JP2004327319A - Electrode manufacturing method - Google Patents

Electrode manufacturing method Download PDF

Info

Publication number
JP2004327319A
JP2004327319A JP2003122296A JP2003122296A JP2004327319A JP 2004327319 A JP2004327319 A JP 2004327319A JP 2003122296 A JP2003122296 A JP 2003122296A JP 2003122296 A JP2003122296 A JP 2003122296A JP 2004327319 A JP2004327319 A JP 2004327319A
Authority
JP
Japan
Prior art keywords
polymer solution
electrode
positive electrode
sheet
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003122296A
Other languages
Japanese (ja)
Inventor
Eriko Yagasaki
えり子 矢ケ崎
Hiroshi Tasai
博志 田才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Japan Storage Battery Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Japan Storage Battery Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2003122296A priority Critical patent/JP2004327319A/en
Publication of JP2004327319A publication Critical patent/JP2004327319A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode manufacturing method capable of preventing the separation of an active material from an electrode. <P>SOLUTION: This electrode manufacturing method is provided with a revolving roller in a polymer solution tank, and used for passing a sheet-like porous electrode so as to go around the revolving roller to fill pores of the electrode with a polymer solution. The electrode manufacturing method is characterized by setting an angle for entering the sheet-like porous electrode into the polymer solution and an angle for extracting it from the polymer solution above 10° with respect to the solution level of the polymer solution. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、シート状多孔性電極にポリマー溶液を充填する、電極製造方法に関する。
【0002】
【従来の技術】
現在、市販されているリチウムイオン電池の正・負極は、活物質粒子、結着剤としてのポリマー、さらに活物質の電子導電性が不十分な場合には導電助剤を混合し混練したものを集電体に塗布し、乾燥させて製作されている。このように製作された正・負極は、活物質粒子の隙間が孔となっており、その孔に電解液をしみこませることによって、電極反応に必要なリチウムイオンの移動経路を確保し、優れた電池性能を得ることができるようになっている。
【0003】
しかし、上記のリチウムイオン二次電池は、電解質に可燃性の有機電解液を使用するため、安全性の問題から活物質の利用率を制限する必要から電池の容量が制限され、また、安全弁・保護回路・PTC素子などの種々の安全か装置を備える必要があり、構造が複雑になるという問題がある。
【0004】
そこで、可燃性を有する有機電解液を可能な限り削減することによって電池の安全性を向上させ、上記安全化装置を省略することが試みられている。この場合、ただ単に有機電解液量を削減させるだけではリチウムイオン電池の特徴である優れた電池性能を得ることはできない。
【0005】
その理由は、リチウムイオン電池は、充放電において電極反応に関与するリチウムイオンの量の大部分が電解質中を移動して対極に到達するものであるため、リチウムイオンの拡散パスとしての電解液が必要不可欠な要素であるといえるからである。
【0006】
この拡散パスの一部にポリマー電解質を適用する試みがおこなわれている。しかし電極の孔中に電解液の代わりにポリマー電解質を適用した場合には、電解質中のイオンの拡散速度が非常に遅くなるために、高率での充放電特性が低下し、実用的な電池性能が得られないという問題があった。
【0007】
この問題点を解決するために、電極孔中のポリマー電解質を有孔性とし、その孔中の遊離な電解液中の速やかなイオン拡散によって電池の高率放電特性を向上させる試みがおこなわれている。この場合には、ポリマーを電極の孔中に充填した分だけ遊離の電解液量を削減することができるため、従来のポリマー電解質を使用した電池よりも安全な電池となり、また、ポリマー電解質中の孔中の速やかなイオン拡散によって充分な電池性能が得られる。
【0008】
上記のようなポリマー電極を製造する方法は,多孔性電極をポリマーと難溶性の回転ローラーを備えた溶液槽を通過させることによって製造されていた。このような製造方法をとることによって、連続的にポリマー充填処理をおこなうことが可能となる。
【0009】
【発明が解決しようとする課題】
ポリマー電解質を充填させた多孔性電極が回転ローラー部を通過する際に、極板表面に塗布されている活物質・導電助剤・結着剤からなる合剤がはがれ落ちるという現象が生じていた。
【0010】
従来のシート状多孔性電極の孔中にポリマー溶液を充填する電極製造方法を図1に示す。図1において、1はポリマー溶液槽、2はシート状電極で、3は回転ローラーに到達する前の電極のパスライン、4は回転ローラーから送り出された後の電極のパスライン、5はポリマー槽の外部に設けられた第1の回転ローラー、6はポリマー溶液槽中に備えられた回転ローラー、7はポリマー溶液槽の外部に設けられた第2の回転ローラー、8はポリマー溶液、9はポリマー溶液の液面である。
【0011】
ポリマー溶液槽1はポリマー溶液8で満たされている。このポリマー溶液8の中をシート状電極2が通過することによって、シート状電極2に存在する孔にポリマー溶液8が充填される。シート状電極2は、第1の回転ローラー5を通り、ポリマー溶液の液面9に垂直の状態(これを入角が0°の状態とする)でポリマー溶液8の中に入る。そして、ポリマー溶液槽1中に備えられた回転ローラー6を周回し、ポリマー溶液の液面9に垂直の状態でポリマー溶液8から出て、第2の回転ローラーを経て、矢印の方向に走行する。
【0012】
図1に示した従来の電極製造方法により、多孔性シート状電極の孔中に連続的にポリマーを充填することが可能となるが、シート状電極はポリマー溶液に垂直の状態(入角が0°の状態)で入り、また、出てくるため、集電体上に塗布した電極合材が剥離するという問題があった。
【0013】
この理由は、電極が回転ローラーを通過する際、回転ローラーに到達する直前のパスラインと回転ローラーから送り出された直後の電極のパスラインとの角度が平行であるためである。このことによって電極が回転ローラー部を通過する際に、回転ローラー側の面の極板合材は圧縮応力を受け、一方回転ローラーとは反対側の面の極板合材は引張応力を受ける。結着剤による結合力よりも大きな圧縮応力および引張応力を受けることによって電極から活物質合材が剥がれ落ちるという現象が生じていた。
【0014】
なお、電極から活物質の剥離がいったん生じると、それ以降は連続的に剥離現象が生じるため、電極完成品を得ることはできず、目的のポリマー電解質を備えた電極を得ることができない。
【0015】
そこで本発明は、従来の電極の孔中にポリマー溶液を充填する電極製造方法における、電極から活物質が剥離するという問題点を解決するためになされたもので、電極から活物質の剥離を防止することが可能な電極製造方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
請求項1の発明は、ポリマー溶液槽中に回転ローラーを備え、前記回転ローラーを周回するようにシート状多孔性電極を通過させ、電極の孔中にポリマー溶液を充填する電極製造方法において、前記シート状多孔性電極をポリマー溶液に入る角度およびポリマー溶液からでる角度が、ポリマー溶液の液面に対して10°以上とすることを特徴とする。
【0017】
請求項1の発明によれば、シート状多孔性電極の回転ローラー側の面の電極合材および回転ローラーとは反対側の面の電極合材が受ける応力を緩和することとなるため、集電体から電極合材が剥がれ落ちる現象を防止することができる。
【0018】
【発明の実施の形態】
本発明は、ポリマー溶液槽中に回転ローラー備え、前記回転ローラーを周回するようにシート状多孔性電極を通過させ、電極の孔中にポリマー溶液を充填する電極製造方法において、前記シート状多孔性電極をポリマー溶液に入る角度およびポリマー溶液から出る角度が、ポリマー溶液の液面に対して10°以上とすることを特徴とする。
【0019】
本発明の電極製造方法を図2に示す。図2における記号1〜9は、図1と同じものを示す。また、10はポリマー溶液の液面に対する垂線を示し、垂線10と回転ローラーに到達する前の電極のパスライン3との角度をθとし、これを入角とする。また、垂線10と回転ローラーから送りだされた電極のパスライン4との角度をθとし、これを出角とする。
【0020】
本発明においては、図2に示したθとθとを変化させて、シート状多孔性電極にポリマー溶液を充填した結果、θとθとが共に10°以上とすることにより、集電体上に塗布した電極合材の剥離を抑制するものである。このように、入角θと出角θとを共に10°以上とすることにより、シート状電極がポリマー溶液中の回転ローラーを周回する際の、電極の両面の合材にかかる引張応力または圧縮応力が緩和され、集電体上に塗布した合材の剥離を抑えることが可能となる。
【0021】
なお、入角θと出角θとは、それぞれ10°以上の範囲にあればよく、θ=θとしてもよいが、必ずしもθ=θとする必要はない。
【0022】
また、シート状電極としては、正極板の場合も、負極板の場合も、同様の範囲の入角θと出角θとを用いることができ、電極合材層の多孔度も特に限定されるものではない。
【0023】
本願発明においては、シート状電極の合材の剥離を抑えるためには、入角θと出角θとを共に10°以上とすればよいが、図2からわかるように、入角θと出角θとが大きくなるにしたがってポリマー溶液槽も大きくしなければならず、装置が大きくなるという問題が生じる。したがって、実用的には、入角θと出角θとは60°以下とすることが好ましい。
【0024】
本願発明のシート状電極は、電池に組み立てた後、有機電解液を注液することにより、シート状電極に備えられたポリマーが、有機電解液で膨潤することにより、イオン伝導性をもつポリマー電解質となる。
【0025】
【実施例】
以下、本発明を、実施例を用いて詳細に説明する。
【0026】
<実施例1〜5、比較例1、2>
[実施例1]
まず、シート状電極として正極板を用いた場合について説明する。シート状正極板は次のようにして作製した。まず、ニッケル酸リチウム(LiNiO)88重量%と、アセチレンブラック4重量%と、ポリフッ化ビニリデン(PVdF)8重量%とを、Nメチル−2−ピロリドン(NMP)中で分散させることにより、正極ペーストを作製した。この正極ペーストを、集電体としての厚さ20μm、幅48mmのアルミニウム箔の両面に塗布し、つぎに、130℃で乾燥することにより、NMPを蒸発させ、さらに、両面をロールプレスで圧縮成型した。このようにして、アルミニウム箔の両面に正極合剤層を備えた、集電体と正極合材層の合計厚みが150μmの正極板を得た。正極合材層の多孔度は35%とした。
【0027】
図2と同じ製造装置を用いて、室温で、この正極板の孔中にポリマー溶液を充填した。ポリマー溶液としては、8wt%のポリフッ化ビニリデン(PVdF)を溶解したNMP溶液を用いた。そして、入角θを10°、出角θを30°とした。
【0028】
[実施例2]
入角θを30°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0029】
[実施例3]
入角θを45°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0030】
[実施例4]
入角θを60°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0031】
[実施例5]
入角θを70°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0032】
[比較例1]
入角θを5°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0033】
[比較例2]
入角θを80°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0034】
実施例1〜4および比較例1、2のシート状正極板について、正極合材層の剥離の程度を、シート状正極板20mを、ポリマー溶液中を速度20cm/minで通過させた後、ポリマー溶液を観察して、つぎの3段階に区分した。
【0035】
剥離大=ポリマー溶液中に正極合材粉末が多数認められ、ポリマー溶液の表面にも正極合材粉末が多数浮遊している。
【0036】
剥離小=ポリマー溶液中に少量の正極合材粉末が認められる。
【0037】
剥離なし=ポリマー溶液中に正極合材粉末がまったく認められない。
【0038】
結果を表1にまとめた。
【0039】
【表1】

Figure 2004327319
【0040】
表1から、つぎのことが明らかとなった。入角が5°の比較例1では、極板から合材の剥離が大きかった。また、入角が10°の実施例1では、少量の合材の剥離が認められた。入角を30°以上にすればするほど極板にかかる応力が小さくなり、合材の剥離は認められなかったが、大きなポリマー槽が必要となるため現実的ではない。よって入角は10°以上、好ましくは10°から60°の範囲とする必要がある。
【0041】
<実施例6〜11および比較例3〜5>
[実施例6]
入角θを10°とし、出角θを45°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0042】
[実施例7]
入角θを10°とし、出角θを60°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0043】
[実施例8]
入角θを45°とし、出角θを45°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0044】
[実施例9]
入角θを45°とし、出角θを60°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0045】
[実施例10]
入角θを60°とし、出角θを45°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0046】
[実施例11]
入角θを60°とし、出角θを60°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0047】
[比較例3]
入角θを10°とし、出角θを5°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0048】
[比較例4]
入角θを45°とし、出角θを5°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0049】
[比較例3]
入角θを60°とし、出角θを5°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0050】
実施例6〜11および比較例3〜5のシート状正極板について、正極合材層の剥離の程度を、実施例1と同じ条件で観察した。その結果を表2にまとめた。
【0051】
【表2】
Figure 2004327319
【0052】
表2から、つぎのことが明らかとなった。出角が5°の比較例3〜5では、極板から合材の剥離が大きかったが、入角も出角もともに10°以上である実施例6〜11では合材の剥離は認められなかった。
【0053】
<実施例12〜17>
[実施例12]
ポリマー溶液の温度を5℃とした以外は実施例8と同様にして、実施例8と同様にして、正極板の孔中にポリマー溶液を充填した。
【0054】
[実施例13]
ポリマー溶液の温度を15℃とした以外は実施例8と同様にして、実施例8と同様にして、正極板の孔中にポリマー溶液を充填した。
【0055】
[実施例14]
ポリマー溶液の温度を25℃とした以外は実施例8と同様にして、実施例8と同様にして、正極板の孔中にポリマー溶液を充填した。
【0056】
[実施例15]
ポリマー溶液の温度を40℃とした以外は実施例8と同様にして、実施例8と同様にして、正極板の孔中にポリマー溶液を充填した。
【0057】
[実施例16]
ポリマー溶液の温度を50℃とした以外は実施例8と同様にして、実施例8と同様にして、正極板の孔中にポリマー溶液を充填した。
【0058】
[実施例17]
ポリマー溶液の温度を60℃とした以外は実施例8と同様にして、実施例8と同様にして、正極板の孔中にポリマー溶液を充填した。
【0059】
実施例12〜15および比較例6、7のシート状正極板について、正極合材層の剥離の程度を、実施例1と同じ条件で観察した。その結果を表3にまとめた。
【0060】
【表3】
Figure 2004327319
【0061】
表3から、つぎのことが明らかとなった。ポリマー溶液の温度が15℃〜40℃の範囲の実施例13〜15の場合には、正極合材層の剥離は認められなかったが、ポリマー溶液の温度が5℃である実施例12、50℃である実施例16および60℃である実施例17では、正極合材層の少量の剥離が認められた。この結果、ポリマー溶液の温度は15℃〜40℃の範囲が特に好ましい。
【0062】
<実施例18〜22、比較例6、7>
[実施例18]
シート状電極として負極板を用いた場合について説明する。負極活物質としてのグラファイト92重量%と、PVdF8重量%とを混合し、NMP中で分散させることにより、負極ペーストを作製した。この負極ペーストを、集電体としての厚さ15μm、幅50mmの銅箔の両面に塗布し、つぎに、130℃で乾燥することにより、NMPを蒸発させ、さらに、両面をロールプレスで圧縮成型した。このようにして、銅箔の両面に正極合剤層を備えた、集電体と負極合材層の合計厚みが160μmの正極板を得た。負極合材層の多孔度は35%とした。
【0063】
そして、入角θを10°、出角θを30°とした以外は実施例1と同様にして、負極板の孔中にポリマー溶液を充填した。
【0064】
[実施例19]
入角θを30°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0065】
[実施例20]
入角θを45°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0066】
[実施例21]
入角θを60°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0067】
[実施例22]
入角θを70°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0068】
[比較例6]
入角θを5°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0069】
[比較例7]
入角θを80°とした以外は実施例1と同様にして、正極板の孔中にポリマー溶液を充填した。
【0070】
実施例18〜22および比較例6、7のシート状負極板について、負極合材層の剥離の程度を、実施例1と同じ条件で観察した。その結果を表4にまとめた。
【0071】
【表4】
Figure 2004327319
【0072】
表4から、つぎのことが明らかとなった。シート状負極板の場合も、実施例1〜5および比較例1、2で述べた、シート状正極板の場合と同様の結果が得られた。よって、シート状負極板の場合も、シート状正極板の場合と同様、入角は10°以上、好ましくは10°から60°の範囲とする必要がある。
【0073】
【発明の効果】
以上述べたように、本発明の電極製造方法により、回転ローラー側の面の電極合材および回転ローラーとは反対側の面の電極合材が受ける応力を緩和することとなるため、集電体から電極合材が剥がれ落ちる現象を防止することができ、製造不良率の低い非水電解質電池を得ることが可能となる。
【図面の簡単な説明】
【図1】従来のポリマー充填装置を示す図。
【図2】本発明のポリマー充填装置を示す図。
【符号の説明】
1 ポリマー溶液槽
2 シート状電極
3 回転ローラーに到達する前の電極のパスライン
4 回転ローラーから送り出された後の電極のパスライン
5 ポリマー槽の外部に設けられた第1の回転ローラー
6 ポリマー溶液槽中に備えられた回転ローラー
7 ポリマー溶液槽の外部に設けられた第2の回転ローラー
8 ポリマー溶液
9 ポリマー溶液の液面
10 ポリマー溶液の液面に対する垂線[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an electrode, in which a sheet-like porous electrode is filled with a polymer solution.
[0002]
[Prior art]
Currently, the positive and negative electrodes of commercially available lithium ion batteries are made by mixing and kneading active material particles, a polymer as a binder, and a conductive auxiliary agent if the electronic conductivity of the active material is insufficient. It is manufactured by applying it to a current collector and drying it. The positive / negative electrode manufactured in this way has pores in the gaps between the active material particles, and by impregnating the pores with the electrolytic solution, secures a movement path of lithium ions necessary for the electrode reaction, and has excellent properties. Battery performance can be obtained.
[0003]
However, since the above-mentioned lithium ion secondary battery uses a flammable organic electrolytic solution as an electrolyte, the capacity of the battery is limited due to the need to limit the utilization rate of the active material due to safety issues. It is necessary to provide various safety devices such as a protection circuit and a PTC element, and there is a problem that the structure becomes complicated.
[0004]
Therefore, attempts have been made to improve the safety of the battery by reducing the flammable organic electrolyte as much as possible, and to omit the safety device. In this case, simply reducing the amount of the organic electrolyte does not make it possible to obtain excellent battery performance, which is a characteristic of a lithium ion battery.
[0005]
The reason is that, in a lithium ion battery, most of the amount of lithium ions involved in the electrode reaction during charge and discharge moves in the electrolyte and reaches the counter electrode, so that the electrolyte as a lithium ion diffusion path is This is because it is an indispensable element.
[0006]
Attempts have been made to apply a polymer electrolyte to part of this diffusion path. However, when a polymer electrolyte is used instead of the electrolyte in the pores of the electrode, the diffusion rate of ions in the electrolyte becomes very slow, and the charge / discharge characteristics at a high rate are reduced. There was a problem that performance could not be obtained.
[0007]
In order to solve this problem, attempts have been made to make the polymer electrolyte in the electrode pores porous and improve the high rate discharge characteristics of the battery by rapid ion diffusion in the free electrolyte solution in the pores. I have. In this case, the amount of free electrolyte solution can be reduced by the amount of the polymer filled in the pores of the electrode, so that the battery is safer than a battery using a conventional polymer electrolyte. Sufficient battery performance can be obtained by rapid ion diffusion in the pores.
[0008]
The method for producing a polymer electrode as described above has been produced by passing a porous electrode through a solution tank provided with a rotating roller having poor solubility with the polymer. By adopting such a manufacturing method, it is possible to continuously perform the polymer filling treatment.
[0009]
[Problems to be solved by the invention]
When the porous electrode filled with the polymer electrolyte passes through the rotating roller, a phenomenon has occurred in which the mixture of the active material, the conductive additive, and the binder applied to the surface of the electrode plate peels off. .
[0010]
FIG. 1 shows an electrode manufacturing method for filling a polymer solution into pores of a conventional sheet-like porous electrode. In FIG. 1, 1 is a polymer solution tank, 2 is a sheet-like electrode, 3 is a pass line of the electrode before reaching the rotating roller, 4 is a pass line of the electrode sent out from the rotating roller, and 5 is a polymer tank. , A first rotating roller provided in a polymer solution tank, 7 a second rotating roller provided outside the polymer solution tank, 8 a polymer solution, 9 a polymer This is the level of the solution.
[0011]
The polymer solution tank 1 is filled with a polymer solution 8. When the sheet electrode 2 passes through the polymer solution 8, the holes existing in the sheet electrode 2 are filled with the polymer solution 8. The sheet electrode 2 passes through the first rotating roller 5 and enters the polymer solution 8 in a state perpendicular to the liquid surface 9 of the polymer solution (the angle of incidence is set to 0 °). Then, it circulates around the rotating roller 6 provided in the polymer solution tank 1, exits the polymer solution 8 in a state perpendicular to the liquid surface 9 of the polymer solution, and travels in the direction of the arrow through the second rotating roller. .
[0012]
According to the conventional electrode manufacturing method shown in FIG. 1, it is possible to continuously fill the polymer into the pores of the porous sheet electrode, but the sheet electrode is in a state perpendicular to the polymer solution (when the angle of incidence is 0). °)), and the electrode mixture applied on the current collector is peeled off.
[0013]
This is because when the electrode passes through the rotating roller, the angle between the pass line immediately before reaching the rotating roller and the pass line of the electrode immediately after being sent from the rotating roller is parallel. As a result, when the electrode passes through the rotating roller portion, the electrode plate mixture on the surface on the side of the rotating roller receives compressive stress, while the electrode plate mixture on the surface on the side opposite to the rotating roller receives tensile stress. A phenomenon has occurred in which the active material mixture is peeled off from the electrode by receiving a compressive stress and a tensile stress which are larger than the binding force of the binder.
[0014]
Note that once the active material is peeled from the electrode, a peeling phenomenon occurs continuously thereafter, so that a finished electrode product cannot be obtained, and an electrode having the intended polymer electrolyte cannot be obtained.
[0015]
Therefore, the present invention has been made to solve the problem of the active material peeling off from the electrode in the conventional electrode manufacturing method of filling the pores of the electrode with the polymer solution, and prevents the active material from peeling from the electrode. It is an object of the present invention to provide an electrode manufacturing method capable of performing the above.
[0016]
[Means for Solving the Problems]
The invention according to claim 1 is a method for manufacturing an electrode, comprising a rotating roller in a polymer solution tank, passing a sheet-like porous electrode around the rotating roller, and filling a polymer solution in a hole of the electrode. An angle at which the sheet-shaped porous electrode enters the polymer solution and an angle at which the sheet-shaped porous electrode emerges from the polymer solution are set to 10 ° or more with respect to the liquid surface of the polymer solution.
[0017]
According to the first aspect of the present invention, since the stress applied to the electrode mixture on the surface of the sheet-like porous electrode on the side of the rotating roller and the electrode mixture on the surface on the side opposite to the rotating roller is reduced, the current collection is performed. The phenomenon in which the electrode mixture is peeled off from the body can be prevented.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention provides a method of manufacturing an electrode, comprising a rotating roller provided in a polymer solution tank, passing a sheet-shaped porous electrode around the rotating roller, and filling a polymer solution into pores of the electrode. An angle at which the electrode enters the polymer solution and an angle at which the electrode exits the polymer solution are not less than 10 ° with respect to the liquid surface of the polymer solution.
[0019]
FIG. 2 shows the electrode manufacturing method of the present invention. Symbols 1 to 9 in FIG. 2 indicate the same as those in FIG. Further, 10 indicates a normal to the liquid surface of the polymer solution, the angle between the pass line 3 of the electrode before reaching the the perpendicular 10 rotating rollers and theta 1, which is the input and corners. Further, the angle between the pass line 4 of electrodes fed the perpendicular 10 from rotating rollers and theta 2, the exit angle this.
[0020]
In the present invention, by changing θ 1 and θ 2 shown in FIG. 2 and filling the sheet-like porous electrode with the polymer solution, both θ 1 and θ 2 are set to 10 ° or more. It is intended to prevent the electrode mixture applied on the current collector from peeling off. Thus, by the the output angle theta 2 between input angle theta 1 both 10 ° or more, when the sheet electrode is orbiting the rotating rollers of the polymer solution, tensile according to mixture member of the double-sided electrode Stress Alternatively, the compressive stress is alleviated, and peeling of the mixture applied on the current collector can be suppressed.
[0021]
Note that the exit angle theta 2 between input angle theta 1, sufficient if the range of more than 10 °, respectively, theta 1 = theta may be two, but not necessarily have to be θ 1 = θ 2.
[0022]
As the sheet-like electrodes, in the case of the positive electrode plate, even if the negative electrode plate, it is possible to use the output angle theta 2 between input angle theta 1 of the same range, in particular also the porosity of the electrode mixture layer Limited It is not something to be done.
[0023]
In the present invention, in order to suppress peeling of the mixture material of the sheet electrode may be a left angle theta 2 between input angle theta 1 with both 10 ° or more, but as can be seen from Figure 2, the input angle theta polymer solution chamber in accordance with one and the exit angle theta 2 is greater must be increased, a problem that device becomes large. Thus, In practice, it is preferable that the 60 ° or less to the left angle theta 2 between input angle theta 1.
[0024]
The sheet electrode of the present invention is a polymer electrolyte having ion conductivity by assembling into a battery and then pouring an organic electrolyte, whereby the polymer provided in the sheet electrode swells with the organic electrolyte. It becomes.
[0025]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
[0026]
<Examples 1 to 5, Comparative Examples 1 and 2>
[Example 1]
First, a case where a positive electrode plate is used as a sheet-like electrode will be described. The sheet-shaped positive electrode plate was produced as follows. First, 88 wt% of lithium nickelate (LiNiO 2 ), 4 wt% of acetylene black, and 8 wt% of polyvinylidene fluoride (PVdF) are dispersed in N-methyl-2-pyrrolidone (NMP) to form a positive electrode. A paste was made. This positive electrode paste is applied to both sides of an aluminum foil having a thickness of 20 μm and a width of 48 mm as a current collector, and then dried at 130 ° C. to evaporate NMP. Further, both sides are compression-molded by a roll press. did. Thus, a positive electrode plate having a total thickness of 150 μm of the current collector and the positive electrode mixture layer, which was provided with the positive electrode mixture layers on both surfaces of the aluminum foil, was obtained. The porosity of the positive electrode mixture layer was 35%.
[0027]
The polymer solution was filled in the holes of the positive electrode plate at room temperature using the same manufacturing apparatus as in FIG. As the polymer solution, an NMP solution in which 8% by weight of polyvinylidene fluoride (PVdF) was dissolved was used. Then, input angle theta 1 to 10 °, the Izusumi theta 2 and 30 °.
[0028]
[Example 2]
Except that the input angle theta 1 and 30 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0029]
[Example 3]
Except that the input angle theta 1 and 45 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0030]
[Example 4]
Except that the input angle theta 1 and 60 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0031]
[Example 5]
Except that the input angle theta 1 and 70 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0032]
[Comparative Example 1]
Except that the input angle theta 1 and 5 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0033]
[Comparative Example 2]
Except that the input angle theta 1 and 80 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0034]
For the sheet-shaped positive electrode plates of Examples 1 to 4 and Comparative Examples 1 and 2, the degree of peeling of the positive electrode mixture layer was determined by passing the sheet-shaped positive electrode plate 20m through the polymer solution at a speed of 20 cm / min. The solution was observed and divided into the following three stages.
[0035]
Large peeling = a large number of positive electrode mixture powders are found in the polymer solution, and a large number of positive electrode mixture powders are also floating on the surface of the polymer solution.
[0036]
Small peeling = a small amount of positive electrode mixture powder is observed in the polymer solution.
[0037]
No peeling = no positive electrode mixture powder was observed in the polymer solution.
[0038]
The results are summarized in Table 1.
[0039]
[Table 1]
Figure 2004327319
[0040]
From Table 1, the following became clear. In Comparative Example 1 in which the angle of incidence was 5 °, peeling of the mixture from the electrode plate was large. In Example 1 in which the angle of incidence was 10 °, a small amount of exfoliation of the mixture was observed. As the angle of incidence was set to 30 ° or more, the stress applied to the electrode plate became smaller, and peeling of the mixture was not recognized. However, it was not practical because a large polymer tank was required. Therefore, the angle of incidence needs to be 10 ° or more, preferably in the range of 10 ° to 60 °.
[0041]
<Examples 6 to 11 and Comparative Examples 3 to 5>
[Example 6]
The entrance angle theta 1 and 10 °, except for using Izusumi theta 2 to 45 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0042]
[Example 7]
The entrance angle theta 1 and 10 °, except that the Izusumi theta 2 was 60 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0043]
Example 8
The entrance angle theta 1 and 45 °, except for using Izusumi theta 2 to 45 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0044]
[Example 9]
The entrance angle theta 1 and 45 °, except that the Izusumi theta 2 was 60 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0045]
[Example 10]
The entrance angle theta 1 and 60 °, except for using Izusumi theta 2 to 45 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0046]
[Example 11]
The entrance angle theta 1 and 60 °, except that the Izusumi theta 2 was 60 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0047]
[Comparative Example 3]
The entrance angle theta 1 and 10 °, except for using Izusumi theta 2 to 5 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0048]
[Comparative Example 4]
The entrance angle theta 1 and 45 °, except for using Izusumi theta 2 to 5 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0049]
[Comparative Example 3]
The entrance angle theta 1 and 60 °, except for using Izusumi theta 2 to 5 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0050]
With respect to the sheet-shaped positive electrode plates of Examples 6 to 11 and Comparative Examples 3 to 5, the degree of peeling of the positive electrode mixture layer was observed under the same conditions as in Example 1. Table 2 summarizes the results.
[0051]
[Table 2]
Figure 2004327319
[0052]
From Table 2, the following became clear. In Comparative Examples 3 to 5 in which the exit angle was 5 °, the separation of the mixture from the electrode plate was large, but in Examples 6 to 11 in which both the entrance angle and the exit angle were 10 ° or more, the separation of the mixture was recognized. Did not.
[0053]
<Examples 12 to 17>
[Example 12]
The polymer solution was filled in the holes of the positive electrode plate in the same manner as in Example 8, except that the temperature of the polymer solution was 5 ° C.
[0054]
Example 13
The procedure of Example 8 was repeated, except that the temperature of the polymer solution was changed to 15 ° C., to fill the holes in the positive electrode plate with the polymer solution.
[0055]
[Example 14]
The procedure of Example 8 was repeated, except that the temperature of the polymer solution was changed to 25 ° C., to fill the holes in the positive electrode plate with the polymer solution.
[0056]
[Example 15]
The polymer solution was filled in the holes of the positive electrode plate in the same manner as in Example 8, except that the temperature of the polymer solution was set to 40 ° C.
[0057]
[Example 16]
The procedure of Example 8 was repeated, except that the temperature of the polymer solution was set to 50 ° C., to fill the holes in the positive electrode plate with the polymer solution.
[0058]
[Example 17]
The procedure of Example 8 was repeated, except that the temperature of the polymer solution was set to 60 ° C., and the polymer solution was filled in the holes of the positive electrode plate.
[0059]
For the sheet-shaped positive electrode plates of Examples 12 to 15 and Comparative Examples 6 and 7, the degree of peeling of the positive electrode mixture layer was observed under the same conditions as in Example 1. Table 3 summarizes the results.
[0060]
[Table 3]
Figure 2004327319
[0061]
Table 3 shows the following. In the case of Examples 13 to 15 in which the temperature of the polymer solution was in the range of 15 ° C to 40 ° C, peeling of the positive electrode mixture layer was not recognized, but Examples 12 and 50 in which the temperature of the polymer solution was 5 ° C. In Example 16 at 60 ° C. and Example 17 at 60 ° C., a small amount of the positive electrode mixture layer was peeled off. As a result, the temperature of the polymer solution is particularly preferably in the range of 15C to 40C.
[0062]
<Examples 18 to 22, Comparative Examples 6 and 7>
[Example 18]
A case where a negative electrode plate is used as a sheet-like electrode will be described. A negative electrode paste was prepared by mixing 92% by weight of graphite as a negative electrode active material and 8% by weight of PVdF and dispersing the mixture in NMP. This negative electrode paste is applied to both sides of a copper foil having a thickness of 15 μm and a width of 50 mm as a current collector, and then dried at 130 ° C. to evaporate NMP. Further, both sides are compression-molded by a roll press. did. In this way, a positive electrode plate having a total thickness of a current collector and a negative electrode mixture layer of 160 μm, provided with the positive electrode mixture layers on both surfaces of the copper foil, was obtained. The porosity of the negative electrode mixture layer was 35%.
[0063]
The entrance angle theta 1 to 10 °, except that the Izusumi theta 2 to 30 ° in the same manner as in Example 1, the polymer solution was filled into the pores of the negative electrode plate.
[0064]
[Example 19]
Except that the input angle theta 1 and 30 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0065]
[Example 20]
Except that the input angle theta 1 and 45 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0066]
[Example 21]
Except that the input angle theta 1 and 60 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0067]
[Example 22]
Except that the input angle theta 1 and 70 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0068]
[Comparative Example 6]
Except that the input angle theta 1 and 5 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0069]
[Comparative Example 7]
Except that the input angle theta 1 and 80 ° in the same manner as in Example 1, was filled with the polymer solution into the pores of the positive electrode plate.
[0070]
With respect to the sheet-shaped negative electrode plates of Examples 18 to 22 and Comparative Examples 6 and 7, the degree of peeling of the negative electrode mixture layer was observed under the same conditions as in Example 1. Table 4 summarizes the results.
[0071]
[Table 4]
Figure 2004327319
[0072]
From Table 4, the following became clear. Also in the case of the sheet-shaped negative electrode plate, the same results as in the case of the sheet-shaped positive electrode plate described in Examples 1 to 5 and Comparative Examples 1 and 2 were obtained. Therefore, also in the case of a sheet-shaped negative electrode plate, similarly to the case of a sheet-shaped positive electrode plate, the angle of incidence needs to be 10 ° or more, preferably in the range of 10 ° to 60 °.
[0073]
【The invention's effect】
As described above, the electrode manufacturing method of the present invention reduces the stress applied to the electrode mixture on the surface on the rotating roller side and the electrode mixture on the surface on the side opposite to the rotating roller. This can prevent a phenomenon in which the electrode mixture is peeled off from the electrode, and it is possible to obtain a nonaqueous electrolyte battery having a low production defect rate.
[Brief description of the drawings]
FIG. 1 is a diagram showing a conventional polymer filling device.
FIG. 2 is a view showing a polymer filling device of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 polymer solution tank 2 sheet electrode 3 electrode pass line 4 before reaching rotating roller 4 electrode pass line 5 after being sent from rotating roller 5 first rotating roller 6 provided outside polymer tank 6 polymer solution Rotating roller 7 provided in a tank Second rotating roller 8 provided outside polymer solution tank 8 Polymer solution 9 Liquid surface of polymer solution 10 Perpendicular to liquid surface of polymer solution

Claims (1)

ポリマー溶液槽中に回転ローラー備え、前記回転ローラーを周回するようにシート状多孔性電極を通過させ、電極の孔中にポリマー溶液を充填する電極製造方法において、前記シート状多孔性電極をポリマー溶液に入る角度およびポリマー溶液からでる角度が、ポリマー溶液の液面に対して10°以上とすることを特徴とする電極製造方法。A method of manufacturing an electrode, comprising a rotating roller provided in a polymer solution tank, passing the sheet-shaped porous electrode around the rotating roller, and filling the polymer solution into the pores of the electrode. The method for producing an electrode, wherein an angle entering the liquid and an angle coming out of the polymer solution are 10 ° or more with respect to the liquid surface of the polymer solution.
JP2003122296A 2003-04-25 2003-04-25 Electrode manufacturing method Pending JP2004327319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003122296A JP2004327319A (en) 2003-04-25 2003-04-25 Electrode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003122296A JP2004327319A (en) 2003-04-25 2003-04-25 Electrode manufacturing method

Publications (1)

Publication Number Publication Date
JP2004327319A true JP2004327319A (en) 2004-11-18

Family

ID=33500574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003122296A Pending JP2004327319A (en) 2003-04-25 2003-04-25 Electrode manufacturing method

Country Status (1)

Country Link
JP (1) JP2004327319A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016514356A (en) * 2013-03-12 2016-05-19 エネヴェート・コーポレーション Electrode, electrochemical cell, and method for forming electrode and electrochemical cell
US9997765B2 (en) 2010-12-22 2018-06-12 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9997765B2 (en) 2010-12-22 2018-06-12 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US10431808B2 (en) 2010-12-22 2019-10-01 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10516155B2 (en) 2010-12-22 2019-12-24 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10985361B2 (en) 2010-12-22 2021-04-20 Enevate Corporation Electrodes configured to reduce occurrences of short circuits and/or lithium plating in batteries
US11177467B2 (en) 2010-12-22 2021-11-16 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US11784298B2 (en) 2010-12-22 2023-10-10 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US11837710B2 (en) 2010-12-22 2023-12-05 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
JP2016514356A (en) * 2013-03-12 2016-05-19 エネヴェート・コーポレーション Electrode, electrochemical cell, and method for forming electrode and electrochemical cell
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US11916228B2 (en) 2017-12-07 2024-02-27 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same

Similar Documents

Publication Publication Date Title
CN108780887B (en) Elemental metal and carbon mixtures for energy storage devices
JP4150516B2 (en) Method for producing graphite-containing composition for negative electrode of lithium secondary battery, method for producing negative electrode for lithium secondary battery, and method for producing lithium secondary battery
JP5365106B2 (en) Method for producing electrode for electrochemical element, and electrode for electrochemical element
JP5163439B2 (en) FIBER-CONTAINING POLYMER FILM AND METHOD FOR PRODUCING SAME, ELECTROCHEMICAL DEVICE AND METHOD FOR PRODUCING SAME
JP5334156B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6936419B2 (en) Electrodes for lithium-ion secondary batteries and lithium-ion secondary batteries
JP2008179903A (en) Porous membrane, separator for electrochemical element, method for producing porous membrane, nonaqueous electrolyte battery, and method for producing nonaqueous electrolyte battery
KR100547085B1 (en) Manufacturing method of polymer porous separator and lithium ion polymer battery
JP2009076410A (en) Manufacturing method of multilayer porous membrane, separator for electrochemical element, and electrochemical element
US9214661B2 (en) Electrode manufacturing method
JP5260851B2 (en) Lithium ion secondary battery
JP2015072753A (en) Lithium ion secondary battery
TW201937784A (en) Lithium ion secondary battery electrode, production method for same, and lithium ion secondary battery
JP6300619B2 (en) Method and apparatus for manufacturing electrode plate of lithium ion secondary battery
US20070003836A1 (en) Composite particle for electrode and method for producing same, electrode and method for producing same, and electrochemical device and method for producing same
JP6303871B2 (en) Separator and lithium ion secondary battery
JP2015146254A (en) Nonaqueous electrolyte secondary battery
JP5798144B2 (en) Lithium ion battery manufacturing apparatus and lithium ion battery manufacturing method
JP2004327319A (en) Electrode manufacturing method
JP2009277432A (en) Electrode for secondary battery, manufacturing method thereof, and secondary battery
JP7301082B2 (en) Method for manufacturing electrode for secondary battery and method for manufacturing secondary battery
CN111164801A (en) Electrode, electricity storage element, and method for manufacturing electrode
JP5560870B2 (en) Separator, electrochemical device, and separator manufacturing method
JP2006338993A (en) Nonaqueous electrolyte secondary battery
JP6876879B2 (en) Method for manufacturing electrodes for lithium ion secondary batteries, lithium ion secondary batteries and electrodes for lithium ion secondary batteries

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213