JP2004329184A - Method for producing useful material by microorganism by using electrolytically reduced water - Google Patents

Method for producing useful material by microorganism by using electrolytically reduced water Download PDF

Info

Publication number
JP2004329184A
JP2004329184A JP2003161389A JP2003161389A JP2004329184A JP 2004329184 A JP2004329184 A JP 2004329184A JP 2003161389 A JP2003161389 A JP 2003161389A JP 2003161389 A JP2003161389 A JP 2003161389A JP 2004329184 A JP2004329184 A JP 2004329184A
Authority
JP
Japan
Prior art keywords
reduced water
lipase
electrolytically reduced
water
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003161389A
Other languages
Japanese (ja)
Inventor
Akira Matsunaga
旭 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOMEISHA KK
Original Assignee
KOMEISHA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOMEISHA KK filed Critical KOMEISHA KK
Priority to JP2003161389A priority Critical patent/JP2004329184A/en
Publication of JP2004329184A publication Critical patent/JP2004329184A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02P60/56

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a useful material with microorganisms by using electrolytically reduced water. <P>SOLUTION: Lipase is produced by emulsifying waste edible oils and fats with electrolytically reduced water, culturing oils and fats-decomposing yeast or alkalophylic bacteria, and separating the lipase secreted extrasomatically by the microorganisms for utilizing the oils and fats. Further, the oil and fats-decomposing microorganisms are separated and utilized as a feed or fertilizer. The culturing liquid residue is re-emulsified directly or after separating the oils and fats with the electrolytically reduced water and waste coral powder is added/blended to produce a grinding agent. On the other hand, bio gas is produced by a methane fermentation by using organic waste materials and washed with the electrolytically reduced water to absorb carbon dioxide gas, and remaining methane is reformed to obtain hydrogen and carbon dioxide. By using the electrolytically reduced water absorbing carbon dioxide as culturing liquid, hydrogen bacteria are cultured by passing through carbon dioxide and oxygen. By recovering and purifying the hydrogen bacteria, a protein is obtained. Thereby, it is possible to provide useful materials such as the lipase, feed, fertilizer, grinding agent, microbial cell protein, etc., by culturing the microorganisms by utilizing the electrolytically reduced water and waste materials. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は電解還元水と廃棄物を利用して微生物を培養して有用物質を生産することを目的とした微生物生産方法に関するものである。
【0002】
【従来の技術】
油脂の分解酵素であるリパーゼは現在は豚や牛の膵臓から抽出されており、分離精製が困難であるために1kg当たり20万円と高価である。そのため、医薬品として利用する以外に大きな需要がないのが現状である。一方、蛋白質の分解酵素であるプロテアーゼやデンプンを分解するアミラーゼなどは微生物を用いた生産方法が確立されて安価に生産できるようになったために広範囲に利用されるようになっている。例えばプロテアーゼは洗剤の中に入っており、頑固な汚れを落とすのに役立っている。
【0003】
一方、近年、世界人口の増加に対して食料生産が追いつかない傾向が続いており、将来の蛋白質生産の手段として農業生産以外の方法が検討されている。その一つの手段として微生物を用いる方法は有望であり、石油を原料とした石油蛋白が一時期脚光を浴びたことがある。しかし、原料の石油に有害な成分が含まれており、製品の中に入る危険性を除外できないことから開発は頓挫したようである。
【0004】
【発明が解決しようとする課題】
微生物を用いた有用物質生産は植物や動物に比較して微生物の成長速度が速く、必要な土地や労力が少ないので低コストで生産できる可能性が高いという利点がある。しかし、微生物生産以外の方法と競合する場合にはできるだけ生産コストを低くする必要があり、そのためには廃棄物を原料として利用するのが良いと考えられる。しかしながら、微生物により廃棄物を原料としてリパーゼや蛋白質を生産する方法はまだ実用化されていないようである。
【0005】
廃食用油脂は従来、石鹸、飼料、肥料、塗料などにリサイクルされてきたが、コストや品質などに問題があり、回収・再利用率は50〜60%台にとどまっている。余剰分は燃焼処分されてきたが、近年は食材からの塩分混入によるダイオキシン発生が問題とされるようになった。そのため、廃食用油脂を安易に燃焼処分することが困難になってきた。併せて、食品廃棄物リサイクル法(食品循環資限の再生利用等の促進に関する法律)が施行されたことから何らかの形でリサイクル率を高めるように努力することが必要になった。
【0006】
廃棄物をリサイクルする目的は資源を循環的に利用して天然資源の消費を抑制することであり、新しい資源の投入と環境への負荷をできる限り低減する必要がある。一方、リサイクルを事業として成功させるためには製造コストが安い反面、付加価値が高く、かつ製品が有効に利用されることが必要である。
【0007】
近年、廃食用油脂をリサイクルする方法としてアルコールと反応させてエステル化して軽油代替燃料とするが開発され関心を集めている。この方法は採算を度外視して公共事業的に行うのであればそれなりに意義がある。しかしながら、事業として収益が上がるかどうかは疑問である。安価とは言えないエタノールやメタノールは脂肪酸エステルの製造原料にするよりもむしろガソリンに混入した方が得策であろう。
【0008】
当社は廃食用油脂を電解還元水で乳化して廃サンゴ粉末を添加混合して研磨剤を生産する方法を開発して特許出願した(特開2003−013045号)。この方法によれば付加価値が高い製品を低コストで得られるので事業化できる可能性が高いと考えられる。
この方法により研磨剤を製造する場合に乳化した廃食用油脂を加熱して加水分解を進行させると、品質の安定性に関係する解乳化による油水分離が起こりにくくなることが経験的に知られるようになった。しかし、加熱にエネルギーが必要であり製品コストを下げるためにはより省エネルギー的な加工方法が求められる。
【0009】
微生物を利用して食品関連の製品を生産する場合、たとえ、その製品を人間が直接口に入れなくても食物連鎖を通じて間接的に口に入ることがあるので、微量であっても、有害な成分の混入を避けなければならない。水素細菌は成長速度が速く、水素、ニ酸化炭素、酸素を原料として蛋白質を生産することから将来の蛋白質生産方法として注目されている。ニ酸化炭素として燃焼排ガスを使用する方策が考えられるが、排ガス中にダイオキシンのような毒性の強い物質が例え微量であっても混入している可能性が予見されるので、この方策は採用することは困難であろう。
【0010】
本発明の目的は前に述べた諸課題を解決して、廃食用油脂や畜産廃棄物のような廃棄物原料から微生物を用いて有用物質、たとえばリパーゼ、飼料、肥料、研磨剤および蛋白質などを事業化可能な手段により生産する方法を提供することである。
【0011】
【問題を解決するための手段】
本発明は上記の目的を達成するために、まず請求項1によりリパーゼ生産を目的として廃食用油脂と電解還元水を用いた培養液を用いて油脂分解酵母あるいは好アルカリ性細菌を培養する。そしてこれらの微生物が油脂を利用するために体外に分泌するリパーゼを分離精製する。
【0012】
電解還元水は流水型電解水生成器において食塩などを補充して電気分解を行い、陰極側に生成したアルカリ性の水である。同時に陽極側からは強酸性水が生成する。電解還元水(強還元水)はpH 11〜12.5(11以上)、ORP −0.5〜−1.2V(−0.6V以下)の物性をもつ強アルカリ性で還元力が強い水であり、そのpHから換算すると0.02〜0.001N,NaOH溶液に相当する。電解還元水には分子状水素、水素ラジカル(水素原子)が溶解しているほかに、過飽和のコロイド状水素が水中に浮遊している。強酸性水はその主成分は次亜塩素酸であり、顕著な殺菌作用があるので近年は消毒などによく用いられるようになった。電解還元水は強酸性水とほぼ同量生成するのであるが、従来は強酸性水ほどの用途がなく捨てられることが多かった。
【0013】
電解還元水は油脂乳化作用があり、電解還元水と廃食用油脂を混合すると乳化する。新油よりも劣化が進行した廃食用油脂ほどこの傾向が顕著である。これは劣化した油脂に含まれる遊離脂肪酸が電解還元水中のNaOHで中和されて脂肪酸ナトリウム即ち石鹸を生成してその界面活性作用により油脂が乳化するためである。
【0014】
この乳化液に微生物培養に必要なミネラル分および酵母抽出物などを添加して培養液を調製し、油脂分解酵母あるいは好アルカリ性菌を接種して、温度やpHなどを調節して培養する。これらの微生物は油脂を分解、資化する作用があり、菌体外にリパーゼを分泌する。
【0015】
油脂分解酵母は樹液、食品加工工場、排水溝などから分離される。油脂分解酵母としてはCandida rugosa,Torulopsis bonbicola,Saccharomyces sp.,Hansenula sp.などが知られている。油脂分解酵母の培養液は報告されている方法によれば、例えば、Wickerham合成培地にパーム油を1%添加、乳化剤としてツイーン80を加えることによって調製されている。それに対して、電解還元水と混合すれば乳化剤を添加しなくても油脂は乳化される。油脂分解酵母は油脂を含む廃水の処理の研究に用いられてCOD低下作用があることが報告されている。しかしながら、油脂分解酵母のリパーゼを分離精製して工業的に利用する段階には達していないようである。
【0016】
好アルカリ性細菌はアルカリ性の土壌や水域、尿素分解の起こる昔の汲み取り式の便所の周辺、藍染めに使う藍の発酵槽などから分離される。好アルカリ性細菌はpH10〜11で最も良く増殖し、中性付近では増殖できないのがその特徴である。好アルカリ性細菌にはBacillus属が多く、バシラス・アルカロフィラスやバシラス・アルカロフィラス・ハロデュランスなどが知られている。
【0017】
好アルカリ性細菌は細胞の増殖や運動、胞子の形成、発芽にナトリウムイオンを必要とする。好アルカリ性細菌が分泌する菌体外酵素として、プロテアーゼ、アミラーゼ、セルラーゼ、リパーゼなどがあり、これらはアルカリ性で高い活性を示し、また、温度に対しても比較的安定である。アルカリプロテアーゼは洗浄力を高めるために洗剤に加えて実用化されている。また、アルカリセルラーゼはセルロース系衣料の汚れを取り除くのに極めて効果的で洗剤に加えて使用されている。アルカリアミラーゼは高収率でデンプンからサイクロデキストリンを生成することから、すでに工業的に利用されている。
【0018】
請求項2により廃食用油脂を乳化して油脂分解酵母および好アルカリ性細菌を培養した培養液から、遠心分離や真空脱水などの菌体分離手段により菌体を分離して、必要ならば乾燥することにより得られた菌体は飼料あるいは肥料として用いられる。
【0019】
請求項3により菌体を分離した培養液残さに直接あるいは油水分離した油層に再度電解還元水を添加して乳化した後、廃サンゴ粉末のような研磨材と混合することにより研磨剤が製造される。
【0020】
請求項1により菌体を分離した培養液残さを油水分離した水層から硫安塩析およびクロマトグラフィー操作などのリパーゼ分離精製手段によりリパーゼが得られる。
【0021】
請求項4により、蛋白質を生産することを目的として有機性廃棄物のメタン発酵を行い、生成するメタンガスを水素と二酸化炭素に改質する。これらの混合ガスと電解還元水を用いて水素細菌を培養して、増殖したこの細菌を分離回収する。それによって得られる菌体を蛋白質として利用する。
【0022】
有機性廃棄物、例えば、家畜糞尿、下水汚泥、食品工場廃棄物などを用いてメタン発酵を行い、生成したバイオガスを電解還元水で洗浄すると二酸化炭素は電解還元水に吸収されて、メタンが残る。このメタンに対して水蒸気改質などの改質操作を行うと水素と二酸化炭素が得られる。二酸化炭素を吸収した電解還元水に少量の栄養分、例えば、窒素、リン、ミネラルなどを添加して溶解させて水素細菌培養槽に入れる。この槽に水素、二酸化炭素、酸素あるいは空気を通気させる。
【0023】
水素細菌は水素ガスをエネルギー源,二酸化炭素を炭素源として無機栄養素のみで生育する独立栄養生物の一種であり、現在では多くの種の菌株が知られている。水素細菌は独立栄養細菌としては増殖速度がきわめて大きく、菌体収量が多いことなどから将来の食糧供給源として有望と考えられている。現在、知られている水素細菌としてはAlcaligenes,Parrcoccus,Pseudmonas,Xantobacter,Bacillus,Mycobacterium,Norcadiaなどの属の菌が知られている。
【0024】
【発明の実施の形態】
以下本発明にかかる電解還元水を用いた微生物による有用物質生産方法の具体的な実施例を図を用いて説明する。
【0025】
請求項1,2,3によるリパーゼ、飼料、肥料、研磨剤などの微生物生産システムを図1に示す。図1において、原料の廃食用油脂1は油脂分解酵母または好アルカリ性細菌培養槽(以下培養槽と略称する)2に入る。一方、水道水3を原水として軟水器4により硬度成分が除去された水は食塩5が補充されて流水型電気分解器6により電気分解される。陰極側から生成する水、即ち、電解還元水7は培養槽2に流入して同時に流入した廃食用油脂1は乳化される。
【0026】
培養槽2には油脂分解酵母または好アルカリ性細菌(以下菌体と略称する)8が入っており、さらにミネラルなどの栄養成分9が添加され、攪拌手段10により攪拌される。また、温度の計測および調整手段11により一定の温度範囲内に調整される。培養槽2をオーバーフローした液から菌体分離手段12により菌体8が分離される。菌体8から脱水・乾燥などの手段13により飼料14あるいは肥料15が生産される。
【0027】
さらに菌体分離の際に発生する培養液残さ16を油水分離槽17に入れる。流水型電気分解器6の陽極側から生成する水、即ち、強酸性水18を油水分離槽17に入れ、混合すると解乳化が起きて油水分離する。あるいは遠心分離手段19により油水分離を行う。油層は再度微生物培養の原料として使用する。あるいは再度電解還元水を添加して乳化して廃サンゴ粉末20を添加して混合することにより研磨剤21が得られる。培養液残さ16に直接、廃サンゴ粉末20を添加して混合することによっても研磨剤21が得られる。
【0028】
油水分離した際の水層からは硫安塩析やクロマトグラフィーなどのリパーゼ濃縮精製手段22によりリパーゼ23が得られる。濃縮精製の際に発生する廃液24は廃水処理手段25により処理されて処理水26が排出される。
【0029】
請求項目2による蛋白質の微生物生産システムを図2に示す。図2において、原料の有機性廃棄物27はメタン発酵槽28に入り、必要な時間だけ滞留する。メタン発酵により発生したバイオガス(メタンとニ酸化炭素の混合ガス)29はガスホルダー30に一時的に貯留される。一方、水道水31を原水として軟水器32により硬度成分を除去された水は食塩33が補充されて流水型電気分解器34により電気分解される。陰極側から生成する水、即ち、電解還元水35はバイオガス洗浄器36に流入して、ガスホルダー30から出たバイオガス29と接触する。バイオガス中の二酸化炭素は電解還元水35に吸収されるが、メタンは吸収されないままでメタン改質器37に流入して水素、ニ酸化炭素、一酸化炭素などの混合ガス38に改質される。
【0030】
つぎに混合ガス38は水素細菌培養槽39に通気される。バイオガス洗浄器36を出た電解還元水35は流水型電気分解器34の陽極側から生成する水、即ち、強酸性水40を活性炭吸着塔41に通過させて次亜塩素酸を除去した水と混合されて中和され、ミネラルなどの栄養成分42が補給されて水素細菌培養槽39に流入する。水素細菌培養槽39には水素細菌43が入っており、水素、ニ酸化炭素、酸素などを原料として増殖する。酸素は強酸性水40に溶解している分および、電気分解の陽極側から発生する分が充当されるが、不足する場合は空気中から酸素分離手段44により生産して水素細菌培養槽39に通気される。
【0031】
水素細菌培養槽からオーバーフローした液は菌体分離手段45により分離され、乾燥手段46により乾燥されて、製品となる乾燥菌体47が得られる。菌体分離手段45により分離された廃水は廃水処理手段48により処理されて排出される。水素細菌培養槽39において流入したガスのうち水素細菌43に消費されずに排出される余剰廃ガス49は余剰廃ガスホルダー50に一時貯留され燃焼処理などの余剰廃ガス処理手段51により無害化されて排出される。
【0032】
【発明の効果】
本発明にかかる電解還元水を用いた有用微生物培養方法のうち請求項1によるリパーゼの微生物生産システムにおいては廃食用油脂を原料として製品としての付加価値が高いリパーゼの生産が可能である。リパーゼは菌体外に分泌され、水に溶解するが、不純物が少ないので比較的容易に精製できる。したがって、動物の膵臓から抽出した従来の生産方法よりも低コストで生産することが可能である。好アルカリ性細菌を用いた場合は工業的利用の需要が大きいアルカリ領域で活性が高い特異的なリパーゼを生産できる。また、アルカリ性領域で生育できる菌は少ないので雑菌汚染の心配が少なく、無菌操作なしでも生産できる利点がある。
【0033】
請求項2による飼料、肥料の生産システムにおいてはリパーゼ生産の副産物として廃食用油脂から飼料や肥料が生産できる。飼料や肥料のみを単独生産するのでは採算が取れないが、より付加価値が高いリパーゼ生産の副産物とすることにより全体として採算性が高いシステムとする事が出来る。また、リパーゼ生産に伴う廃棄物の有効利用と見ることもできる。
【0034】
請求項3による研磨剤生産システムにおいては加熱しなくても加水分解が進行するので研磨剤の解乳化が起きにくくなる。したがって、省エネルギー的に品質が安定した研磨剤を生産できる効果がある。研磨剤には粘性が高いものと低いものに大別されるが、比較的水分が多く、粘性が低い研磨剤を生産するには好都合である。
【0035】
請求項4による蛋白質の微生物生産システムにおいては有機性廃棄物を原料として、有害不純物が混入する可能性が低い食料生産が可能である。水素細菌は独立栄養細菌としては例外的に増殖速度が大きいので工業生産が可能であり、有害な廃棄物が発生しないという特徴がある。
【図面の簡単な説明】
【図1】リパーゼ、飼料、肥料、研磨剤の微生物生産システム
【図2】蛋白質の微生物生産システム
【符号の説明】
1…廃食用油脂
2…油脂分解酵母または好アルカリ性細菌培養槽(培養槽)
3…水道水
4…軟水器
5…食塩
6…流水型電気分解器
7…電解還元水
8…油脂分解酵母または好アルカリ性細菌(菌体)
9…ミネラルおよび栄養成分
10…攪拌手段
11…温度の計測および調整手段
12…菌体分離手段
13…脱水・乾燥などの手段
14…飼料
15…肥料
16…培養液残さ
17…油水分離槽
18…強酸性水
19…遠心分離手段
20…廃サンゴ粉末
21…研磨剤
22…リパーゼ濃縮精製手段
23…リパーゼ
24…廃液
25…廃水処理手段
26…処理水
27…有機性廃棄物
28…メタン発酵槽
29…バイオガス
30…ガスホルダー
31…水道水
32…軟水器
33…食塩
34…流水型電気分解器
35…電解還元水
36…バイオガス洗浄器
37…メタン改質器
38…水素、二酸化炭素、一酸化炭素などの混合ガス
39…水素細菌培養槽
40…強酸性水
41…活性炭吸着塔
42…ミネラル
43…水素細菌
44…酸素分離手段
45…菌体分離手段
46…乾燥手段
47…乾燥菌体
48…廃水処理手段
49…余剰廃ガス
50…余剰廃ガスホルダー
51…余剰廃ガス処理手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a microorganism production method for producing useful substances by culturing microorganisms using electrolytically reduced water and waste.
[0002]
[Prior art]
Lipase, which is an enzyme for decomposing fats and oils, is currently extracted from the pancreas of pigs and cows, and is expensive at 200,000 yen / kg due to difficulty in separation and purification. For this reason, there is currently no great demand other than use as pharmaceuticals. On the other hand, protease, which is a protease for decomposing proteins, amylase for decomposing starch, and the like have been widely used because production methods using microorganisms have been established and can be produced at low cost. For example, proteases are in detergents and help remove stubborn stains.
[0003]
On the other hand, in recent years, food production has not been able to keep up with the increase in the world population, and methods other than agricultural production are being studied as means of protein production in the future. As one of the means, a method using a microorganism is promising, and petroleum proteins made from petroleum have been in the spotlight for a while. However, the development seems to have failed due to the fact that the petroleum as a raw material contains harmful components and the danger of entering the product cannot be ruled out.
[0004]
[Problems to be solved by the invention]
The production of useful substances using microorganisms has the advantage that the growth rate of microorganisms is higher than that of plants and animals, and there is a high possibility of producing them at low cost because the required land and labor are small. However, when competing with methods other than microbial production, it is necessary to reduce the production cost as much as possible, and for that purpose, it is considered to be better to use waste as a raw material. However, it seems that a method of producing lipase or protein using waste as a raw material by a microorganism has not been put to practical use yet.
[0005]
Waste edible fats and oils have been conventionally recycled into soaps, feeds, fertilizers, paints, and the like, but have problems in cost, quality, and the like, and their collection / reuse rates are in the 50-60% range. The surplus has been disposed of by burning, but in recent years, the generation of dioxins due to salt contamination from foodstuffs has become a problem. Therefore, it has become difficult to easily burn and dispose of waste edible fats and oils. At the same time, the enforcement of the Food Waste Recycling Law (Law on Promotion of Recycling of Food Recycling Credits) made it necessary to make efforts to increase the recycling rate in some way.
[0006]
The purpose of recycling waste is to reduce the consumption of natural resources by recycling resources, and it is necessary to reduce the load on new resources and the burden on the environment as much as possible. On the other hand, in order for recycling to succeed as a business, it is necessary that the production cost is low, but the added value is high and the product is used effectively.
[0007]
In recent years, as a method of recycling waste edible fats and oils, esterification by reacting with alcohols to produce a diesel fuel alternative fuel has been developed and attracted attention. This method is significant as long as it is a public works project that ignores profitability. However, it is doubtful whether the business will make a profit. It would be better to mix inexpensive ethanol and methanol into gasoline rather than use them as fatty acid ester raw materials.
[0008]
Our company has developed a method for producing an abrasive by emulsifying waste edible oils and fats with electrolytically reduced water and adding and mixing waste coral powder (Japanese Patent Application Laid-Open No. 2003-013045). According to this method, a high value-added product can be obtained at a low cost, and thus it is considered that the possibility of commercialization is high.
It is empirically known that, when the waste edible oil emulsified in the production of an abrasive by this method is heated to promote hydrolysis, oil-water separation by demulsification related to the stability of quality is unlikely to occur. Became. However, energy is required for heating, and a more energy-saving processing method is required to reduce product cost.
[0009]
Microorganisms that produce food-related products are harmful, even in very small quantities, because they can be indirectly ingested through the food chain, even if they are not directly ingested by humans. Ingredients must be avoided. Hydrogen bacteria have a high growth rate and produce proteins using hydrogen, carbon dioxide, and oxygen as raw materials, and are attracting attention as a future protein production method. It is conceivable to use combustion exhaust gas as carbon dioxide.However, it is anticipated that highly toxic substances such as dioxin may be mixed in the exhaust gas even in a very small amount. That would be difficult.
[0010]
An object of the present invention is to solve the above-mentioned problems by using microorganisms from waste raw materials such as waste edible oils and livestock wastes to produce useful substances such as lipase, feed, fertilizer, abrasives and proteins. It is to provide a method of producing by means that can be commercialized.
[0011]
[Means to solve the problem]
In order to achieve the above object, the present invention firstly cultivates fat-degrading yeast or an alkaliphilic bacterium using a culture solution using waste edible oil and fat and electrolytically reduced water for the purpose of lipase production. Then, these microorganisms separate and purify lipase secreted outside the body in order to utilize oils and fats.
[0012]
Electrolytically reduced water is alkaline water generated on the cathode side by performing electrolysis by replenishing salt and the like in a flowing water type electrolyzed water generator. At the same time, strongly acidic water is generated from the anode side. Electrolytically reduced water (strongly reduced water) is a strongly alkaline, strongly reducing water having pH 11 to 12.5 (11 or more) and ORP -0.5 to -1.2 V (-0.6 V or less). It is equivalent to 0.02 to 0.001 N NaOH solution when converted from its pH. Molecular hydrogen and hydrogen radicals (hydrogen atoms) are dissolved in the electrolytically reduced water, and supersaturated colloidal hydrogen is suspended in the water. Strongly acidic water is mainly used for disinfection in recent years because its main component is hypochlorous acid and has a remarkable bactericidal action. Electrolytically reduced water is produced in substantially the same amount as strongly acidic water, but conventionally, it was often discarded because it was not used as strongly acidic water.
[0013]
Electrolytically reduced water has an oil / fat emulsifying action, and is emulsified when electrolytically reduced water and waste edible oil / fat are mixed. This tendency is more remarkable in waste edible fats and oils that have deteriorated more than new oils. This is because the free fatty acids contained in the degraded fats and oils are neutralized with NaOH in the electrolytically reduced water to produce sodium fatty acids, ie, soaps, and the fats and oils are emulsified by the surface activity.
[0014]
Mineral components and yeast extract necessary for culturing microorganisms are added to this emulsion to prepare a culture solution, and inoculated with oil-decomposing yeast or an alkalophilic bacterium, and cultured at a controlled temperature and pH. These microorganisms have an action of decomposing and assimilating fats and oils, and secrete lipase outside the cells.
[0015]
Oil-degrading yeast is separated from sap, food processing plants, drains, and the like. Examples of the fat-and-oil-degrading yeast include Candida rugosa, Torulopsis bonbicola, Saccharomyces sp. , Hansenula sp. Etc. are known. According to the reported method, the culture solution of the fat-and-oil-degrading yeast is prepared by, for example, adding 1% of palm oil to a Wickerham synthetic medium and adding Tween 80 as an emulsifier. On the other hand, if mixed with electrolytically reduced water, fats and oils are emulsified without adding an emulsifier. It has been reported that oleolytic yeast is used in studies of the treatment of wastewater containing oils and fats and has a COD lowering effect. However, it has not yet reached the stage of separating and purifying lipase from oil-and-fat-degrading yeast for industrial use.
[0016]
The alkalophilic bacteria are isolated from alkaline soils and waters, around old pumped toilets where urea degradation occurs, and indigo fermenters used for indigo dyeing. It is characterized by the fact that alkalophilic bacteria grow best at pH 10-11 and cannot grow near neutrality. There are many Bacillus genus in the alkalophilic bacteria, and Bacillus alcalophilus and Bacillus alcalophilus halodurans are known.
[0017]
Alkaliphilic bacteria require sodium ions for cell growth and movement, spore formation and germination. Extracellular enzymes secreted by alkalophilic bacteria include proteases, amylase, cellulase, lipase and the like. These are alkaline, exhibit high activity, and are relatively stable to temperature. Alkaline proteases have been put into practical use in addition to detergents in order to increase the detergency. Alkaline cellulase is also extremely effective in removing stains from cellulosic clothing and is used in addition to detergents. Alkaline amylase is already industrially used because it produces cyclodextrin from starch in high yield.
[0018]
A method of emulsifying waste edible oils and fats according to claim 2 to separate the cells from a culture solution obtained by culturing the fat-decomposing yeast and the alkalophilic bacteria by a cell separation means such as centrifugation or vacuum dehydration, and drying if necessary. Is used as feed or fertilizer.
[0019]
An abrasive is produced by adding electrolytically reduced water directly to the culture solution residue from which the cells have been separated or re-emulsifying the oil layer separated from the oil and water by emulsification, and then mixing with an abrasive such as waste coral powder. You.
[0020]
A lipase can be obtained from the aqueous layer from which the culture fluid residue from which the cells have been separated according to claim 1 is separated from oil and water by lipase separation and purification means such as ammonium sulfate precipitation and chromatography.
[0021]
According to claim 4, methane fermentation of organic waste is performed for the purpose of producing protein, and the generated methane gas is reformed into hydrogen and carbon dioxide. Hydrogen bacteria are cultured using the mixed gas and electrolytically reduced water, and the grown bacteria are separated and collected. The resulting cells are used as proteins.
[0022]
When methane fermentation is performed using organic waste, for example, livestock manure, sewage sludge, food factory waste, etc., and the generated biogas is washed with electrolytic reduced water, carbon dioxide is absorbed by the electrolytic reduced water, and methane is removed. Will remain. When a reforming operation such as steam reforming is performed on the methane, hydrogen and carbon dioxide are obtained. A small amount of nutrients, for example, nitrogen, phosphorus, minerals, etc. are added and dissolved in the electrolytically reduced water that has absorbed carbon dioxide, and the solution is placed in a hydrogen bacteria culture tank. This tank is aerated with hydrogen, carbon dioxide, oxygen or air.
[0023]
Hydrogen bacteria are a kind of autotrophic organisms that grow only on inorganic nutrients using hydrogen gas as an energy source and carbon dioxide as a carbon source, and many strains are known at present. Hydrogen bacteria are considered to be promising food sources in the future because of their extremely high growth rate and high cell yield as autotrophic bacteria. At present, as known hydrogen bacteria, bacteria belonging to genera such as Alcaligenes, Parrococcus, Pseudomonas, Xantobacter, Bacillus, Mycobacterium, and Norcadia are known.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a specific example of a method for producing a useful substance by a microorganism using electrolytically reduced water according to the present invention will be described with reference to the drawings.
[0025]
FIG. 1 shows a microorganism production system for lipase, feed, fertilizer, abrasive, etc. according to claims 1, 2, and 3. In FIG. 1, raw edible oil / fat 1 as a raw material enters a fat / oil-decomposing yeast or an alkaliphilic bacterium culture tank (hereinafter abbreviated as a culture tank) 2. On the other hand, the tap water 3 is used as raw water, and the water from which the hardness component has been removed by the water softener 4 is supplemented with salt 5 and electrolyzed by the flowing water electrolyzer 6. Water generated from the cathode side, that is, electrolytically reduced water 7, flows into the culture tank 2 and the waste edible fat 1 which flows simultaneously is emulsified.
[0026]
The culture tank 2 contains oil-decomposing yeast or alkaliphilic bacteria (hereinafter abbreviated as bacterial cells) 8, and nutrients 9 such as minerals are added thereto, and the mixture is stirred by the stirring means 10. Further, the temperature is adjusted within a certain temperature range by the temperature measuring and adjusting means 11. The cells 8 are separated from the liquid overflowing the culture tank 2 by the cell separation means 12. Feeds 14 or fertilizers 15 are produced from the cells 8 by means 13 such as dehydration and drying.
[0027]
Further, the culture solution residue 16 generated during the cell separation is put into an oil / water separation tank 17. Water generated from the anode side of the flowing water electrolyzer 6, that is, strongly acidic water 18 is put into the oil / water separation tank 17, and when mixed, demulsification occurs to separate oil / water. Alternatively, oil-water separation is performed by the centrifugal separation means 19. The oil layer is used again as a raw material for culturing microorganisms. Alternatively, the abrasive 21 can be obtained by adding the electrolytic reduced water again, emulsifying, adding the waste coral powder 20, and mixing. The abrasive 21 can also be obtained by directly adding and mixing the waste coral powder 20 to the culture solution residue 16.
[0028]
The lipase 23 is obtained from the aqueous layer at the time of oil-water separation by a lipase concentration / purification means 22 such as ammonium sulfate salting out or chromatography. The waste liquid 24 generated during the concentration and purification is treated by the waste water treatment means 25, and the treated water 26 is discharged.
[0029]
FIG. 2 shows a protein microbial production system according to claim 2. In FIG. 2, raw organic waste 27 enters a methane fermentation tank 28 and stays there for a required time. Biogas (mixed gas of methane and carbon dioxide) 29 generated by methane fermentation is temporarily stored in a gas holder 30. On the other hand, the water from which the hardness component has been removed by the water softener 32 using the tap water 31 as raw water is supplemented with the salt 33 and electrolyzed by the flowing water electrolyzer 34. Water generated from the cathode side, that is, electrolytic reduced water 35, flows into the biogas cleaning device 36 and comes into contact with the biogas 29 that has come out of the gas holder 30. The carbon dioxide in the biogas is absorbed by the electrolytic reduced water 35, but the methane flows into the methane reformer 37 without being absorbed to be reformed into a mixed gas 38 of hydrogen, carbon dioxide, carbon monoxide and the like. You.
[0030]
Next, the mixed gas 38 is aerated to the hydrogen bacterium culture tank 39. The electrolytic reduced water 35 that has exited the biogas scrubber 36 is water generated from the anode side of the flowing water electrolyzer 34, that is, water from which the strongly acidic water 40 is passed through the activated carbon adsorption tower 41 to remove hypochlorous acid. And the mixture is neutralized and supplied with nutrients 42 such as minerals and flows into the hydrogen bacterium culture tank 39. The hydrogen bacterium culture tank 39 contains hydrogen bacterium 43, and proliferates using hydrogen, carbon dioxide, oxygen, or the like as a raw material. The amount of oxygen dissolved in the strongly acidic water 40 and the amount generated from the anode side of the electrolysis are applied, but if insufficient, the oxygen is produced from the air by the oxygen separation means 44 and supplied to the hydrogen bacteria culture tank 39. Ventilated.
[0031]
The liquid overflowing from the hydrogen bacterium culture tank is separated by the cell separation means 45 and dried by the drying means 46 to obtain the dried cells 47 as products. The wastewater separated by the cell separation means 45 is treated by the wastewater treatment means 48 and discharged. Excess waste gas 49 which is discharged without being consumed by the hydrogen bacteria 43 among the gas flowing into the hydrogen bacteria culture tank 39 is temporarily stored in a surplus waste gas holder 50 and made harmless by surplus waste gas treatment means 51 such as combustion treatment. Is discharged.
[0032]
【The invention's effect】
The lipase microorganism production system according to claim 1 of the useful microorganism culturing method using electrolytically reduced water according to the present invention can produce lipase having high added value as a product from waste edible oils and fats as a raw material. Lipase is secreted extracellularly and dissolved in water, but can be purified relatively easily due to its small amount of impurities. Therefore, it can be produced at lower cost than the conventional production method extracted from the animal pancreas. When an alkalophilic bacterium is used, a specific lipase having high activity can be produced in an alkaline region where industrial use is in great demand. Further, since there are few bacteria that can grow in the alkaline region, there is little concern about contamination by various bacteria, and there is an advantage that the bacteria can be produced without aseptic operation.
[0033]
In the feed and fertilizer production system according to the second aspect, feed and fertilizer can be produced from waste edible fats and oils as a by-product of lipase production. Producing only feed and fertilizer alone is not profitable, but by using it as a by-product of lipase production with higher added value, a system with higher profitability as a whole can be obtained. It can also be regarded as an effective use of wastes associated with lipase production.
[0034]
In the abrasive production system according to the third aspect, since hydrolysis proceeds without heating, demulsification of the abrasive is less likely to occur. Therefore, there is an effect that an abrasive with stable quality can be produced with energy saving. Abrasives are broadly classified into those having high viscosity and those having low viscosity, but are relatively convenient to produce abrasives having low viscosity.
[0035]
In the protein microbial production system according to the fourth aspect, it is possible to produce a food from an organic waste as a raw material with a low possibility of contamination with harmful impurities. As an autotrophic bacterium, hydrogen bacteria are exceptionally high in growth rate, so that they can be industrially produced and do not generate harmful waste.
[Brief description of the drawings]
Fig. 1 Microbial production system for lipase, feed, fertilizer, abrasives. [Fig. 2] Microbial production system for protein.
1: Waste edible fats / oils 2: Fat / oil-decomposing yeast or alkaliphilic bacteria culture tank (culture tank)
3 tap water 4 water softener 5 salt 6 flowing water type electrolyzer 7 electrolytic reduction water 8 oil and fat degrading yeast or alkalophilic bacteria (cells)
9 Minerals and nutrients 10 Stirring means 11 Temperature measuring and adjusting means 12 Cell separation means 13 Dehydration / drying means 14 Feed 15 Fertilizer 16 Culture residue 17 Oil / water separation tank 18 Strongly acidic water 19 ... Centrifugation means 20 ... Waste coral powder 21 ... Abrasives 22 ... Lipase concentration and purification means 23 ... Lipase 24 ... Waste liquid 25 ... Waste water treatment means 26 ... Treatment water 27 ... Organic waste 28 ... Methane fermentation tank 29 ... Biogas 30 ... Gas holder 31 ... Tap water 32 ... Water softener 33 ... Salt salt 34 ... Flow-through type electrolyzer 35 ... Electrolytic reduction water 36 ... Bio gas washer 37 ... Methane reformer 38 ... Hydrogen, carbon dioxide Mixed gas 39 such as carbon oxide 39 Hydrogen bacteria culture tank 40 Strongly acidic water 41 Activated carbon adsorption tower 42 Mineral 43 Hydrogen bacteria 44 Oxygen separation means 45 Cell separation means 46 Dry hands 47 ... dried cells 48 ... waste water treatment unit 49 ... excess waste gas 50 ... excess waste gas holder 51 ... excess waste gas treatment means

Claims (4)

リパーゼを生産することを目的として廃食用油脂と電解還元水を用いた培養液を用いて油脂分解酵母あるいは好アルカリ性細菌を培養して、これらの微生物が油脂を利用するために体外に分泌するリパーゼを分離精製して生産することを特徴とする微生物生産方法。A lipase secreted outside the body by these microorganisms for lipase production by culturing fat-degrading yeast or alkaliphilic bacteria using a culture solution using waste edible fat and electrolytically reduced water for the purpose of producing lipase. A method for producing a microorganism, comprising separating and purifying a microorganism. 請求項1において油脂分解酵母あるいは好アルカリ性細菌の培養液よりこれらの菌体を分離して飼料あるいは肥料を生産する方法。The method for producing a feed or a fertilizer by separating these cells from a culture solution of an oil-decomposing yeast or an alkaliphilic bacterium according to claim 1. 請求項1において油脂分解酵母あるいは好アルカリ性細菌の培養液より菌体を分離後、油水分離する。その後、水層からはリパーゼを分離精製する一方、油層とリパーゼを分離した残さを混合し、サンゴ粉末のような研磨材を添加、混合して研磨剤を生産する方法。The oil-water separation is performed after the cells are separated from the culture solution of the oil-decomposing yeast or the alkaliphilic bacterium according to claim 1. Then, the lipase is separated and purified from the aqueous layer, and the residue obtained by separating the lipase from the oil layer is mixed, and an abrasive such as coral powder is added and mixed to produce an abrasive. 蛋白質を生産することを目的として有機性廃棄物のメタン発酵を行い、生成するメタンガスを水素とニ酸化炭素に改質して、これらのガスと電解還元水を用いた培養液を用いて水素細菌を培養して、この細菌を分離回収する。それによって得られる菌体を蛋白質として利用すること特徴とする微生物生産方法。Methane fermentation of organic waste for the purpose of producing proteins, reforming the generated methane gas into hydrogen and carbon dioxide, and using these gases and a culture solution using electrolytically reduced water to produce hydrogen bacteria And the bacteria are separated and recovered. A method for producing a microorganism, comprising using a cell obtained thereby as a protein.
JP2003161389A 2003-05-01 2003-05-01 Method for producing useful material by microorganism by using electrolytically reduced water Pending JP2004329184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003161389A JP2004329184A (en) 2003-05-01 2003-05-01 Method for producing useful material by microorganism by using electrolytically reduced water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003161389A JP2004329184A (en) 2003-05-01 2003-05-01 Method for producing useful material by microorganism by using electrolytically reduced water

Publications (1)

Publication Number Publication Date
JP2004329184A true JP2004329184A (en) 2004-11-25

Family

ID=33508631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003161389A Pending JP2004329184A (en) 2003-05-01 2003-05-01 Method for producing useful material by microorganism by using electrolytically reduced water

Country Status (1)

Country Link
JP (1) JP2004329184A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433596A (en) * 2022-01-25 2022-05-06 上海汉怡环保科技有限公司 Organic garbage treatment process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433596A (en) * 2022-01-25 2022-05-06 上海汉怡环保科技有限公司 Organic garbage treatment process
CN114433596B (en) * 2022-01-25 2023-04-18 上海汉怡环保科技有限公司 Organic garbage treatment process

Similar Documents

Publication Publication Date Title
JP6993440B2 (en) Process for processing organic materials
Bhatia et al. Wastewater based microalgal biorefinery for bioenergy production: Progress and challenges
JP2007143542A (en) New microbial consortium and use thereof for liquefaction of solid organic matter
Kumar et al. A comprehensive review on bio-hydrogen production from brewery industrial wastewater and its treatment methodologies
Periyasamy et al. Wastewater to biogas recovery
KR100778543B1 (en) Recycling method of organic livestock excretion and apparatus thereof
RU2272793C2 (en) Waste water treatment process, means and mixed bacterial population (options) for implementation of the process
JP2009172460A (en) Biogas producing method by fermentation method from electrolytically treated garbage
JP2003000228A (en) New microorganism and apparatus for treating waste water containing oil-and-fat using the microorganism
JP2004329184A (en) Method for producing useful material by microorganism by using electrolytically reduced water
CN1478144A (en) Production process and composition of an enzymatic preparation and its use for treatment of domestic and industrial effluents of high fat, protein and/or carbohydrate content
CN113060907A (en) Method for treating urban severe polluted sewage
JP5731209B2 (en) Method and apparatus for treating soap production waste liquid
Satpathy et al. Development of Dairy Wastewater Treatment for Valuable Applications Check for updates
Satpathy et al. Development of Dairy Wastewater Treatment for Valuable Applications
Moodley et al. Enhancing anaerobic digestion efficiency in dairy waste water treatment: a comprehensive review of enzyme-based pre-treatment by microorganisms in South Africa
Kim et al. Optimum operation of thermophilic aerobic digestion process for waste activated sludge minimization
Umynskyi et al. NOT-WASTE TECHNOLOGY OF POST-SPIRITUOUS BARD RECYCLING