た。このケーキを500℃で焼成して含水率を測定したところ87.0重量%であった。
【0044】
〔実施例16〕(チタニア−シリカ前駆体ゲルのモリブデン存在下のバナジウム平衡吸着量測定)
実施例11で得たゲルを用いた以外は実施例8と同様に仕込んで3時間攪拌した後に濾別した。濾液中のバナジウム濃度及びモリブデン濃度を原子吸光光度計にて測定したところ30mg/L及び277mg/Lであった。この濃度と系内に存在する水分2.675L(仕込み水2,500mlとゲルに含まれる水分175ml)から求めた未吸着バナジウム分及びモリブデン分の量は80mg及び742mg/Lであった。これより、実施例11で調製したチタニア−シリカ前駆体のバナジウム吸着容量は前駆体ゲル(含水率87.5%)1g当たり9.5mgで焼成後のチタニア−シリカ1g当たり76.0mgで、モリブデン吸着量はゲル1g当たり2.2mgで、焼成後のチタニア−シリカ1g当たり17.2mgであった。
これより、チタニア−シリカ前駆体ゲルにおいてもチタニア前駆体同様にバナジウムを良好に吸着することがわかる。
【0045】
〔実施例17〕(V−MoO/TiO−SiO触媒の調製)
実施例11で得たチタニア−シリカ前駆体ゲルを用いた以外は実施例9と同様にしてV−MoO/TiO−SiO触媒の調製を行った。調製した触媒に担持されたV量及びMoO量を原子吸光光度計で定量したところ、V/MoO/TiO/SiO=10/5/82/3の重量比であった。また物理性状を測定したところ、BET表面積94cm/g、水銀圧入法による細孔容積0.25ml/g、平均細孔径20.1nmであった。
【0046】
〔実施例18〕(V−MoO/TiO−SiO触媒の脱硝反応試験)
実施例13で得たV−MoO/TiO−SiO触媒を用いた以外は実施例5と同様にして脱硝反応試験をした結果、出口ガス中のNO濃度は18.3ppmであり、脱硝率は92.7%であった。
【発明の効果】
本発明の方法によれば、溶解度向上剤の使用や溶媒除去工程を必要とすることなく、アルミナ、チタニア、ジルコニア等の酸化物又はアルミナ−シリカ、チタニア−シリカ等の複合酸化物に低溶解度の金属化合物を使用して、金属分が担持された酸化物を製造することができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a metal-supported oxide by supporting a metal compound on an oxide carrier. Although not particularly limited, a denitration catalyst or the like using a raw metal compound having low solubility in water is provided. The present invention relates to a method for producing a metal-supported oxide suitable for producing a metal-supported oxide useful as a catalyst.
[0002]
[Prior art]
Generally, as a method for producing a metal-supported oxide useful as a catalyst such as a denitration catalyst, an oxide such as alumina, titania, or zirconia is used as a raw material, and this oxide is formed into a predetermined dosage form, dried, and calcined. To prepare an oxide carrier, then impregnating the oxide carrier with a metal compound solution of a catalyst metal, removing the solvent and calcining to produce an impregnating method, and a suitable amount of water for molding. A kneading method in which a required amount of a metal compound of a catalytic metal is dissolved in advance, and a solution of the metal compound is added to the raw material oxide and kneaded, formed into a predetermined dosage form, dried, and calcined. It has been known.
[0003]
Here, when producing the metal-supported oxide by the former impregnation method, a solvent removal step of removing the solvent of the metal compound solution impregnated in the oxide carrier is inevitably required, and for the step of removing the solvent, In addition, there is a problem that the manufacturing cost increases and the manufacturing period becomes longer.
On the other hand, the latter kneading method uses only an amount of water suitable for molding, and therefore does not require a solvent removal step as in the impregnation method, and can be said to be an industrially advantageous method.
[0004]
However, in the latter kneading method, when a metal compound of a catalyst metal such as a vanadium compound, a tungsten compound, a niobium compound, and a lead compound is hardly soluble and has low solubility, it corresponds to a catalyst metal to be supported on an oxide carrier. A large amount of solvent is required to dissolve the required amount of the metal compound, and eventually a solvent removal step is required after kneading to adjust the water content suitable for molding. There was a problem that the advantages of the law could not be used.
[0005]
Therefore, conventionally, in order to solve such a problem, for example, when the catalyst metal is vanadium, a vanadium compound such as ammonium vanadate is dissolved in a suitable amount of water for molding together with a solubility improver such as oxalic acid. Thus, a vanadium compound solution is prepared, and a vanadium-supported oxide is produced by a kneading method using the vanadium compound solution. When the catalyst metal is tungsten, an amine compound such as ethanolamine is used as a solubility enhancer together with a tungsten compound such as ammonium paratungstate, and when vanadium and tungsten are simultaneously supported, a sulfur compound is used together with these compounds. 2. Description of the Related Art A uniform metal compound solution is prepared by simultaneously adding a solubility enhancer of an acid or ethanolamine, and is impregnated or kneaded. (See, for example, Non-Patent Document 1, Patent Documents 1, 2, 6, and 7).
[0006]
However, in this method, use of a solubility improver such as oxalic acid or an amine is essential to dissolve the low-solubility metal compound in a solvent in an amount suitable for kneading, and the cost of the reagent used increases. In addition, a reagent dissolution step is required, and when amines or the like are used, equipment for detoxifying the gas generated during sintering from the solubility improver is required, which raises the problem of increasing the production cost. Was.
[0007]
By the way, a metal oxide such as alumina is often used as a catalyst carrier. These oxide carriers are precipitated as an oxide precursor having a hydroxyl group by adding a basic reagent such as ammonia to an acidic aqueous solution containing a metal compound, and after washing the cake, humidity control, drying and firing are performed. A method using an oxide carrier is generally used. The precursor thus obtained has various names depending on the kind, but all are hydroxides or compounds having a residual hydroxyl group as a condensate obtained by partially dehydrating and condensing a hydroxyl group. Here, a compound having a residual hydroxyl group in a condensate in which a part of these hydroxyl groups is dehydrated and condensed is collectively referred to as a hydrated oxide, and a hydroxide and a hydrated oxide precipitated from an acidic metal aqueous solution are collectively referred to. It is referred to as an oxide precursor.
[0008]
As a method for supporting the active metal on the metal oxide carrier, a method of impregnating the carrier with an aqueous solution of a metal compound, followed by drying and firing is generally used. However, a method using a hydrated oxide which is an oxide precursor before firing is also known. For example, a 10% -methylamine solution containing ammonium paratungstate, a methylamine solution containing ammonium molybdate, or an aqueous solution of ammonium metavanadate and oxalic acid is added to a hydrated oxide of titanium (solitized metatitanic acid). After kneading, molding, drying and firing to produce a metal-supported oxide (see Patent Documents 3 and 4), or adding an aqueous solution of ammonium metavanadate and ammonium paratungstate to a metatitanic acid slurry A method of producing a metal-supported oxide by evaporating the formed slurry solution to dryness, adding a slurry solution of the third component or water to the obtained solid, kneading, molding, drying and calcining ( Patent Literature 5) has been proposed.
[0009]
However, even in these methods, the operation of using a solubility improver such as methylamine or oxalic acid and the operation of evaporating and drying the slurry solution are performed, and thus have the same problems as the above-mentioned conventional methods.
[0010]
[Non-Patent Document 1] Kodansha Co., Ltd., November 10, 1974, “Catalyst Preparation”, pp. 148-160
[Patent Document 1] JP-A-58-143,838
[Patent Document 2] JP-A-58-143,839
[Patent Document 3] JP-A-59-35,026
[Patent Document 4] JP-A-59-35,028
[Patent Document 5] JP-A-1-151940
[Patent Document 6] JP-A-8-229,412
[Patent Document 7] Japanese Patent Application Laid-Open No. 2000-464
[0011]
[Problems to be solved by the invention]
Therefore, the present inventors have solved the problem of producing a metal-supported oxide by using a solubility improver or employing a solvent removal step, and are simple, easy, and an industrially advantageous metal-supported oxide. As a result of intensive studies to develop a production method, even if the metal compound has low solubility, the metal compound dissolved in water comes into contact with the hydrated oxide, which is the oxide precursor before firing, so that the hydration of the metal compound is prevented. It is found that the substance is adsorbed by the substance and easily migrates into the solid phase, and even if a small amount of water is used, by combining with the kneading operation, the dissolved component is dissolved in the solid phase using the small amount of water as a solvent. As a result, it is found that the undissolved component is newly dissolved and adsorbed on the precursor, and the process proceeds continuously until the adsorption capacity of the precursor is reached. Can be solved at once It found that, and have completed the present invention.
[0012]
Therefore, an object of the present invention is to provide a simple, easy and industrially advantageous metal-supported oxide without using a solubility enhancer or a solvent removing step, even if the metal compound has low solubility. It is to provide a manufacturing method.
[0013]
[Means for Solving the Problems]
That is, the present invention is to add a metal compound powder to a wet cake of an oxide precursor having a water content suitable for molding, which is an oxide precursor before firing, and knead the mixture to the water in the wet cake. While dissolving the metal compound powder, the metal compound is adsorbed on the hydrated oxide of the wet cake, then molded, dried and calcined to produce a metal-supported oxide in which the metal compound is supported on an oxide carrier. This is a method for producing a metal-supported oxide.
[0014]
In the present invention, the oxide precursor before calcining is not particularly limited as long as it can be finally calcined to become an oxide carrier supporting a desired metal such as a catalyst metal, and is suitably used as an oxide carrier of the catalyst. There are no particular restrictions on the hydrated aluminum oxide such as boehmite, titanic acid, hydrated titanium oxide, zirconium hydroxide, silicon hydroxide and the like. These can be used alone or as a precursor mixture of a composite oxide of two or more oxides. For example, it is common to use a composite oxide such as alumina-silica, titania-silica, zirconia-silica, alumina-titania-silica as a carrier as a catalyst carrier depending on the requirements that the catalyst should have, and the present invention Can also be applied to the oxide precursor of these composite oxide carriers before firing.
[0015]
There is no particular limitation on the method for preparing such a hydrated oxide, and in general, for example, a basic compound such as ammonia is added to a homogeneous acidic solution of a raw material compound containing a metal such as aluminum, titanium and zirconium. It is easily obtained by adjusting the pH, precipitating a hydroxide or a hydrated oxide having a hydroxyl group in a solution, separating the solution into solids and liquids, and washing and dehydrating as necessary.
[0016]
Here, as the raw material compound, for example, aluminum, titanium, chlorides such as zirconium, fluoride, bromide, iodide, nitrate, sulfate, carbonate, acetate, phosphate, borate, oxalate, Hydrofluoric acid salts, silicates, iodates, oxoacid salts, ammonium salts, alkoxides and the like can be mentioned, and only one of them can be used alone, or two or more can be used as a mixture. .
[0017]
The oxide precursor thus prepared is kneaded to obtain a wet cake having a water content suitable for forming a desired dosage form. The moisture contained in the wet cake, for example, when kneaded with the metal compound powder of the catalyst metal, dissolves a part of the metal compound powder and transfers the dissolved metal compound into the hydrated oxide to be adsorbed. It works. In other words, even if an undissolved reagent is present, the oxide precursor has the ability to adsorb the dissolved reagent, so that the dissolved component is transferred to the solid phase by adsorption to the precursor and newly undissolved. The dissolution and further adsorption of the component in water proceeds continuously until the adsorption capacity of the precursor is reached. Therefore, by using the precursor before firing, even a small amount of water can be effectively used as a solvent.
[0018]
Here, the moisture content suitable for kneading to form a desired dosage form is usually 30% by weight or more and 150% by weight or less, preferably 50% by weight or more and 90% by weight or less. If the water content is less than 30% by weight, the problem of poor moldability tends to occur, while if it exceeds 150% by weight, the problem of requiring a humidity control step and prolonging the catalyst preparation period tends to occur. Here, the water content is a total water content including both free water and water generated by a dehydration condensation reaction during firing, and specifically, the oxide precursor is heated to 400 ° C. or higher, preferably, It is a water content measured by a weight loss when the oxide is fired at a temperature of 500 ° C. or more. The present invention can be applied to solvents other than water, but in most cases, water is used as the solvent from the industrial point of view of economy.
[0019]
The metal compound to be added to the wet cake of the oxide precursor may be any compound containing a metal to be supported, and may be appropriately selected depending on the use of the metal-supported oxide to be produced. Is a method particularly suitable for supporting a low-solubility metal compound on an oxide carrier. Therefore, the solubility of the metal component in water is preferably 10,000 mg / L or less, more preferably 100 mg / L or more and 5,000 mg / L. The following metal compounds are used. The principle of the present invention can be applied to a compound that dissolves in a solvent even in a trace amount, but if the compound is dissolved at 100 mg / L or less, it takes time to continuously advance adsorption and dissolution. Not practical from an implementation point of view. In addition, when a metal content of 10,000 mg / L or more can be dissolved, the desired amount of the supported metal can all be dissolved in a water amount suitable for molding in many cases.
[0020]
Specific examples of such low solubility metal compounds include, for example, niobium compounds, zirconium compounds, lead compounds, mercury compounds, thallium compounds, and the like, in addition to vanadium compounds and tungsten compounds. The forms of these metal compounds include chloride, fluoride, bromide, iodide, nitrate, sulfate, oxalate, carbonate, acetate, phosphate, borate, oxalate, hydrofluoride, silica Acid salts, iodate salts, oxo acid salts, ammonium salts, alkoxides and the like can be mentioned, but the solubility of the same metal compound varies greatly depending on these forms. When preparing a catalyst, any form of compound may be used as long as the solubility is high, and a compound that can be easily treated in the preparation process or a compound that does not adversely affect the catalyst after preparation must be used. It is advantageous. However, the compound in the form desired to be used does not always have high solubility, and may not be used due to low solubility or may require a solubility enhancer. Compounds that are advantageous for application of the present invention include vanadates such as ammonium vanadate, tungstates such as ammonium tungstate, oxysalts such as zirconium oxychloride and niobium oxychloride, lead oxalate, niobium oxalate, and oxalate. Oxalates such as manganese oxide can be exemplified.
[0021]
In the present invention, the metal compound powder is added to the wet cake of the oxide precursor, and the mixture is kneaded to dissolve the metal compound powder in the water of the wet cake and to mix the oxide precursor in the wet cake with the oxide precursor in the wet cake. Adsorb metal compounds. Here, the kneading of the wet cake and the metal compound powder can be performed by using the same apparatus and conditions as those conventionally used when producing this type of metal-supported oxide. Specifically, automatic kneading is performed. It can be performed under normal conditions of normal temperature and normal pressure using a device such as a vessel.
[0022]
The kneaded product of the wet cake and the metal compound powder obtained as described above is then molded, dried and fired to obtain a metal-supported oxide in which the metal compound is supported on an oxide carrier.
Here, the conditions of molding, drying, and firing are set according to the use of the metal-supported oxide to be manufactured, and are performed under the same conditions as those conventionally performed when manufacturing this type of metal-supported oxide. be able to.
[0023]
The metal-supported oxide produced by the method of the present invention is the same as that produced by a conventional impregnation method or kneading method.For example, an oxidation catalyst supporting vanadium metal, denitration supporting vanadium and molybdenum or tungsten, etc. It is suitably used for applications such as catalysts.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be specifically described based on examples and comparative examples.
[0025]
[Example 1] (Preparation of alumina precursor gel)
Aluminum nitrate 9-hydrate (Al (NO 3 ) 3 ・ 9H 2 O) 800 g was dissolved in pure water to obtain a 1 L aqueous solution of aluminum nitrate (solution A). In addition, sodium aluminate (NaAl 2 O 3 = 81.97) was dissolved in pure water to prepare 1 L of an aqueous solution of sodium aluminate (solution B). Next, 20 L of pure water was put into a 35 L enameled vessel, and heated with an electromagnetic heater. When the temperature of the hot water reached 75 ° C., 250 ml of an aluminum nitrate aqueous solution (solution A) was charged and stirred. At this time, the pH value was 2.5. Subsequently, 800 cc of an aqueous solution of sodium aluminate (solution B) was added at a time to adjust the pH value to 10. By this operation, the alumina precursor was precipitated in the solution to form a slurry solution. After further stirring for 5 minutes, the slurry solution was filtered to obtain a wet cake of an alumina precursor. This cake was dispersed again in 20 L of pure water, stirred for 30 minutes, and then filtered again three times to remove sodium sulfate generated during precipitation. The filter cake after washing three times was collected without any particular humidity control operation and was baked at 500 ° C. The water content of the cake was measured using the weight loss as moisture, and was found to be 86.0% by weight. .
[0026]
[Example 2] (Measurement of saturated dissolution concentration of ammonium vanadate)
In 120 ml of pure water, ammonium vanadate reagent (NH 4 VO 3 ) 4.54 g, and stirred at room temperature for 3 hours. A large amount of undissolved reagent remained in the solution. After the filtrate obtained by filtering this solution was allowed to stand overnight, a sample was taken from the upper portion of the solution, and the concentration of vanadium was measured by an atomic absorption spectrophotometer. The result was 2,800 mg / L. 0.34 g of the .98 g dissolved.
[0027]
[Example 3] (Measurement of equilibrium adsorption amount of alumina precursor gel)
The same amount of ammonium vanadate reagent (NH 2 4 VO 3 4.54 g (1,980 mg as a vanadium content) was completely dissolved in 2,500 ml of pure water sufficient to uniformly dissolve, and 140 g of the gel obtained in Example 1 was added thereto and stirred at room temperature for 3 hours. After that, the mixture was filtered off. The concentration of vanadium in the filtrate was measured by an atomic absorption spectrophotometer and found to be 329 mg / L. The amount of the unadsorbed vanadium content determined from this concentration and 2.63 L of water present in the system (2,500 ml of charged water and 120 ml of water contained in the gel) was 863 mg. From this, it was found that the vanadium adsorption capacity of the alumina precursor prepared in Example 1 was 7.98 mg per 1 g of the precursor gel (water content: 86% by weight), and 57.0 mg per 1 g of the calcined alumina.
[0028]
From this, 140 g of the alumina precursor gel obtained in Example 1 (19.6 g of TiO 2 after firing at 500 ° C.) 2 It becomes. ) Adsorbs 1,117 mg of vanadium and 120 ml of water contained in the gel can dissolve 336 mg of vanadium from the saturated dissolution amount of Example 2, so that the cake after washing and filtration without performing any special humidity control operation is used. On the other hand, it is considered that 3.33 g of ammonium vanadate reagent containing 1,453 mg of vanadium can be directly dissolved and supported by kneading without using a solubility enhancer such as oxalic acid.
[0029]
Example 4 (V 2 O 5 / Al 2 O 3 Preparation of catalyst)
140 g of the alumina precursor gel obtained in Example 1 was added to an ammonium vanadate reagent (NH 4 VO 3 2.78 g (vanadium content: 1,213 mg) was directly kneaded to obtain a yellow uniform gel. Next, the gel was molded in an extruder without performing special humidity control, and then dried at 120 ° C. for 3 hours in a thermostatic dryer. The dried product was pulverized to an appropriate length and then fired at 500 ° C. for 3 hours in a muffle furnace through which air was passed. V supported on the catalyst thus prepared 2 O 5 When the amount was quantified with an atomic absorption spectrophotometer, 2 O 5 / Al 2 O 3 = 10/90 weight ratio. When the physical properties were measured, the BET surface area was 147 cm. 2 / G, the pore volume by a mercury intrusion method was 0.54 ml / g, and the average pore diameter was 15.3 nm.
[0030]
Example 5 (V 2 O 5 / Al 2 O 3 Reaction test of catalyst)
V obtained in Example 4 2 O 5 / Al 2 O 3 The catalyst was pulverized and sized with a sieve having an opening of 0.85 to 1.15 mm, and 1.0 ml of the catalyst was filled in a reaction tube to conduct a denitration reaction test. Assuming that the temperature of the catalyst layer is 170 ° C., NO: 250 ppm and O 2 : N containing 5% 2 The gas was fed with GHSV = 30,000 (30 NL / h) together with ammonia (NH3 / NO molar ratio = 1.0). When the NO concentration in the outlet gas was measured by a NOx meter, it was 103 ppm, and the denitration rate was 58.8%. Here, the denitration rate was calculated by the following equation.
Denitration rate (%) = [[(NO concentration at inlet)-(NO concentration at outlet)] / (NO concentration at inlet)] × 100
[0031]
[Example 6] (Preparation of titania precursor gel)
Titanium tetrachloride (TiCl 4 ) 500 g was mixed with crushed ice produced from pure water, and then made up to 1,000 ml with pure water to obtain a titanium tetrachloride aqueous solution (solution C). Further, 28% by weight of aqueous ammonia was diluted with the same weight of pure water to prepare 14% by weight of aqueous ammonia (solution D).
[0032]
Next, 20 L of pure water was placed in a 35 L enamel container, and heated with an electromagnetic heater. When the temperature of the hot water reached 75 ° C., 500 ml of an aqueous solution of titanium tetrachloride (solution C) was charged and stirred. At this time, the pH value was 1.1. Subsequently, 710 cc of an aqueous ammonia solution (solution D) was added at a time to adjust the pH value to 8.5. By this operation, the titania precursor was precipitated in the solution to form a slurry solution. After further stirring for 5 minutes, the slurry solution was filtered to obtain a wet cake of the titania precursor. This cake was again dispersed in 20 L of pure water, stirred for 30 minutes, and then filtered again three times to remove ammonium chloride generated during precipitation. The filter cake after washing three times was collected without any particular humidity control operation and calcined at 500 ° C., and the water content of the cake was measured using the weight loss as moisture, and was found to be 85.0% by weight. .
[0033]
[Example 7] (Measurement of vanadium saturated dissolution concentration in the presence of molybdenum)
In 170 ml of pure water equal to the amount of water contained in 200 g of the gel obtained in Example 6, ammonium vanadate reagent (NH 4 VO 3 4.54 g) and ammonium molybdate ((NH 4 ) 6 Mo 7 O 24 ・ 4H 2 O) 10.0 g was added, and the mixture was stirred at room temperature for 3 hours. A large amount of undissolved reagent remained in the solution. After the filtrate obtained by filtering this solution was allowed to stand overnight, a sample was taken from the upper portion of the solution, and the vanadium concentration and the molybdenum concentration were measured by an atomic absorption spectrophotometer. The results were 2,800 mg / L and 32,000 mg / L. In addition, 0.34 g of 1.98 g of the total vanadium content was dissolved, and 5,430 mg of the total molybdenum content was all dissolved.
[0034]
Example 8 (Measurement of vanadium equilibrium adsorption amount of titania precursor gel in the presence of molybdenum)
The same amount of ammonium vanadate reagent (NH 2 4 VO 3 ) With 4.54 g (1,980 mg of vanadium) together with ammonium molybdate ((NH 4 ) 6 Mo 7 O 24 ・ 4H 2 O) Dissolve completely 2.16 g (1,173 mg as molybdenum component) in 2,500 ml of pure water sufficient to uniformly dissolve, and add 200 g of the gel obtained in Example 6 and add it at room temperature for 3 hours. After stirring, the mixture was filtered off. The concentrations of vanadium and molybdenum in the filtrate were 17 mg / L and 435 mg / L as measured with an atomic absorption spectrophotometer. The amounts of unadsorbed vanadium and molybdenum determined from this concentration and 2.67 L of water present in the system (2,500 ml of charged water and 170 ml of water contained in the gel) were 45 mg and 1,161 mg. Thus, the titania precursor prepared in Example 6 had a vanadium adsorption capacity of 9.8 mg / g of precursor gel (water content: 85% by weight), 65.0 mg / g of titania after firing, and a small amount of molybdenum adsorption. Yes, vanadium was well adsorbed even in the presence of molybdenum.
[0035]
Thus, the titania precursor gel obtained in Example 6 selectively adsorbs vanadium even when a large amount of molybdenum coexists. Therefore, even when molybdenum is supported together with vanadium, a kneaded molybdenum reagent together with a vanadium reagent is used for a cake after washing and filtration without performing a specific humidity control operation, so that a solubility improver such as oxalic acid is not used. Can be carried. At this time, the loading limit of molybdenum is up to an amount substantially corresponding to the molybdenum saturated dissolution amount of water contained in the gel.
[0036]
Example 9 (V 2 O 5 -MoO 3 / TiO 2 Preparation of catalyst)
200 g of the titania precursor gel obtained in Example 6 was spread over a plastic vat and allowed to stand for 2 days to adjust the humidity, thereby adjusting the total weight to 82 g and the water content to 63%. The gel was charged with ammonium vanadate reagent (NH 4 VO 3 4.54 g (1,980 mg as vanadium) and ammonium molybdate ((NH 4 ) 6 Mo 7 O 24 ・ 4H 2 O) 2.16 g (1,173 mg as molybdenum content) of powder were mixed and directly kneaded to obtain a yellow-green uniform gel. Next, the gel was extruded through an extruder to form a gel, and then dried at 120 ° C. for 3 hours in a thermostatic drier. The dried product was pulverized to an appropriate length and then fired at 500 ° C. for 3 hours in a muffle furnace through which air was passed. V supported on the catalyst thus prepared 2 O 5 Quantity and MoO 3 When the amount was quantified with an atomic absorption spectrophotometer, 2 O 5 / MoO 3 / TiO 2 = 10/5/85 by weight. When the physical properties were measured, the BET surface area was 81 cm. 2 / G, the pore volume by a mercury intrusion method was 0.151 ml / g, and the average pore diameter was 27.2 nm.
[0037]
Example 10 (V 2 O 5 -MoO 3 / TiO 2 DeNOx reaction test of catalyst)
V obtained in Example 9 2 O 5 -MoO 3 / TiO 2 A NOx removal reaction test was carried out in the same manner as in Example 5 except that a catalyst was used. As a result, the NO concentration in the outlet gas was 15.5 ppm, and the NOx removal rate was 93.8%.
[0038]
[Example 11] (Measurement of saturated dissolution concentration of ammonium paratungstate)
An ammonium paratungstate reagent ((NH 4 ) 10 W 12 O 41 ・ 5H 2 O) 2.0 g, and the mixture was stirred at room temperature for 3 hours. A large amount of undissolved reagent remained in the solution. After the filtrate obtained by filtering this solution was allowed to stand overnight, a sample was taken from the upper portion of the solution, and the tungsten concentration was measured by an atomic absorption spectrophotometer. The result was 6,800 mg / L. 1.16 g of 41 g was dissolved.
[0039]
[Example 12] (Tungsten equilibrium adsorption measurement of titania precursor gel in the presence of vanadium)
Ammonium vanadate reagent (NH 4 VO 3 4.54 g (1,980 mg of vanadium) and ammonium paratungstate ((NH 4 ) 10 W 12 O 41 ・ 5H 2 O) Dissolve completely in 2,500 ml of pure water sufficient to uniformly dissolve 2.00 g (1,410 mg as a tungsten content), and add 200 g of the gel obtained in Example 6 and leave at room temperature for 3 hours. After stirring, the mixture was filtered off. The vanadium concentration and the tungsten concentration in the filtrate were measured with an atomic absorption spectrophotometer, and were 25 mg / L and 224 mg / L. The amounts of unadsorbed vanadium and tungsten determined from this concentration and 2.67 L of water present in the system (2,500 ml of charged water and 170 ml of water contained in the gel) were 67 mg and 600 mg. Thus, the titania precursor prepared in Example 6 adsorbed 9.6 mg of vanadium per 1 g of precursor gel (water content: 85% by weight), and simultaneously adsorbed 4.0 mg of tungsten.
[0040]
From this, it is considered that when tungsten is used in place of molybdenum, tungsten is adsorbed on the precursor gel, so that it can be supported by kneading without using a solubility improver such as an amine. The limiting amount of the tungsten content of the prepared titania precursor gel is 200 g of gel (TiO 2). 2 (Equivalent to 30 g) is 800 mg as an adsorbed portion and 1,156 mg as a saturated dissolved portion with respect to 170 g of water contained in the gel, for a total of 1,956 mg.
[0041]
Example 13 (V 2 O 5 -WO 3 / TiO 2 Preparation of catalyst)
200 g of the titania precursor gel obtained in Example 6 was spread over a plastic vat and allowed to stand for 2 days to adjust the humidity, thereby adjusting the total weight to 82 g and the water content to 63%. The gel was charged with ammonium vanadate reagent (NH 4 VO 3 4.54 g (1,980 mg of vanadium) and ammonium paratungstate ((NH 4 ) 10 W 12 O 41 ・ 5H 2 O) 2.00 g (1,410 mg of tungsten) of powder were mixed and directly kneaded. Next, the gel was extruded through an extruder to form a gel, and then dried at 120 ° C. for 3 hours in a thermostatic drier. The dried product was pulverized to an appropriate length and then fired at 500 ° C. for 3 hours in a muffle furnace through which air was passed. V supported on the catalyst thus prepared 2 O 5 Quantity and WO 3 When the amount was quantified with an atomic absorption spectrophotometer, 2 O 5 / WO 3 / TiO 2 = 10/5/85 by weight. When the physical properties were measured, the BET surface area was 82 cm. 2 / G, the pore volume by the mercury intrusion method was 0.240 ml / g, and the average pore diameter was 26.1 nm.
[0042]
Example 14 (V 2 O 5 -WO 3 / TiO 2 DeNOx reaction test of catalyst)
V obtained in Example 9 2 O 5 -WO 3 / TiO 2 A denitration reaction test was performed in the same manner as in Example 5 except that a catalyst was used. As a result, the NO concentration in the outlet gas was 17.5 ppm, and the denitration rate was 93.0%.
[0043]
[Example 15] (Preparation of titania-silica composite precursor gel)
Silicon tetrachloride (SiCl 4 30.0 g) was dissolved in 100 ml of methanol (solution E). This solution E was mixed with 1,500 ml of the solution C prepared in Example 6 to make 1600 ml (solution F). A wet cake of a titania-silica precursor was obtained in the same manner as in Example 6, except that 533 ml of this solution F was used instead of solution C (500 ml) of example 6. The cake was baked at 500 ° C., and the water content was measured to be 87.0% by weight.
[0044]
[Example 16] (Measurement of equilibrium adsorption of vanadium in titania-silica precursor gel in the presence of molybdenum)
Except that the gel obtained in Example 11 was used, the mixture was charged in the same manner as in Example 8, stirred for 3 hours, and then filtered off. The vanadium concentration and the molybdenum concentration in the filtrate were measured by an atomic absorption spectrophotometer, and were 30 mg / L and 277 mg / L. The amounts of unadsorbed vanadium and molybdenum determined from this concentration and 2.675 L of water present in the system (2,500 ml of water charged and 175 ml of water contained in the gel) were 80 mg and 742 mg / L. Thus, the titania-silica precursor prepared in Example 11 had a vanadium adsorption capacity of 9.5 mg / g of the precursor gel (water content: 87.5%), 76.0 mg / g of the calcined titania-silica, and molybdenum. The amount of adsorption was 2.2 mg per 1 g of gel and 17.2 mg per 1 g of titania-silica after calcination.
This shows that the titania-silica precursor gel also favorably adsorbs vanadium as in the case of the titania precursor.
[0045]
Example 17 (V 2 O 5 -MoO 3 / TiO 2 -SiO 2 Preparation of catalyst)
V was obtained in the same manner as in Example 9 except that the titania-silica precursor gel obtained in Example 11 was used. 2 O 5 -MoO 3 / TiO 2 -SiO 2 A catalyst was prepared. V supported on the prepared catalyst 2 O 5 Quantity and MoO 3 When the amount was quantified with an atomic absorption spectrophotometer, 2 O 5 / MoO 3 / TiO 2 / SiO 2 = 10/5/82/3. When the physical properties were measured, the BET surface area was 94 cm. 2 / G, the pore volume by a mercury intrusion method was 0.25 ml / g, and the average pore diameter was 20.1 nm.
[0046]
Example 18 (V 2 O 5 -MoO 3 / TiO 2 -SiO 2 DeNOx reaction test of catalyst)
V obtained in Example 13 2 O 5 -MoO 3 / TiO 2 -SiO 2 As a result of performing a denitration reaction test in the same manner as in Example 5 except that the catalyst was used, the NO concentration in the outlet gas was 18.3 ppm, and the denitration rate was 92.7%.
【The invention's effect】
According to the method of the present invention, alumina, titania, oxides such as zirconia or alumina-silica, titania-composite oxides such as titania-low solubility, without requiring the use of a solubility enhancer or a solvent removal step. An oxide supporting a metal component can be produced using a metal compound.

Claims (6)

焼成前の水酸基を有する酸化物前駆体であって混練に適した水分含有量を有する酸化物前駆体の湿潤ケーキに金属化合物粉末を添加し、混練して湿潤ケーキ中の水分に上記金属化合物粉末を溶解させると共にこの湿潤ケーキ状態の酸化物前駆体に金属化合物を吸着せしめ、次いで成形し、乾燥し、焼成して金属化合物が酸化物担体に担持された金属担持酸化物を製造することを特徴とする金属担持酸化物の製造方法。A metal compound powder is added to a wet cake of an oxide precursor having a hydroxyl group before calcination and having a water content suitable for kneading, and the metal compound powder is kneaded and the above-mentioned metal compound powder is added to the water in the wet cake. Is dissolved and the metal compound is adsorbed on the oxide precursor in the wet cake state, then molded, dried and calcined to produce a metal-supported oxide in which the metal compound is supported on an oxide carrier. A method for producing a metal-supported oxide. 当該酸化物前駆体がアルミナ、チタニア、ジルコニア又はシリカの前駆体である請求項1に記載の金属担持酸化物の製造方法。The method for producing a metal-supported oxide according to claim 1, wherein the oxide precursor is a precursor of alumina, titania, zirconia, or silica. 当該焼成前の酸化物前駆体が2種類以上の酸化物を含む複合酸化物の前駆体である請求項1又は2に記載の金属担持酸化物の製造方法。The method for producing a metal-supported oxide according to claim 1, wherein the oxide precursor before firing is a precursor of a composite oxide containing two or more types of oxides. 当該複合酸化物がアルミナ−シリカ、チタニア−シリカ、ジルコニア−シリカ、アルミナ−チタニア−シリカの複合酸化物である請求項1〜3に記載の金属酸化物の製造方法。The method for producing a metal oxide according to any one of claims 1 to 3, wherein the composite oxide is a composite oxide of alumina-silica, titania-silica, zirconia-silica, and alumina-titania-silica. 当該焼成前の酸化物前駆体がベーマイト、チタン酸、含水酸化チタン又は水酸化ジルコニアを含む含水酸化物である請求項1〜4に記載の金属担持酸化物の製造方法。The method for producing a metal-supported oxide according to claim 1, wherein the oxide precursor before the calcination is a hydrated oxide containing boehmite, titanic acid, hydrated titanium oxide, or zirconia hydroxide. 混練に適した湿潤ケーキの水分含有量が30〜150重量%である請求項1〜5のいずれかに記載の金属担持酸化物の製造方法。The method for producing a metal-supported oxide according to any one of claims 1 to 5, wherein the moisture content of the wet cake suitable for kneading is 30 to 150% by weight.
JP2003130583A 2003-05-08 2003-05-08 Method for manufacturing metal-deposited oxide Pending JP2004330109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003130583A JP2004330109A (en) 2003-05-08 2003-05-08 Method for manufacturing metal-deposited oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003130583A JP2004330109A (en) 2003-05-08 2003-05-08 Method for manufacturing metal-deposited oxide

Publications (1)

Publication Number Publication Date
JP2004330109A true JP2004330109A (en) 2004-11-25

Family

ID=33506061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003130583A Pending JP2004330109A (en) 2003-05-08 2003-05-08 Method for manufacturing metal-deposited oxide

Country Status (1)

Country Link
JP (1) JP2004330109A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087025A (en) * 2011-10-20 2013-05-13 Japan Atomic Energy Agency Method of producing metal oxide particle
JP2020534649A (en) * 2017-11-24 2020-11-26 エルジー・ケム・リミテッド Positive electrode material for lithium secondary batteries and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087025A (en) * 2011-10-20 2013-05-13 Japan Atomic Energy Agency Method of producing metal oxide particle
JP2020534649A (en) * 2017-11-24 2020-11-26 エルジー・ケム・リミテッド Positive electrode material for lithium secondary batteries and its manufacturing method
US11444278B2 (en) 2017-11-24 2022-09-13 Lg Energy Solution, Ltd. Cathode material for lithium secondary battery, and preparation method therefor

Similar Documents

Publication Publication Date Title
KR101698945B1 (en) An alumina support, a preparation method for the same, and a silver catalyst prepared from the same, and use thereof
KR101961778B1 (en) A support for silver catalyst used in the ethylene oxide production, a preparation method for the same, a silver catalyst prepared from the same, and its use in the ethylene oxide production
US7491676B2 (en) High activity titania supported metal oxide DeNOx catalysts
ES2879556T3 (en) Raw material for DeNOx catalysts without vanadium or with reduced vanadium and procedures for their preparation
US8629077B2 (en) Rare earth alumina particulate manufacturing method and application
CN105597777B (en) A kind of ordered mesopore carbon loaded Cu-Mn bimetallic denitration catalysts and preparation method thereof
CN105771960B (en) Exhaust gas treatment honeycomb catalyst and method for producing same
JPH08196B2 (en) Catalyst for reducing nitrogen oxide content in flue gas
KR101629483B1 (en) Vanadium-based denitration catalyst and preparing method of the same
JP4319184B2 (en) PHOTOCATALYST, ITS MANUFACTURING METHOD, AND ARTICLE USING PHOTOCATALYST
KR102381148B1 (en) Titanium dioxide sol, method for preparing same and product obtained therefrom
NL2013693A (en) Alumina carrier, method of preparing the same, and silver catalyst.
JP2004330109A (en) Method for manufacturing metal-deposited oxide
JP4408349B2 (en) Method for producing photocatalyst-supported porous gel
JP3922818B2 (en) Production of acid activated alumina
JP5814833B2 (en) Visible light responsive photocatalyst composition and method for producing the same
KR100641694B1 (en) Titania manufacturing method for denitrification catalyst extrusion
JP2004330110A (en) Method for manufacturing denitrification catalyst
JP3783875B2 (en) Catalyst for removing nitrogen oxides using clay minerals and exhaust gas treatment method
JP2583912B2 (en) Nitrogen oxide removal catalyst
JPS6245342A (en) Catalyst for reducing content of nitrogen oxide in combustion exhaust gas
CN109331801A (en) A kind of nanoporous TiO prepared with triethanolamine2For the preparation method of the vanadium based denitration catalyst of carrier
CN109999911A (en) A kind of catalyst and preparation method thereof
JP6663761B2 (en) Method for producing honeycomb type denitration catalyst
CN103506108B (en) Waste gas purification catalysts for treating

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060403

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A02 Decision of refusal

Effective date: 20090609

Free format text: JAPANESE INTERMEDIATE CODE: A02