JP2004328924A - Method for manufacturing eddy current type reduction gear unit - Google Patents

Method for manufacturing eddy current type reduction gear unit Download PDF

Info

Publication number
JP2004328924A
JP2004328924A JP2003122027A JP2003122027A JP2004328924A JP 2004328924 A JP2004328924 A JP 2004328924A JP 2003122027 A JP2003122027 A JP 2003122027A JP 2003122027 A JP2003122027 A JP 2003122027A JP 2004328924 A JP2004328924 A JP 2004328924A
Authority
JP
Japan
Prior art keywords
magnet ring
outer magnet
ring
eddy current
current type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003122027A
Other languages
Japanese (ja)
Other versions
JP3941733B2 (en
Inventor
Toru Kuwabara
徹 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2003122027A priority Critical patent/JP3941733B2/en
Publication of JP2004328924A publication Critical patent/JP2004328924A/en
Application granted granted Critical
Publication of JP3941733B2 publication Critical patent/JP3941733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an eddy current type reduction gear unit which prevents an outside magnet ring and a casing from being deformed. <P>SOLUTION: This eddy current type reduction gear unit 1 includes a casing 5 disposed oppositely to a brake rotor 3 and mounted at a fixed side, an output magnet ring 18 mounted in the casing 5 and having a plurality of magnets 16 disposed at an interval in a circumferential direction, and an inside magnet ring 7 having a plurality of magnets 10 disposed at the inside of the outside magnet ring 18 and disposed at an interval in the circumferential direction. The method for manufacturing the eddy current type reduction gear unit 1 includes the steps of mounting the outside magnet ring 18 in the casing 5; forming a magnetic circuit 21 between the magnet 16 of the outside magnet ring 18 and a ferromagnetic member 20, by mounting the ferromagnetic member 20 on the outer peripheral side of the outside magnet ring 18 prior to the insertion of the inside magnet ring 7 into the inside of the outside magnet ring 18; inserting the inside magnet ring 7 to the inside of the outside magnet ring 18 mounted with the ferromagnetic member 20; and thereafter removing the ferromagnetic member 20 from the outside magnet ring 18. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、渦電流式減速装置の製造方法に関するものである。
【0002】
【従来の技術】
本発明者は、図13〜図15に示すような渦電流式減速装置を先に開発した。
【0003】
この渦電流式減速装置1は、車両のプロペラシャフト等の回転軸2に取り付けられたドラム状の制動ロータ3と、制動ロータ3の径方向内側に配置され、ミッションケース等の固定側に取り付けられたステータ4(磁力源)とを備え、ステータ4からロータ3へ磁気を供給することでロータ3に渦電流を生じさせて回転軸2を減速制動し、磁気をステータ4内に遮蔽することで減速制動を解除するものである。
【0004】
ステータ4は、固定側に支持された中空のケーシング5と、ケーシング5の内部にブッシュ6を介して回動自在に収容された内側磁石環7と、内側磁石環7を回動させるアクチュエータ8(流体シリンダ等)とを有する。図14及び図15に示すように、内側磁石環7は、非磁性体(オーステナイト系ステンレス等)からなる支持リング9と、支持リング9に周方向に所定間隔を隔てて取り付けられた複数の永久磁石10と、各永久磁石10の間に介設された磁性部材11(電磁鋼板等の積層体や鉄のブロック材等)とを有する。各永久磁石10は、周方向の両端面に磁極面を有し、且つ周方向に向き合う磁極が同極に設定されている。
【0005】
ケーシング5には、内側磁石環7とロータ3との間の部分に位置させて、内側磁石環7と同様の外側磁石環18が、一体的に取り付けられている。即ち、外側磁石環18は、周方向に所定間隔を隔てて取り付けられ、周方向に向き合う磁極が同極に設定された複数の永久磁石16と、各永久磁石16の間に介設された磁性部材17(電磁鋼板等の積層体や鉄のブロック材等)とを有する。内側及び外側磁石環7、18の永久磁石10、16および磁性部材11、17のピッチ・周長は、互いに略等しく設定されている。
【0006】
この渦電流式減速装置の減速制動をオフするときには、シリンダ8で内側磁石環7を回動させて、図14に示すように、内側磁石環7の各永久磁石10と外側磁石環18の各永久磁石16とが異なる磁極で対向する位相にする。すると、内側磁石環7の永久磁石10及び磁性部材11と外側磁石環18の永久磁石16及び磁性部材17との間で短絡的な磁気回路31が形成される。よって、制動ロータ3には磁気が作用せず、渦電流が生じない。つまり、減速制動は生じない。
【0007】
他方、減速制動をオンするときには、内側磁石環7を回動させて、図15に示すように、内側磁石環7の各永久磁石10と外側磁石環18の各永久磁石16とを同極で対向させる。すると、内側及び外側磁石環7、18の永久磁石10、16及び磁性部材11、17と制動ロータ3との間で磁気回路32、33が形成される。よって、制動ロータ3に渦電流が生じ、回転軸2が減速制動される。
【0008】
係る渦電流式減速装置1では、減速制動オン時に、径方向に二列設けられた永久磁石10,16により、制動ロータ3に強い磁気が作用するため高い制動力を得ることができる。
【0009】
ところで、係る渦電流式減速装置1において、通常、ケーシング5は図13に示すように、軸方向に二分割された構造であり、渦電流式減速装置1を製造する場合、まず、二分割ケーシング5の一方5bの側部に、着磁された永久磁石16を備えた外側磁石環18の軸方向一側を固定する。次に、その外側磁石環18の径方向内側に、着磁された永久磁石10を備えた内側磁石環7を治具を用いて挿入する。
【0010】
その後、外側磁石環18の他側および分割ケーシング5bの側部に、分割ケーシング5の他方5a(アクチュエータ8を含む)を取り付ける。これによって、ケーシング5内に内側磁石環7が収容され、ステータ4が組み立てられる。
【0011】
このステータ4をミッションケース等の固定側に取り付けると共に、制動ロータ3をステータ4の外周に位置させて回転軸2に固定することで渦電流式減速装置1が製造される。
【0012】
【特許文献1】
特公平6−83571号公報
【0013】
【発明が解決しようとする課題】
しかしながら、この製造方法では、外側磁石環18の内側に内側磁石環7を挿入するときに、外側磁石環18及びケーシング5bが変形してしまうことがあった。
【0014】
この理由を説明すると、例えば、図16に示すように、内側磁石環7の各永久磁石10と外側磁石環18の各永久磁石16とが同極で対向する位相で内側磁石環7を外側磁石環18内に挿入すると、内側磁石環7の永久磁石10と外側磁石環18の永久磁石16との反発力により外側磁石環18が径方向外側に変形してしまう。また、永久磁石10,16による反発力により外側磁石環18が回転して、ケーシング5bがねじれてしまうこともある。
【0015】
一方、図17に示すように、内側磁石環7の各永久磁石10と外側磁石環18の各永久磁石16とが異極で対向する位相で内側磁石環7を挿入すると、内側磁石環7の永久磁石10と外側磁石環18の永久磁石16との吸引力によって外側磁石環18が径方向内側に変形したり、外側磁石環18と内側磁石環7とが吸着したりしてしまう。
【0016】
内側磁石環7を外側磁石環18内に挿入するときには、外側磁石環18が分割ケーシング5bに片持ち支持されている状態であるため、剛性が低くこのような変形が生じやすい。
【0017】
そこで、本発明の目的は、上記課題を解決し、外側磁石環及びケーシングの変形を防止した渦電流式減速装置の製造方法を提供することにある。
【0018】
【課題を解決するための手段】
上記目的を達成するために本発明は、回転軸に取り付けられた制動ロータに対向させて配置され、固定側に取り付けられたケーシングと、そのケーシングに取り付けられ、周方向に間隔を隔てて配置された複数の磁石を備えた外側磁石環と、上記外側磁石環の径方向内側に配置され、周方向に間隔を隔てて設けられた複数の磁石を備えた内側磁石環とを備えた渦電流式減速装置の製造方法であって、上記ケーシングに上記外側磁石環を取り付けた後、上記内側磁石環を上記外側磁石環の内側に挿入するに先立って、上記外側磁石環に強磁性体からなる強磁性体部材を取り付けて上記外側磁石環の磁石と上記強磁性体部材との間で磁気回路を形成し、その強磁性体部材が取り付けられた外側磁石環の内側に上記内側磁石環を挿入し、その後、上記強磁性体部材を上記外側磁石環から取り外すようにしたものである。
【0019】
ここで、上記外側磁石環の内側に上記内側磁石環を挿入するときには、上記内側磁石環を、その磁石が上記外側磁石環の磁石と同極で対向する位相で挿入して、上記外側磁石環及び上記内側磁石環の磁石と上記強磁性体部材との間で磁気回路を形成し、上記強磁性体部材を取り外すときには、上記外側磁石環及び/又は内側磁石環を回動させて、上記外側磁石環の磁石と上記内側磁石環の磁石とを異極で対向させて、上記外側磁石環の磁石と上記内側磁石環の磁石との間で磁気回路を形成するようにしても良い。
【0020】
また、上記外側磁石環を、上記複数の磁石と、各磁石の間に介設され、電磁鋼板等の積層体からなる磁性部材とで形成すると共に、上記外側磁石環の外面側及び上記強磁性体部材の内面側に互いに対向する溝をそれぞれ形成し、上記外側磁石環の外周側に上記強磁性体部材を取り付けた後、上記対向する溝内にキー部材を挿入し、その後、上記内側磁石環の挿入及び上記強磁性体部材の取り外しを行うようにしても良い。
【0021】
【発明の実施の形態】
以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。
【0022】
本実施形態は、図13〜図15に示したような渦電流式減速装置1の製造方法であり、渦電流式減速装置1の構成については「従来の技術」の欄で説明したので省略する。
【0023】
図1〜図8を用いて、本実施形態に係る渦電流式減速装置1の製造方法を説明する。
【0024】
まず、図1に示すように、軸方向に二分割されたケーシング5の一方(ここでは、アクチュエータ8と対向する側のケーシング5b)の側部に、着磁された永久磁石16を備えた外側磁石環18の軸方向一側をボルト等を用いて取り付ける。
【0025】
次に、外側磁石環18の径方向内側に内側磁石環7を挿入するのであるが、その作業に先立って、図2に示すように、外側磁石環18の外周に筒状のリング体(強磁性体部材)20を嵌合する。リング体20は鋼鉄や低カーボン材等の強磁性体からなり、その内周面が外側磁石環18の外周面に接触するように嵌合される。
【0026】
リング体20が強磁性体であるため、リング体20を外側磁石環18に嵌合すると、図3に示すように、外側磁石環18の永久磁石16及び磁性部材17とリング体20との間で磁気回路21が形成され、リング体20が外側磁石環18に吸着する。
【0027】
この状態で、図4に示すように、外側磁石環18の径方向内側及びケーシング5b内に、内側磁石環7及びブッシュ6を治具を用いてセンタリングしつつ挿入する。このとき、内側磁石環7を、図5に示すように、各永久磁石10が、外側磁石環18の各永久磁石16と同極で対向する位相(制動オン時の状態)で挿入する。その結果、永久磁石10、磁性部材11、磁性部材17及びリング体20の間で永久磁石10による磁気回路22が形成される。
【0028】
このように、内側磁石環7を外側磁石環18内に挿入するときには、外側磁石環18の永久磁石16の磁束のほとんどがリング体20へと流れると共に、内側磁石環7の永久磁石10の磁束のほとんどがリング体20へと流れる。従って、外側磁石環18の永久磁石16と内側磁石環7の永久磁石10との間で反発力はほとんどあるいは全く発生しない。従って、外側磁石環18及びケーシング5bを変形させるような力が作用することはない。
【0029】
次に、外側磁石環18及び/又は内側磁石環7を治具等により回動させて、図6に示すように、内側磁石環7の各永久磁石10と外側磁石環18の各永久磁石16とが異極で対向するように位置させる(制動オフ時の状態)。すると、外側磁石環18の永久磁石16の磁束が内側磁石環7の永久磁石10へと流れ、内側磁石環7の永久磁石10の磁束が外側磁石環18の永久磁石16へと流れて、永久磁石16、磁性部材17、永久磁石10及び磁性部材11との間で短絡的な磁気回路23が形成される。これによって、永久磁石10及び永久磁石16からの磁束がリング体20にはほとんど作用しなくなる。従って、リング体20を外側磁石環18に吸着していた磁力がなくなる。そこで、図7に示すように、リング体20を外側磁石環18から取り外す。
【0030】
次に、図8に示すように、二分割ケーシング5の他方5a(アクチュエータ8側)を、外側磁石環18の軸方向の他側、及びケーシング5bに対してボルト等により固定する。これによって、ステータ4が形成される。このステータ4をミッションケース等の固定側に取り付けると共に、制動ロータ3をステータ4の外周に位置させて回転軸2に取り付けることで、図13に示すような渦電流式減速装置1が製造される。
【0031】
このように、本実施形態の渦電流式減速装置の製造方法によれば、内側磁石環7を外側磁石環18内に挿入するときに、外側磁石環18の永久磁石16の磁束がリング体20側へと流れているため、外側磁石環18の永久磁石16と内側磁石環7の永久磁石10との間で外側磁石環18及びケーシング5bを変形させるような磁力が発生しない。従って、外側磁石環18及びケーシング5bが変形することはない。
【0032】
なお、上記実施形態では外側磁石環18をケーシング5bに取り付けた後、外側磁石環18の外周にリング体20を嵌合するとして説明したが、予めリング体20を外側磁石環18に嵌合させておき、その状態でケーシング5bに取り付けても良い。
【0033】
また、外側磁石環18の内側に内側磁石環7を挿入した後、ケーシング5a及びアクチュエータ8の取り付けを行い、アクチュエータ8により内側磁石環7を回動させてリング体20を取り外すようにしても良い。
【0034】
本発明は様々な変形例が考えられるものである。
【0035】
例えば、リング体20の内周を外側磁石環18の外周よりも若干大きく形成し、外側磁石環18とリング体20との間にシム(スペーサ)を介在させて、リング体20と外側磁石環18との間に周方向にほぼ均一なエアギャップ(例えば0.4mm〜0.8mm程度)を形成するようにしても良い。こうすれば、外側磁石環18とリング体20との間の摩擦力をなくすことができるので、リング体20の嵌合・取り外し作業を容易に行うことができる。この場合、シムは非磁性体から構成しても良い。なお、エアギャップを極端に大きくしないかぎり、上述した磁気回路21(図3参照)を形成することができ、上記効果を得ることができる。
【0036】
また、図9に示すように、リング体20の内周面において、外側磁石環18の磁性部材17と対向する部分に凹溝25を形成しても良い。この場合でも、リング体20と外側磁石環18との接触面積を低減できるため、摩擦力を小さくでき、リング体20の嵌合・取り外し作業を容易に行うことができる。
【0037】
また、図10に示すように、リング体20の内周面及び外側磁石環18の外周面(より詳しくは、磁性部材17の外周面)に互いに対向する溝26、27をそれぞれ形成し、リング体20を外側磁石環18に嵌合した後、溝26、27内にキー部材28を挿入するようにしても良い。こうすれば、リング体20と外側磁石環18とが相対回転できなくなるため、外側磁石環18及びケーシング5bのねじれをより確実に防止できる。なお、溝26、27及びキー部材28は周方向に複数形成してもよいが、少なくとも一箇所形成すればその効果を得ることができる。また、キー部材28を予めリング体20の溝26に差し込んでおき、その状態でリング体20を外側磁石環18に嵌合させるようにしても良い。
【0038】
また、図10において、外側磁石環18の外周面にのみ溝27を形成し、リング体20の内周面にキー部材28に相当する凸部を形成しても良い。
【0039】
また、図11に示すように、外側磁石環18の外周に、防水用の薄板30(例えば鉄板)を巻き付けたタイプの渦電流式減速装置では、薄板30と外側磁石環18とに上記と同様の溝27を形成すれば良い。
【0040】
なお、溝26、27は、必ずしもリング体20及び外側磁石環18の軸方向全域に渡って形成する必要はなく、軸方向の中間部等、部分的に形成するようにしても良い。
【0041】
更に本発明は、図12に示すように、内側磁石環7の各永久磁石10が径方向の両端部に磁極を有するタイプの渦電流式減速装置の製造方法にも適用できる。図12は、内側磁石環7の永久磁石10と外側磁石環18の永久磁石16とが同極で対向した状態を示している。同様に、外側磁石環18の永久磁石16が径方向両端部に磁極を有するタイプの渦電流式減速装置にも適用できる。
【0042】
また、外側磁石環18をアクチュエータにより回動するタイプの渦電流式減速装置にも適用できる。
【0043】
また、強磁性体部材は必ずしもリング状である必要はなく、周方向に分割された形状であっても良い。
【0044】
【発明の効果】
以上要するに本発明によれば、渦電流式減速装置を容易に製造できるという優れた効果を発揮するものである。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る渦電流式減速装置の製造方法を説明する部分側面断面図である。
【図2】本発明の一実施形態に係る渦電流式減速装置の製造方法を説明する部分側面断面図である。
【図3】本発明の一実施形態に係る渦電流式減速装置の製造方法を説明する部分正面断面図である。
【図4】本発明の一実施形態に係る渦電流式減速装置の製造方法を説明する部分側面断面図である。
【図5】本発明の一実施形態に係る渦電流式減速装置の製造方法を説明する部分正面断面図である。
【図6】本発明の一実施形態に係る渦電流式減速装置の製造方法を説明する部分正面断面図である。
【図7】本発明の一実施形態に係る渦電流式減速装置の製造方法を説明する部分側面断面図である。
【図8】本発明の一実施形態に係る渦電流式減速装置の製造方法を説明する部分側面断面図である。
【図9】本発明の他の実施形態に係る渦電流式減速装置の製造方法を説明する部分正面断面図である。
【図10】本発明の他の実施形態に係る渦電流式減速装置の製造方法を説明する部分正面断面図である。
【図11】本発明の他の実施形態に係る渦電流式減速装置の製造方法を説明する部分正面断面図である。
【図12】本発明の他の実施形態に係る渦電流式減速装置の製造方法を説明する部分正面断面図である。
【図13】本発明者が先に開発した渦電流式減速装置の部分側面断面図である。
【図14】図13の渦電流式減速装置の部分正面断面図である。
【図15】図13の渦電流式減速装置の部分正面断面図である。
【図16】外側磁石環及びケーシングが変形する理由を説明する図である。
【図17】外側磁石環及びケーシングが変形する理由を説明する図である。
【符号の説明】
1 渦電流式減速装置
2 回転軸
3 制動ロータ
5 ケーシング
7 内側磁石環
10,16 永久磁石
18 外側磁石環
20 リング体(強磁性体部材)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an eddy current type reduction gear.
[0002]
[Prior art]
The inventor has previously developed an eddy current type speed reducer as shown in FIGS.
[0003]
The eddy current type reduction gear 1 is disposed on a drum-shaped braking rotor 3 mounted on a rotating shaft 2 such as a propeller shaft of a vehicle, and is disposed radially inside the braking rotor 3 and mounted on a fixed side such as a transmission case. A magnetic force is supplied from the stator 4 to the rotor 3 to generate an eddy current in the rotor 3 to decelerate the braking of the rotating shaft 2 and shield the magnetism in the stator 4. This is to release the deceleration braking.
[0004]
The stator 4 includes a hollow casing 5 supported on a fixed side, an inner magnet ring 7 rotatably housed in the casing 5 via a bush 6, and an actuator 8 for rotating the inner magnet ring 7 ( Fluid cylinder, etc.). As shown in FIGS. 14 and 15, the inner magnet ring 7 includes a support ring 9 made of a non-magnetic material (such as austenitic stainless steel) and a plurality of permanent magnets attached to the support ring 9 at predetermined intervals in the circumferential direction. It has a magnet 10 and a magnetic member 11 (a laminated body such as an electromagnetic steel plate or an iron block material) interposed between the permanent magnets 10. Each of the permanent magnets 10 has magnetic pole faces on both end faces in the circumferential direction, and the magnetic poles facing in the circumferential direction are set to be the same.
[0005]
An outer magnet ring 18 similar to the inner magnet ring 7 is integrally attached to the casing 5 at a position between the inner magnet ring 7 and the rotor 3. That is, the outer magnet ring 18 is attached at a predetermined interval in the circumferential direction, and a plurality of permanent magnets 16 in which the magnetic poles facing in the circumferential direction are set to the same polarity, and a magnetic material provided between the permanent magnets 16. And a member 17 (a laminated body such as an electromagnetic steel sheet or an iron block material). The pitches and perimeters of the permanent magnets 10 and 16 and the magnetic members 11 and 17 of the inner and outer magnet rings 7 and 18 are set substantially equal to each other.
[0006]
When the deceleration braking of the eddy current type reduction gear is turned off, the inner magnet ring 7 is rotated by the cylinder 8 so that the respective permanent magnets 10 and the respective outer magnet rings 18 of the inner magnet ring 7 are rotated as shown in FIG. The phase is set to be opposite to the permanent magnet 16 at a different magnetic pole. Then, a short-circuited magnetic circuit 31 is formed between the permanent magnet 10 and the magnetic member 11 of the inner magnet ring 7 and the permanent magnet 16 and the magnetic member 17 of the outer magnet ring 18. Therefore, no magnetism acts on the braking rotor 3 and no eddy current is generated. That is, deceleration braking does not occur.
[0007]
On the other hand, when turning on the deceleration braking, the inner magnet ring 7 is rotated so that each permanent magnet 10 of the inner magnet ring 7 and each permanent magnet 16 of the outer magnet ring 18 have the same polarity as shown in FIG. Make them face each other. Then, magnetic circuits 32 and 33 are formed between the permanent magnets 10 and 16 and the magnetic members 11 and 17 of the inner and outer magnet rings 7 and 18 and the braking rotor 3. Therefore, an eddy current is generated in the braking rotor 3, and the rotating shaft 2 is decelerated and braked.
[0008]
In the eddy current type speed reducer 1 described above, when the deceleration braking is on, strong magnetism acts on the braking rotor 3 by the two rows of permanent magnets provided in the radial direction, so that a high braking force can be obtained.
[0009]
By the way, in the eddy current type reduction gear 1, as shown in FIG. 13, the casing 5 usually has a structure divided into two parts in the axial direction. One side in the axial direction of the outer magnet ring 18 provided with the magnetized permanent magnets 16 is fixed to the side of one of the members 5b. Next, the inner magnet ring 7 having the magnetized permanent magnet 10 is inserted into the outer magnet ring 18 in the radial direction using a jig.
[0010]
Then, the other side 5a (including the actuator 8) of the split casing 5 is attached to the other side of the outer magnet ring 18 and the side of the split casing 5b. As a result, the inner magnet ring 7 is accommodated in the casing 5, and the stator 4 is assembled.
[0011]
The eddy current type reduction gear 1 is manufactured by attaching the stator 4 to a fixed side such as a transmission case and fixing the brake rotor 3 to the rotating shaft 2 while positioning the brake rotor 3 on the outer periphery of the stator 4.
[0012]
[Patent Document 1]
Japanese Patent Publication No. 6-83571
[Problems to be solved by the invention]
However, in this manufacturing method, when the inner magnet ring 7 is inserted inside the outer magnet ring 18, the outer magnet ring 18 and the casing 5b may be deformed.
[0014]
To explain the reason, for example, as shown in FIG. 16, each of the permanent magnets 10 of the inner magnet ring 7 and each of the permanent magnets 16 of the outer magnet ring 18 have the same polarity and oppose each other. When inserted into the ring 18, the outer magnet ring 18 is deformed radially outward due to the repulsive force of the permanent magnet 10 of the inner magnet ring 7 and the permanent magnet 16 of the outer magnet ring 18. Further, the outer magnet ring 18 may be rotated by the repulsive force of the permanent magnets 10 and 16, and the casing 5b may be twisted.
[0015]
On the other hand, as shown in FIG. 17, when the inner magnet ring 7 is inserted in a phase in which the respective permanent magnets 10 of the inner magnet ring 7 and the respective permanent magnets 16 of the outer magnet ring 18 are opposite in phase, the inner magnet ring 7 The attraction force between the permanent magnet 10 and the permanent magnet 16 of the outer magnet ring 18 causes the outer magnet ring 18 to be deformed radially inward or the outer magnet ring 18 and the inner magnet ring 7 to be attracted.
[0016]
When the inner magnet ring 7 is inserted into the outer magnet ring 18, the outer magnet ring 18 is in a state of being cantilevered by the split casing 5 b, and thus has a low rigidity and such deformation is likely to occur.
[0017]
Then, an object of the present invention is to solve the above-mentioned problems and to provide a method of manufacturing an eddy current type speed reducer in which deformation of an outer magnet ring and a casing is prevented.
[0018]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a casing, which is disposed to face a braking rotor attached to a rotating shaft, and which is attached to a fixed side, and which is attached to the casing, and is arranged at intervals in a circumferential direction. Eddy current type comprising an outer magnet ring having a plurality of magnets, and an inner magnet ring having a plurality of magnets disposed radially inside the outer magnet ring and provided at intervals in a circumferential direction. A method for manufacturing a reduction gear transmission, wherein after attaching the outer magnet ring to the casing, prior to inserting the inner magnet ring inside the outer magnet ring, the outer magnet ring is formed of a ferromagnetic material. A magnetic member is attached to form a magnetic circuit between the magnet of the outer magnet ring and the ferromagnetic member, and the inner magnet ring is inserted inside the outer magnet ring to which the ferromagnetic member is attached. And then on The ferromagnetic member is obtained as removed from the outer magnet ring.
[0019]
Here, when inserting the inner magnet ring inside the outer magnet ring, the inner magnet ring is inserted with the same polarity as the magnet of the outer magnet ring and opposed to the outer magnet ring, and the outer magnet ring is inserted. When a magnetic circuit is formed between the magnet of the inner magnet ring and the ferromagnetic member, and the ferromagnetic member is removed, the outer magnet ring and / or the inner magnet ring are rotated to remove the outer magnetic ring. The magnets of the magnet ring and the magnets of the inner magnet ring may be opposed to each other with different polarities, and a magnetic circuit may be formed between the magnets of the outer magnet ring and the magnets of the inner magnet ring.
[0020]
Further, the outer magnet ring is formed of the plurality of magnets and a magnetic member interposed between the respective magnets and made of a laminated body such as an electromagnetic steel plate, and the outer surface of the outer magnet ring and the ferromagnetic material. Opposite grooves are formed on the inner surface side of the body member, and the ferromagnetic member is attached to the outer peripheral side of the outer magnet ring. Then, a key member is inserted into the opposing groove, and then the inner magnet is inserted. The insertion of the ring and the removal of the ferromagnetic member may be performed.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0022]
The present embodiment is a method for manufacturing the eddy current type speed reducer 1 as shown in FIGS. 13 to 15, and the configuration of the eddy current type speed reducer 1 has been described in the section of “Prior Art” and will not be described. .
[0023]
A method of manufacturing the eddy current type reduction gear 1 according to the present embodiment will be described with reference to FIGS.
[0024]
First, as shown in FIG. 1, an outer side provided with a magnetized permanent magnet 16 is provided on one side of a casing 5 (here, a casing 5 b facing the actuator 8) which is divided into two in the axial direction. One side of the magnet ring 18 in the axial direction is attached using bolts or the like.
[0025]
Next, the inner magnet ring 7 is inserted radially inward of the outer magnet ring 18. Prior to this operation, as shown in FIG. (Magnetic member) 20 is fitted. The ring body 20 is made of a ferromagnetic material such as steel or a low carbon material, and is fitted so that the inner peripheral surface thereof contacts the outer peripheral surface of the outer magnet ring 18.
[0026]
Since the ring body 20 is a ferromagnetic substance, when the ring body 20 is fitted to the outer magnet ring 18, as shown in FIG. Thus, the magnetic circuit 21 is formed, and the ring body 20 is attracted to the outer magnet ring 18.
[0027]
In this state, as shown in FIG. 4, the inner magnet ring 7 and the bush 6 are inserted into the casing 5b while being centered using a jig. At this time, as shown in FIG. 5, each permanent magnet 10 is inserted into the inner magnet ring 7 at the same polarity and opposite phase as the respective permanent magnets 16 of the outer magnet ring 18 (when braking is on). As a result, a magnetic circuit 22 is formed by the permanent magnet 10 among the permanent magnet 10, the magnetic member 11, the magnetic member 17, and the ring body 20.
[0028]
As described above, when the inner magnet ring 7 is inserted into the outer magnet ring 18, most of the magnetic flux of the permanent magnet 16 of the outer magnet ring 18 flows to the ring body 20 and the magnetic flux of the permanent magnet 10 of the inner magnet ring 7. Flows to the ring body 20. Therefore, little or no repulsive force is generated between the permanent magnet 16 of the outer magnet ring 18 and the permanent magnet 10 of the inner magnet ring 7. Therefore, a force that deforms the outer magnet ring 18 and the casing 5b does not act.
[0029]
Next, the outer magnet ring 18 and / or the inner magnet ring 7 are rotated by a jig or the like, so that each permanent magnet 10 of the inner magnet ring 7 and each permanent magnet 16 of the outer magnet ring 18 are rotated as shown in FIG. Are positioned so as to be opposite to each other (state when braking is off). Then, the magnetic flux of the permanent magnet 16 of the outer magnet ring 18 flows to the permanent magnet 10 of the inner magnet ring 7, and the magnetic flux of the permanent magnet 10 of the inner magnet ring 7 flows to the permanent magnet 16 of the outer magnet ring 18, A short-circuited magnetic circuit 23 is formed between the magnet 16, the magnetic member 17, the permanent magnet 10, and the magnetic member 11. Thereby, the magnetic flux from the permanent magnets 10 and 16 hardly acts on the ring body 20. Therefore, the magnetic force that has attracted the ring body 20 to the outer magnet ring 18 is eliminated. Therefore, the ring body 20 is removed from the outer magnet ring 18 as shown in FIG.
[0030]
Next, as shown in FIG. 8, the other 5a (actuator 8 side) of the two-piece casing 5 is fixed to the other side in the axial direction of the outer magnet ring 18 and the casing 5b with bolts or the like. Thus, the stator 4 is formed. The stator 4 is mounted on a fixed side such as a transmission case, and the braking rotor 3 is positioned on the outer periphery of the stator 4 and mounted on the rotating shaft 2, whereby the eddy current type reduction gear 1 as shown in FIG. 13 is manufactured. .
[0031]
As described above, according to the eddy current type reduction gear manufacturing method of the present embodiment, when the inner magnet ring 7 is inserted into the outer magnet ring 18, the magnetic flux of the permanent magnet 16 of the outer magnet ring 18 is Since it flows to the side, no magnetic force is generated between the permanent magnet 16 of the outer magnet ring 18 and the permanent magnet 10 of the inner magnet ring 7 to deform the outer magnet ring 18 and the casing 5b. Therefore, the outer magnet ring 18 and the casing 5b are not deformed.
[0032]
In the above embodiment, the outer magnet ring 18 is attached to the casing 5b, and then the ring body 20 is fitted to the outer periphery of the outer magnet ring 18. However, the ring body 20 is fitted to the outer magnet ring 18 in advance. It may be attached to the casing 5b in that state.
[0033]
After inserting the inner magnet ring 7 inside the outer magnet ring 18, the casing 5 a and the actuator 8 may be attached, and the inner magnet ring 7 may be rotated by the actuator 8 to remove the ring body 20. .
[0034]
The present invention contemplates various modifications.
[0035]
For example, the inner circumference of the ring body 20 is formed slightly larger than the outer circumference of the outer magnet ring 18, and a shim (spacer) is interposed between the outer magnet ring 18 and the ring body 20 so that the ring body 20 and the outer magnet ring A substantially uniform air gap (for example, about 0.4 mm to 0.8 mm) may be formed in the circumferential direction between the air gap and the air gap 18. By doing so, the frictional force between the outer magnet ring 18 and the ring body 20 can be eliminated, so that the work of fitting and removing the ring body 20 can be easily performed. In this case, the shim may be made of a non-magnetic material. As long as the air gap is not extremely large, the above-described magnetic circuit 21 (see FIG. 3) can be formed, and the above effects can be obtained.
[0036]
Further, as shown in FIG. 9, a concave groove 25 may be formed in a portion of the inner peripheral surface of the ring body 20 facing the magnetic member 17 of the outer magnet ring 18. Also in this case, since the contact area between the ring body 20 and the outer magnet ring 18 can be reduced, the frictional force can be reduced, and the work of fitting and removing the ring body 20 can be easily performed.
[0037]
Further, as shown in FIG. 10, grooves 26 and 27 facing each other are formed on the inner peripheral surface of the ring body 20 and the outer peripheral surface of the outer magnet ring 18 (more specifically, the outer peripheral surface of the magnetic member 17). After the body 20 is fitted to the outer magnet ring 18, the key member 28 may be inserted into the grooves 26, 27. In this case, since the ring body 20 and the outer magnet ring 18 cannot be rotated relative to each other, the torsion of the outer magnet ring 18 and the casing 5b can be more reliably prevented. Note that a plurality of grooves 26, 27 and key member 28 may be formed in the circumferential direction, but the effect can be obtained if at least one is formed. Alternatively, the key member 28 may be inserted in the groove 26 of the ring body 20 in advance, and the ring body 20 may be fitted to the outer magnet ring 18 in this state.
[0038]
In FIG. 10, the groove 27 may be formed only on the outer peripheral surface of the outer magnet ring 18, and a convex portion corresponding to the key member 28 may be formed on the inner peripheral surface of the ring body 20.
[0039]
Further, as shown in FIG. 11, in an eddy current type reduction gear of a type in which a waterproof thin plate 30 (for example, an iron plate) is wound around the outer magnet ring 18, the thin plate 30 and the outer magnet ring 18 are formed in the same manner as described above. May be formed.
[0040]
The grooves 26 and 27 do not necessarily need to be formed over the entire area of the ring body 20 and the outer magnet ring 18 in the axial direction, but may be formed partially at an intermediate portion in the axial direction.
[0041]
Furthermore, as shown in FIG. 12, the present invention can be applied to a method of manufacturing an eddy current type reduction gear of a type in which each permanent magnet 10 of the inner magnet ring 7 has magnetic poles at both ends in the radial direction. FIG. 12 shows a state where the permanent magnets 10 of the inner magnet ring 7 and the permanent magnets 16 of the outer magnet ring 18 face each other with the same polarity. Similarly, the present invention can be applied to an eddy current type speed reducer in which the permanent magnets 16 of the outer magnet ring 18 have magnetic poles at both ends in the radial direction.
[0042]
Further, the present invention can be applied to an eddy current type speed reducer in which the outer magnet ring 18 is rotated by an actuator.
[0043]
Further, the ferromagnetic member does not necessarily have to be ring-shaped, but may have a shape divided in the circumferential direction.
[0044]
【The invention's effect】
In short, according to the present invention, an excellent effect that an eddy current type reduction gear can be easily manufactured is exhibited.
[Brief description of the drawings]
FIG. 1 is a partial side sectional view illustrating a method for manufacturing an eddy current type reduction gear according to an embodiment of the present invention.
FIG. 2 is a partial side sectional view illustrating a method for manufacturing an eddy current type reduction gear according to an embodiment of the present invention.
FIG. 3 is a partial front sectional view illustrating a method for manufacturing the eddy current type reduction gear according to one embodiment of the present invention.
FIG. 4 is a partial side sectional view illustrating a method for manufacturing an eddy current type reduction gear according to an embodiment of the present invention.
FIG. 5 is a partial front sectional view illustrating a method for manufacturing the eddy current type reduction gear according to the embodiment of the present invention.
FIG. 6 is a partial front sectional view illustrating a method for manufacturing the eddy current type reduction gear according to the embodiment of the present invention.
FIG. 7 is a partial side sectional view illustrating a method for manufacturing the eddy current type reduction gear according to one embodiment of the present invention.
FIG. 8 is a partial side sectional view illustrating a method for manufacturing an eddy current type reduction gear according to an embodiment of the present invention.
FIG. 9 is a partial front sectional view illustrating a method for manufacturing an eddy current type reduction gear transmission according to another embodiment of the present invention.
FIG. 10 is a partial front sectional view for explaining a method of manufacturing an eddy current type reduction gear according to another embodiment of the present invention.
FIG. 11 is a partial front sectional view illustrating a method for manufacturing an eddy current type reduction gear according to another embodiment of the present invention.
FIG. 12 is a partial front sectional view for explaining a method of manufacturing an eddy current type reduction gear according to another embodiment of the present invention.
FIG. 13 is a partial side sectional view of an eddy current type speed reducer developed earlier by the present inventors.
FIG. 14 is a partial front sectional view of the eddy current type reduction gear transmission of FIG. 13;
FIG. 15 is a partial front sectional view of the eddy current type speed reducer of FIG. 13;
FIG. 16 is a diagram illustrating the reason why the outer magnet ring and the casing are deformed.
FIG. 17 is a diagram illustrating the reason why the outer magnet ring and the casing are deformed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Eddy current type reduction gear 2 Rotation shaft 3 Braking rotor 5 Casing 7 Inner magnet ring 10, 16 Permanent magnet 18 Outer magnet ring 20 Ring body (ferromagnetic member)

Claims (3)

回転軸に取り付けられた制動ロータに対向させて配置され、固定側に取り付けられたケーシングと、該ケーシングに取り付けられ、周方向に間隔を隔てて配置された複数の磁石を備えた外側磁石環と、上記外側磁石環の径方向内側に配置され、周方向に間隔を隔てて設けられた複数の磁石を備えた内側磁石環とを備えた渦電流式減速装置の製造方法であって、
上記ケーシングに上記外側磁石環を取り付けた後、上記内側磁石環を上記外側磁石環の内側に挿入するに先立って、上記外側磁石環の外周側に強磁性体部材を取り付けて上記外側磁石環の磁石と上記強磁性体部材との間で磁気回路を形成し、その強磁性体部材が取り付けられた外側磁石環の内側に上記内側磁石環を挿入し、その後、上記強磁性体部材を上記外側磁石環から取り外すことを特徴とする渦電流式減速装置の製造方法。
A casing disposed opposite to the braking rotor attached to the rotating shaft and attached to the fixed side, and an outer magnet ring attached to the casing and provided with a plurality of magnets arranged at intervals in the circumferential direction; A method for manufacturing an eddy current type speed reducer, comprising: an inner magnet ring having a plurality of magnets disposed radially inward of the outer magnet ring and provided at intervals in a circumferential direction,
After the outer magnet ring is attached to the casing, prior to inserting the inner magnet ring inside the outer magnet ring, a ferromagnetic member is attached to the outer peripheral side of the outer magnet ring to form the outer magnet ring. A magnetic circuit is formed between the magnet and the ferromagnetic member, and the inner magnet ring is inserted inside the outer magnet ring to which the ferromagnetic member is attached. A method for manufacturing an eddy current type speed reducer, wherein the speed reducer is detached from a magnet ring.
上記外側磁石環の内側に上記内側磁石環を挿入するときには、上記内側磁石環を、その磁石が上記外側磁石環の磁石と同極で対向する位相で挿入し、
上記強磁性体部材を取り外すときには、上記外側磁石環及び/又は内側磁石環を回動させて、上記外側磁石環の磁石と上記内側磁石環の磁石とを異極で対向させる請求項1記載の渦電流式減速装置の製造方法。
When the inner magnet ring is inserted inside the outer magnet ring, the inner magnet ring is inserted in a phase in which the magnet has the same polarity as the magnet of the outer magnet ring and faces the same.
2. The magnet according to claim 1, wherein when the ferromagnetic member is removed, the outer magnet ring and / or the inner magnet ring are rotated so that the magnets of the outer magnet ring and the magnets of the inner magnet ring have opposite polarities. Manufacturing method of eddy current type reduction gear.
上記外側磁石環は、上記複数の磁石と、各磁石の間に介設され、電磁鋼板等の積層体からなる磁性部材とを備え、上記外側磁石環の外面側及び上記強磁性体部材の内面側に互いに対向する溝をそれぞれ形成し、上記外側磁石環の外周側に上記強磁性体部材を取り付けた後、上記対向する溝内にキー部材を挿入し、その後、上記内側磁石環の挿入及び上記強磁性体部材の取り外しを行う請求項1又は2記載の渦電流式減速装置の製造方法。The outer magnet ring includes a plurality of magnets, and a magnetic member interposed between the magnets and made of a laminated body such as an electromagnetic steel plate. The outer surface of the outer magnet ring and the inner surface of the ferromagnetic member are provided. On each side, grooves facing each other are formed, and after attaching the ferromagnetic member to the outer peripheral side of the outer magnet ring, a key member is inserted into the opposed groove. 3. The method according to claim 1, wherein the ferromagnetic member is removed.
JP2003122027A 2003-04-25 2003-04-25 Manufacturing method of eddy current type speed reducer Expired - Fee Related JP3941733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003122027A JP3941733B2 (en) 2003-04-25 2003-04-25 Manufacturing method of eddy current type speed reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003122027A JP3941733B2 (en) 2003-04-25 2003-04-25 Manufacturing method of eddy current type speed reducer

Publications (2)

Publication Number Publication Date
JP2004328924A true JP2004328924A (en) 2004-11-18
JP3941733B2 JP3941733B2 (en) 2007-07-04

Family

ID=33500400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003122027A Expired - Fee Related JP3941733B2 (en) 2003-04-25 2003-04-25 Manufacturing method of eddy current type speed reducer

Country Status (1)

Country Link
JP (1) JP3941733B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021112038A (en) * 2020-01-10 2021-08-02 日本製鉄株式会社 Eddy current reduction gear

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021112038A (en) * 2020-01-10 2021-08-02 日本製鉄株式会社 Eddy current reduction gear
JP7372539B2 (en) 2020-01-10 2023-11-01 日本製鉄株式会社 Eddy current reduction gear

Also Published As

Publication number Publication date
JP3941733B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
KR970700952A (en) MOTOR INCLUDING PERMANENT MAGNET-ROTOR
JPH07298589A (en) Axial air gap motor
EP1414130A3 (en) Electric motor with a permanent magnet rotor
EP1115193A3 (en) Magnetic levitation motor and method for manufacturing the same
JP2006271142A (en) Rotary machine
JP2007267574A (en) Process for manufacturing rotor and motor for electric power steering
JP2020535777A (en) Radial multi-piece rotor for electromechanical equipment
JP3765291B2 (en) Eddy current reducer
JP3941733B2 (en) Manufacturing method of eddy current type speed reducer
JP2004328891A (en) Eddy current type reduction gear unit
JPH0742215Y2 (en) Servo actuator
JPH0811035Y2 (en) Servo actuator
JPS60121948A (en) Permanent magnet fixing system of magnet rotor of electric rotary machine
JP4296839B2 (en) Eddy current reducer
JP2001069700A (en) Permanent magnet dynamo-electric machine
JP2003348816A (en) Eddy current decelerating device
JP2005094978A (en) Claw pole type rotating machine
JP2007082333A (en) Eddy current decelerator
JP4797528B2 (en) Eddy current reducer
JP3059244B2 (en) Spindle motor
JP4882355B2 (en) Eddy current reducer
JP4020009B2 (en) Eddy current reducer
JPH11113224A (en) Magnetizing method of permanent magnet type eddy current reducer
JP4400205B2 (en) Eddy current reducer
JPS62221855A (en) Dc brushless motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees