JP2004325334A - Method of identifying optical fiber, and light-receiving apparatus - Google Patents

Method of identifying optical fiber, and light-receiving apparatus Download PDF

Info

Publication number
JP2004325334A
JP2004325334A JP2003122141A JP2003122141A JP2004325334A JP 2004325334 A JP2004325334 A JP 2004325334A JP 2003122141 A JP2003122141 A JP 2003122141A JP 2003122141 A JP2003122141 A JP 2003122141A JP 2004325334 A JP2004325334 A JP 2004325334A
Authority
JP
Japan
Prior art keywords
optical fiber
light
light receiving
receiving device
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003122141A
Other languages
Japanese (ja)
Other versions
JP4087282B2 (en
Inventor
Shiroshi Yamamoto
素 山本
Kazuyuki Shiraki
和之 白木
Yuji Aoyanagi
雄二 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003122141A priority Critical patent/JP4087282B2/en
Publication of JP2004325334A publication Critical patent/JP2004325334A/en
Application granted granted Critical
Publication of JP4087282B2 publication Critical patent/JP4087282B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an method of identifying optical fiber which not only identifies optical fibers, but also specifies the transmitting direction of signal light of the identified optical fibers. <P>SOLUTION: A curved part is formed in an optical fiber to be identified (1), and leakage light leaking from the curved part is detected by a light-receiving apparatus (4) to identify the optical fiber. A light-receiving element of the light receiving apparatus (4) has such a diaphragm as to specify a light-receiving area so that output is, according to the transmitting direction of identifying light. The leakage light is detected in a first detection process. When the leakage light is detected, an optical fiber to be distinguished is specified. The orientation of the light-receiving apparatus is reversed to detect leakage light in a second detection process. Then the intensity of the leaking light in the first detection process is compared with the intensity of the leaking light in the second detection process. Depending on the result of the comparison, the transmission direction of signal light traveling from a station toward a subscriber is specified. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバ通信網の建設や保守にあたり、光ファイバの誤切断や誤接続を回避するために、光ファイバの特定を行う光ファイバ対照方法、特に光ファイバの対照に加えて局から加入者宅又は局から別の局に信号光が伝搬する方向も併せて判定できる光ファイバ対照方法に関するものである。
【0002】
【従来の技術】
光ファイバ通信網の建設や保守にあたり、光ファイバ1の誤切断や誤接続といった事態を発生させないために、作業現場において光ファイバケーブル内、或いは加入者宅の光ファイバの個別識別を行う必要がある。この作業を光ファイバ対照とよび、通常は図1に示すような方法で実施されている。即ち、対照を必要とする光ファイバ1の上流側(図1では左側が相当し、加入者宅から局に向く方向)に設置した対照用光信号光源装置(以下「光源装置」という)2から対照用光信号入射装置(以下「入射装置」という)3を介して光ファイバ1に対照用光信号(以下「対照光」という)を入射させる。光ファイバ1の下流部側(図1では右側が相当し、局から加入者宅に向く方向)では、対照用光信号受光装置(以下「受光装置」という)4を用いて光ファイバ1に曲げを与えることにより、対照光を光ファイバ心線1外へ漏洩ないし出射させて、出射した漏洩光を検出する。
【0003】
ここで、光源装置2は、加入者宅へ情報等を提供する通信用光信号(以下「通信光」という)よりも波長の長いレーザーダイオード(LD)や発光ダイオード(LED)などの光に270Hzの周波数変調を加えた信号光を発光する装置である。例えば、通信光の波長が1.31μmの場合は対照光の波長は1.55μmを採用し、通信光の波長が1.55μmの場合は対照光の波長は1.65μmを採用する。また、入射装置3としては、光ファイバカップラや導波路型方向性結合器、或いは光ファイバ1の上部側端面から直接対照光が入射されたりする。また、受光装置4には、通信光の揖失をある所定のレベルに抑制しつつ、光ファイバ1外へ対照光のみを効率的に放射させるための湾曲機構が設けられていると共に、この放射させた光を受光するためのGeフォトダイオードやInGaAsフォトダイオードなどの対照用光信号受光素子(以下「受光素子」という)が設けられており、対照光の有無の判別や・強度測定をすることができる。
このような構成により、通信光の送受信中であっても、光ファイバ1の上部側から入射した対照光を下部側の作業者が受光装置4を用いて検出することにより、光ファイバ対照が遂行される。(例えば、非特許文献1参照)
【0004】
【非特許文献1】
榎本ほか:“ハイブリッド型光モジュールを用いた小型光ファイバIDテスタの設計”、1996年電子情報通信学会通信ソサイエティ大会講演論文集(分冊:通信2)、講演番号B−976、P.461
【0005】
【発明が解決しようとする課題】
これまでの光ファイバケーブルの設備量が少ない光サービス需要の黎明期において主流であったスター網においては、光線路の上部下部の特定は目視で十分可能であった。しかし、今後増加していく光サービス需要に対応するための配線形態の1つであるループ網においては、光ファイバ1の切断位置を詳細に決めるため光線路の上流側及び下流側を特定できず、誤った位置で光ファイバ1を切断してしまう危険性があった。従って、光ファイバの対照に加えて上流側か下流側かを特定できれば、誤作業の危険性を回避できる利点が達成される。しかしながら、従来から使用している受光装置4が光ファイバ1に与える湾曲の形状は、図2に示すように、上流側及び下流側において対称であり、且つ、対照用光信号を受光素子に導く導波口の中央線と受光素子の中央線の位置が同じであったため、光ファイバ1の上流側(図1では左側)、下流側(図1では右側)のどちらから対照光が入射されても、対照光の強度測定において、同じ計測値であるため、一つの受光素子では対照用光信号の進行方向、つまり、光線路の上部下部の判定ができなかった。また、受光素子を二つ使用して光線路の上流又は下流の判定をする方法ではコストがかかるという問題があった。
【0006】
従って、本発明は上述の事情を鑑みてなされたものであり、光ファイバの対照に加えて対照用光信号の進行方向、つまり、光線路の上流又は下流の判定を確実に行える光ファイバ対照方法を提供するものである。
さらに、本発明の目的は、複数の受光素子を用いることなく安価な測定装置を用いて光ファイバの対照及び光信号の伝搬方向を同時に特定できる光ファイバ対照方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明による光ファイバ対照方法は、複数の光ファイバを収容する局と当該局により収容された加入者宅との間又は局と別の局との間に敷設され又は敷設される予定の光ファイバを識別する心線対照方法であって、局側に配置した光源装置と当該局から見て下流側に配置した受光装置とを用い、光源装置を識別すべき光ファイバに光学的に結合して対照光を投射し、当該光ファイバから漏洩した光を前記受光装置により検出することにより光ファイバを識別する光ファイバの心線対照方法において、
前記受光装置として、対照すべき光ファイバをほぼ円弧状に湾曲させる光ファイバ案内部を有する受光装置本体と、この受光装置本体の光ファイバ案内部と対向するように配置され、単一の受光面により光ファイバから漏洩する光を受光する受光素子と、光ファイバ案内部と受光素子との間に位置し、前記受光素子に入射する光を規制する絞りとを具え、前記光ファイバ案内部は、第1の端部及び第1の端部とは反対側の第2の端部と、これら第1の端部と第2の端部との間に位置するほぼ円弧状の湾曲部を有し、前記受光素子及び絞りは円弧状湾曲部のピーク部と対向するように配置され、前記絞りの形状を、前記湾曲部の中心を通る中心線を含み、光ファイバ案内部を含む面とほぼ直交する面で前記受光素子の受光面を2分割した場合に、一方の側の受光面積が他方の側の受光面積よりも大きくなるように規定された受光装置を用い、
識別されるべき光ファイバに前記光源装置を光学的に結合し、前記受光装置に対照すべき光ファイバを装着する工程と、
前記光源装置から前記光ファイバに識別光を投射し、前記受光装置により光ファイバから漏洩する光を検出する第1の検出工程と、
漏洩光が検出された場合、当該光ファイバについて前記受光装置の装着方向を反対向きにして再度漏洩光を検出する第2の検出工程と、
第1の検出工程で検出された漏洩光の強度と第2の検出工程で検出された漏洩光の強度とを比較する工程とを具え、
前記比較結果に基づいて光ファイバの識別及び識別された光ファイバの局から加入者宅へ又は局から別の局へ送出される光信号の伝搬方向を特定することを特徴とする。
【0008】
初めに、本明細書において、上流側及び下流側の定義として、局と加入者宅との光線路について局側を上流側とし加入者宅側を下流側とする。また、特定の局と別の局との間においても、特定の局側を上流側とし別の局側を下流側とする。本発明者が、光ファイバの湾曲部から漏洩ないし出射する漏洩光について種々の実験及び解析を行った結果、光信号の伝搬方向に沿って強度分布が発生することが判明した。すなわち、対照光が湾曲部を伝搬する際、臨界角を超えると光ファイバから外部に出射する。この場合、出射する光は湾曲部のピーク位置から下流側に向けて進行する。従って、湾曲部のピーク位置よりも下流側に位置する部分に多くの出射光が到達しピーク位置よりも上流側に位置する部分には小量の漏洩光が入射する。この場合、2個の受光素子を用い湾曲部のピーク位置をはさんで一方の受光素子を上流側に配置し他方の受光素子を下流側に配置し、入射光量の差を検出することにより、光ファイバのいずれの側が上流側か下流側かを判別することができる。しかしながら、複数の受光素子を用いて判別するのでは、測定装置が高価になる不都合が生じてしまう。
【0009】
そこで、本発明では、1個の受光素子を用い信号光の伝搬方向を特定する。本発明では、1個の受光素子の受光面の受光面積について上流側と下流側とで差異を設ける。そして、受光素子をピーク部と対向するように配置し、ピーク部を挟んで一方の側の受光面積が大きくなり他方の側の受光面積が小さくなるように設定する。光ファイバの対照に際し、識別すべき光ファイバに対して受光装置の装着方向を反転して2回漏洩光を検出する。この場合、対照光の進行方向に対して受光面積が大きい側が対照光の伝搬方向の下流側に位置する場合、受光素子から相対的に大きな出力信号が発生し、一方受光面積が小さい側が上流側に位置する場合受光素子から小さな出力信号が発生する。従って、受光装置の装着方向を反転して2回測定するだけで対照光の伝搬方向を特定することができ、例えば高い強度の漏洩光が検出された検出工程において、受光面積が大きい側を下流側と判定することができる。このように、本発明では、多数の光ファイバを対照ないし識別する差異、特定の光ファイバを対照できるだけでなく安価な検出装置を用いて信号光の伝搬方向も併せて特定することができる。この結果、対照光の方向性を確実に判定でき、該当の光ファイバの特定はもちろんのこと、光ファイバの切断位置を詳細に決めるための光線路の上流及び下流を確実に特定できるようになるため、光ファイバの誤切断を防止できる。
【0010】
【発明の実施の形態】
図3は、本発明による光ファイバ対照方法が実施されるシステムの全体構成を示す線図である。本例では、局と加入者宅との間に敷設された光ファイバについて対照を行う例を説明する。対照すべき光ファイバを符号1で示し、この光ファイバの一端は局に収容され(図面の左側)、他端(図面の右側)は加入者宅に接続されているものとする。局には多数の光ファイバが収容されており、そのうちの1本の光ファイバ1について光線路の途中の位置において対照ないし識別を行う。局又はその近傍に光源装置2を配置する。光源装置2は入射装置(カップラ)3により光ファイバ1と光学的に結合され、光源装置から発生した対照光は入射装置3を介して光ファイバ1を加入者宅の方向に向けて伝搬する。加入者宅に至る途中の作業位置において、受光装置4を用いて多数の光ファイバから当該光ファイバ1を対照作業により特定する。この対照作業は、受光装置において光ファイバ1から漏洩ないし出射する漏洩光を検出することにより行われ、例えば多数の光ファイバから1本の光ファイバを取り出して受光装置4に装着し、漏洩光が検出されたか否かをもって局側で予め特定した光ファイバを識別する。漏洩光が検出されなかった場合、別の光ファイバを受光装置に装着し、漏洩光の検出を行う。
【0011】
図4は本発明による受光装置の一例を示すものであり、図4(a)は全体構成を示す斜視図であり、図4(b)は底面図であり、図4(c)は側面図である。受光装置4は、ブロック状の受光装置本体10を有し、この受光装置本体10は、識別すべき光ファイバをほぼ円弧状に湾曲させる光ファイバ案内部11を有する。この光ファイバ案内部は、光ファイバからの漏洩光を検出する際、光ファイバを保持すると共に識別すべき光ファイバにほぼ円弧状の湾曲部を形成するものであり、本例では一方の側面に開口した湾曲溝で構成する。従って、対照すべき光ファイバを湾曲溝内にはめ込むことにより対照すべき光ファイバを装着することができる。光ファイバ案内部は、一方の側に第1の端部11aを有し反対の側に第2の端部11bを有する。これら第1の端部と第2の端部との間にほぼ円弧状の湾曲部11cを設ける。この円弧状湾曲部11cの曲率半径は、当該光ファイバを伝搬してくる対照光が臨界角を超え、当該光ファイバから外部に出射ないし漏洩する値に設定する。円弧状の湾曲部の最突出部11dをピーク部と称する。
【0012】
図4b及びcに示すように、ピーク部11dと対向する位置に漏洩光を検出する受光素子12を配置する。受光装置本体10の、光ファイバ案内部のピーク部11dと受光素子12との間の区域に開口13を形成し、この開口13により受光素子12に入射する光を制限する。本例では、湾曲部11cのピーク部11dを通る軸線と受光素子の受光面の中心を通る軸線とが互いに一致するように位置決めする。従って、開口13は、受光素子12の受光面積を規制する絞りとして機能する。
【0013】
図5は開口すなわち絞り13の形状を示す線図である。本発明では、開口ないし絞り13の形状を、湾曲部のピーク部を通る軸線を含み光ファイバ案内部11を含む面と直交する面で受光素子12の受光面を2分割した場合、一方の側の受光面積が他方の側の受光面積よりも大きくなるように設定する。図5(a)は開口の形状を5角形とした例を示し、図5(b)は台形とした例を示し、図5(c)は三角形とした例を示す。開口13の形状をこのように設定することにより、受光素子12の受光面積は、図面の右側の領域が大きく左側の領域は小さくなる。この場合、図5において、左側から右側に向けて対照光が進行する場合、受光素子12はより多量の漏洩光を受光し一層大きな出力信号を発生する。一方、図5にて右側から左側に向けて対照光が進行する場合、光ファイバからの漏洩光は開口13により制限されるため、受光素子12には少量の漏洩光が入射し、受光素子から小さな出力信号が発生する。従って、光ファイバに対する受光装置の向きを反転させて2回漏洩光の検出を行い、受光素子からの出力信号を比較することにより対照光の進行方向を特定することができる。
【0014】
次に、作業現場において光ファイバの対照及び信号光の伝搬方向を特定するアルゴリズムについて説明する。図6は本発明による光ファイバの対照及び信号光の伝搬方向を特定するアルゴリズムを記載したフローチャートである。
[ステップ1]
作業現場において、多数の光ファイバから識別すべき1本の光ファイバを選択して受光装置に装着する。作業現場では、光ファイバのどちら側が局側か否か判別できないため、装着に際し、受光装置の向きすなわち例えば高い漏洩光強度が検出される方向(すなわち漏洩光に対する受光面積の大きい側に向く方向)を第1の方向とし弱い漏洩光強度が検出される方向を第2の方向として予め設定しておく。この場合、第1の方向が下流側(局からの信号光が進行する方向)となる。
[ステップ2]
次に、第1の漏洩光検出工程を実行する。局側に配置した光源装置から識別されるべき特定の光ファイバに対照光を投射し、受光装置の受光素子により漏洩光の検出を行う。漏洩光が検出されなかった場合、ステップ1に戻り、別の光ファイバを選択して受光装置に装着する。一方、漏洩光が検出された場合、当該光ファイバが識別されるべき光ファイバであると認定し、次のステップ3に移行する。
[ステップ3]
ステップ3において、第2の漏洩光検出工程を実行する。すなわち、当該光ファイバについて受光装置の装着方向を反転して漏洩光の検出を行う。
[ステップ4]
次に、第1の漏洩光検出工程において検出された漏洩光強度と反対向きで測定した第2の漏洩光検出工程において検出された漏洩光強度とを比較する。比較結果として、高い漏洩光強度が検出された検出工程における受光装置の向きをもって下流側と判断する。或いは、弱い漏洩光強度が検出された検出工程における受光装置の第2の方向を下流側と判断する。
【0015】
本発明は上述した実施例だけに限定されず種々の変形や変更が可能である。例えば、上述した実施例では、局又はその近傍に光源装置を配置して光線路の途中で光ファイバの対照を行う例を説明したが、勿論加入者宅側又は別の局側に光源装置を配置して光ファイバの対照を行うことも可能である。
さらに、上述した実施例では、複数の加入者を収容する局と当該局に収容されている加入者宅との間の光線路の対照又は識別を行う例を説明したが、局と別の局との間の光線路において光ファイバ対照を行う場合にも本発明を適用することができる。
さらに、対照すべき光ファイバとして、光ファイバ単心線、光ファイバテープ、或いは光ファイバコードを対照の対象とすることができる。
さらに、受光素子の受光面積を規定する絞りとして、受光装置本体に開口を形成して絞りを構成したが、別の部材として絞りを設けることも可能である。
【0016】
【発明の効果】
以上説明したように、本発明によれば、対照光の進行方向、つまり、光線路の上部下部を安価(一つの受光素子)で確実に判定でき、該当の光ファイバの特定はもちろんのこと、光ファイバの切断位置を詳細に決めることができるようになるため、光ファイバの誤切断を防止できるという効果を有している。
従って、今後の光通信サービスの工事稼動削減・信頼性向上に大きく寄与することができる。
【図面の簡単な説明】
【図1】従来の光ファイバ対照方法の一例を示す概略図である。
【図2】従来の受光装置を示す線図である。
【図3】本発明による光ファイバ対照方法を実施する全体のシステムを示す線図である。
【図4】本発明による受光装置の一例を示す線図である。
【図5】本発明による開口の種々の例を示す線図である。
【図6】本発明による光ファイバ対照方法のアルゴリズムを示すフローチャートである。
【符号の説明】
1 光フアイバ
2 対照用光信号光源装置
3 対照用光信号入射装置
4 受光装置
10 受光装置本体
11 光ファイバ案内部
12 受光素子
13 開口(絞り)
[0001]
TECHNICAL FIELD OF THE INVENTION
In the construction and maintenance of an optical fiber communication network, the present invention provides an optical fiber control method for specifying an optical fiber in order to avoid erroneous disconnection or incorrect connection of the optical fiber, particularly, in addition to the optical fiber control, a subscriber from a station. The present invention relates to an optical fiber contrast method that can also determine the direction in which signal light propagates from a home or a station to another station.
[0002]
[Prior art]
In the construction and maintenance of the optical fiber communication network, it is necessary to individually identify the optical fiber in the optical fiber cable or at the subscriber's house at the work site in order to prevent a situation such as erroneous disconnection or erroneous connection of the optical fiber 1. . This operation is called an optical fiber control, and is usually performed by a method as shown in FIG. That is, from a control optical signal light source device (hereinafter, referred to as a "light source device") 2 installed on the upstream side (the left side in FIG. 1 corresponds to the direction from the subscriber's home to the office) of the optical fiber 1 requiring the control. A control light signal (hereinafter, referred to as “control light”) is made incident on the optical fiber 1 via a control light signal incident device (hereinafter, referred to as “incident device”) 3. On the downstream side of the optical fiber 1 (the right side in FIG. 1 corresponds to the direction from the station to the subscriber's house), the optical fiber 1 is bent into the optical fiber 1 by using a reference optical signal light receiving device (hereinafter referred to as “light receiving device”) 4. , The control light is leaked or emitted out of the optical fiber core 1, and the emitted leaked light is detected.
[0003]
Here, the light source device 2 emits 270 Hz light such as a laser diode (LD) or a light emitting diode (LED) having a longer wavelength than a communication optical signal (hereinafter referred to as “communication light”) for providing information or the like to a subscriber's house. This is a device that emits signal light with frequency modulation. For example, when the wavelength of the communication light is 1.31 μm, the wavelength of the reference light is 1.55 μm, and when the wavelength of the communication light is 1.55 μm, the wavelength of the reference light is 1.65 μm. Further, as the incident device 3, the control light is directly incident from an optical fiber coupler, a waveguide type directional coupler, or an upper end face of the optical fiber 1. In addition, the light receiving device 4 is provided with a bending mechanism for efficiently radiating only the reference light out of the optical fiber 1 while suppressing the loss of the communication light to a predetermined level. A light signal receiving element (hereinafter referred to as a "light receiving element") such as a Ge photodiode or an InGaAs photodiode for receiving the emitted light is provided to determine the presence or absence of the reference light and to measure the intensity. Can be.
With such a configuration, even during transmission / reception of communication light, an operator on the lower side detects the reference light incident from the upper side of the optical fiber 1 using the light receiving device 4 so that the optical fiber contrast is performed. Is done. (For example, see Non-Patent Document 1)
[0004]
[Non-patent document 1]
Enomoto et al .: "Design of a compact optical fiber ID tester using a hybrid optical module", Proc. Of the 1996 IEICE Communications Society Conference (volume: Communication 2), Lecture No. B-976, p. 461
[0005]
[Problems to be solved by the invention]
In the star network, which had been the mainstream in the dawn of optical service demands where the amount of optical fiber cable equipment was small, it was possible to visually identify the upper and lower portions of the optical line. However, in a loop network, which is one of the wiring forms for responding to an increasing demand for optical services, the upstream and downstream sides of the optical line cannot be specified because the cutting position of the optical fiber 1 is determined in detail. However, there is a risk that the optical fiber 1 may be cut at an incorrect position. Therefore, if the upstream side or the downstream side can be specified in addition to the control of the optical fiber, the advantage that the risk of erroneous operation can be avoided is achieved. However, the curved shape given to the optical fiber 1 by the conventionally used light receiving device 4 is symmetrical on the upstream side and the downstream side as shown in FIG. 2, and the control optical signal is guided to the light receiving element. Since the position of the center line of the waveguide and the center line of the light receiving element were the same, control light was incident from either the upstream side (left side in FIG. 1) or the downstream side (right side in FIG. 1) of the optical fiber 1. Also, since the same measured value was obtained in the measurement of the intensity of the reference light, it was not possible to determine the traveling direction of the control optical signal, that is, the upper and lower portions of the optical line, with one light receiving element. Further, there is a problem that the method of determining the upstream or downstream of the optical line using two light receiving elements is costly.
[0006]
Therefore, the present invention has been made in view of the above circumstances, and in addition to the optical fiber contrast, the traveling direction of the optical signal for comparison, that is, an optical fiber contrast method that can reliably determine the upstream or downstream of the optical line. Is provided.
Still another object of the present invention is to provide an optical fiber contrast method capable of simultaneously specifying an optical fiber contrast and a propagation direction of an optical signal using an inexpensive measuring device without using a plurality of light receiving elements.
[0007]
[Means for Solving the Problems]
The optical fiber contrast method according to the present invention comprises an optical fiber laid or to be laid between a station accommodating a plurality of optical fibers and a subscriber house accommodated by the station or between a station and another station. A core wire contrast method for identifying, using a light source device arranged on the station side and a light receiving device arranged downstream from the station, optically coupled to the optical fiber to identify the light source device In the method of contrasting the optical fiber cord to identify the optical fiber by projecting the control light and detecting the light leaked from the optical fiber by the light receiving device,
As the light receiving device, a light receiving device main body having an optical fiber guide portion for bending an optical fiber to be contrasted into a substantially arc shape, and a single light receiving surface disposed so as to face the optical fiber guide portion of the light receiving device main body. A light-receiving element that receives light leaking from the optical fiber, and a diaphragm that is located between the optical fiber guide and the light-receiving element and regulates light incident on the light-receiving element, wherein the optical fiber guide is A first end, a second end opposite to the first end, and a substantially arc-shaped curved portion located between the first end and the second end; The light receiving element and the stop are arranged so as to face a peak portion of the arcuate curved portion, and the shape of the stop is substantially orthogonal to a plane including a center line passing through the center of the curved portion and including the optical fiber guide. When the light receiving surface of the light receiving element is divided into two Using a defined light receiving device to be larger than the light receiving area of the light receiving area and the other side of the one side,
Optically coupling the light source device to an optical fiber to be identified, and mounting an optical fiber to be contrasted to the light receiving device;
A first detection step of projecting identification light from the light source device to the optical fiber and detecting light leaking from the optical fiber by the light receiving device,
When leakage light is detected, a second detection step of detecting the leakage light again with the mounting direction of the light receiving device being opposite to the optical fiber,
Comparing the intensity of the leakage light detected in the first detection step with the intensity of the leakage light detected in the second detection step;
Based on the comparison result, the identification of the optical fiber and the propagation direction of the optical signal transmitted from the station of the identified optical fiber to the subscriber home or from the station to another station are specified.
[0008]
First, in this specification, as the definitions of the upstream side and the downstream side, the optical line between the station and the subscriber's house is defined as the station side as the upstream side and the subscriber's house side as the downstream side. Also, between a specific station and another station, the specific station side is the upstream side and the other station side is the downstream side. The present inventor has conducted various experiments and analyzes on leaked light leaked or emitted from the curved portion of the optical fiber, and as a result, it has been found that an intensity distribution occurs along the propagation direction of the optical signal. That is, when the reference light propagates through the curved portion, if the control light exceeds the critical angle, the control light is emitted from the optical fiber to the outside. In this case, the emitted light travels from the peak position of the curved portion toward the downstream side. Therefore, a large amount of outgoing light reaches a portion located downstream of the peak position of the curved portion, and a small amount of leakage light enters a portion located upstream of the peak position. In this case, by using two light receiving elements and arranging one light receiving element on the upstream side and the other light receiving element on the downstream side with the peak position of the curved portion interposed therebetween, and detecting the difference in the amount of incident light, It can be determined which side of the optical fiber is upstream or downstream. However, if the determination is performed using a plurality of light receiving elements, there is a disadvantage that the measuring device becomes expensive.
[0009]
Therefore, in the present invention, the propagation direction of the signal light is specified using one light receiving element. In the present invention, the light receiving area of the light receiving surface of one light receiving element is different between the upstream side and the downstream side. The light receiving element is arranged so as to face the peak portion, and the light receiving area on one side is increased while the light receiving area on the other side is reduced with the peak portion interposed therebetween. In contrast to the optical fiber, the mounting direction of the light receiving device is reversed with respect to the optical fiber to be identified, and the leaked light is detected twice. In this case, when the side having the larger light receiving area with respect to the traveling direction of the reference light is located downstream in the propagation direction of the reference light, a relatively large output signal is generated from the light receiving element, while the side having the smaller light receiving area is located on the upstream side. , A small output signal is generated from the light receiving element. Therefore, the propagation direction of the control light can be specified only by reversing the mounting direction of the light receiving device and performing measurement twice. For example, in the detection step in which high-intensity leaked light is detected, the side having the larger light receiving area is downstream. Side. As described above, according to the present invention, it is possible not only to control or discriminate a large number of optical fibers, to control a specific optical fiber, but also to specify the propagation direction of the signal light using an inexpensive detector. As a result, it is possible to reliably determine the directionality of the reference light, and to identify not only the corresponding optical fiber but also the upstream and downstream of the optical line for determining the cutting position of the optical fiber in detail. Therefore, erroneous cutting of the optical fiber can be prevented.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 3 is a diagram showing an overall configuration of a system in which the optical fiber contrast method according to the present invention is performed. In this example, an example will be described in which an optical fiber laid between a station and a subscriber's house is compared. The optical fiber to be contrasted is designated by the reference numeral 1, one end of which is housed in the office (left side in the drawing) and the other end (right side in the drawing) is connected to the subscriber's home. The station contains a large number of optical fibers, of which one optical fiber 1 is compared or identified at a position along the optical line. The light source device 2 is arranged at or near a station. The light source device 2 is optically coupled to the optical fiber 1 by an incident device (coupler) 3, and reference light generated from the light source device propagates through the incident device 3 toward the optical fiber 1 toward the subscriber's home. At a work position on the way to the subscriber's house, the optical fiber 1 is specified from a large number of optical fibers using the light receiving device 4 by contrast work. This contrasting operation is performed by detecting light leaking or leaking from the optical fiber 1 in the light receiving device. For example, one optical fiber is taken out from a large number of optical fibers and attached to the light receiving device 4, and the leaked light is detected. The optical fiber specified by the station in advance is identified based on whether or not the optical fiber is detected. If no leak light is detected, another optical fiber is attached to the light receiving device, and the leak light is detected.
[0011]
4A and 4B show an example of a light receiving device according to the present invention. FIG. 4A is a perspective view showing the entire structure, FIG. 4B is a bottom view, and FIG. 4C is a side view. It is. The light receiving device 4 has a block-shaped light receiving device main body 10, and the light receiving device main body 10 has an optical fiber guide portion 11 for bending an optical fiber to be identified into a substantially arc shape. This optical fiber guide portion holds the optical fiber and forms a substantially arcuate curved portion on the optical fiber to be identified when detecting leaked light from the optical fiber. It consists of an open curved groove. Therefore, the optical fiber to be controlled can be mounted by fitting the optical fiber to be controlled into the curved groove. The optical fiber guide has a first end 11a on one side and a second end 11b on the opposite side. A substantially arc-shaped curved portion 11c is provided between the first end and the second end. The radius of curvature of the arcuate curved portion 11c is set to a value at which the reference light propagating through the optical fiber exceeds the critical angle and exits or leaks from the optical fiber to the outside. The most protruding portion 11d of the arcuate curved portion is referred to as a peak portion.
[0012]
As shown in FIGS. 4B and 4C, a light receiving element 12 for detecting leakage light is disposed at a position facing the peak portion 11d. An opening 13 is formed in the light receiving device body 10 in a region between the peak portion 11d of the optical fiber guide and the light receiving element 12, and the light incident on the light receiving element 12 is restricted by the opening 13. In this example, the positioning is performed so that the axis passing through the peak portion 11d of the curved portion 11c and the axis passing through the center of the light receiving surface of the light receiving element coincide with each other. Therefore, the aperture 13 functions as a stop that regulates the light receiving area of the light receiving element 12.
[0013]
FIG. 5 is a diagram showing the shape of the aperture, that is, the shape of the stop 13. In the present invention, when the shape of the aperture or the aperture 13 is divided into two by the surface including the axis passing through the peak portion of the curved portion and orthogonal to the surface including the optical fiber guide portion 11, one side is formed. Is set to be larger than the light receiving area on the other side. FIG. 5A shows an example in which the shape of the opening is pentagonal, FIG. 5B shows an example in which the opening is trapezoidal, and FIG. 5C shows an example in which the opening is triangular. By setting the shape of the opening 13 in this way, the light receiving area of the light receiving element 12 is large in the right region of the drawing and small in the left region. In this case, in FIG. 5, when the reference light travels from the left to the right, the light receiving element 12 receives a larger amount of leaked light and generates a larger output signal. On the other hand, when the control light travels from the right to the left in FIG. 5, the leakage light from the optical fiber is limited by the aperture 13, so that a small amount of leakage light enters the light receiving element 12 and A small output signal is generated. Accordingly, the direction of the reference light can be specified by reversing the direction of the light receiving device with respect to the optical fiber, detecting the leaked light twice, and comparing the output signals from the light receiving elements.
[0014]
Next, an algorithm for specifying the reference of the optical fiber and the propagation direction of the signal light at the work site will be described. FIG. 6 is a flowchart describing an algorithm for specifying the control direction of the optical fiber and the propagation direction of the signal light according to the present invention.
[Step 1]
At the work site, one optical fiber to be identified is selected from a large number of optical fibers and attached to the light receiving device. At the work site, since it is impossible to determine which side of the optical fiber is the office side, the direction of the light receiving device, that is, the direction in which, for example, high leakage light intensity is detected (ie, the direction toward the side having a large light receiving area with respect to leakage light) when mounting the optical fiber. Is set as the first direction, and the direction in which the weak leakage light intensity is detected is set in advance as the second direction. In this case, the first direction is the downstream side (the direction in which the signal light from the station travels).
[Step 2]
Next, a first leaked light detection step is performed. The control light is projected onto a specific optical fiber to be identified from the light source device arranged on the station side, and the leak light is detected by the light receiving element of the light receiving device. If no leakage light is detected, the process returns to step 1 and another optical fiber is selected and mounted on the light receiving device. On the other hand, when the leaked light is detected, the optical fiber is determined to be the optical fiber to be identified, and the process proceeds to the next step 3.
[Step 3]
In step 3, a second leaked light detection step is performed. That is, leakage light is detected by reversing the mounting direction of the light receiving device for the optical fiber.
[Step 4]
Next, the leak light intensity detected in the first leak light detecting step is compared with the leak light intensity detected in the second leak light detecting step measured in the opposite direction. As a result of the comparison, the direction of the light receiving device in the detection step in which high leakage light intensity is detected is determined to be downstream. Alternatively, it is determined that the second direction of the light receiving device in the detecting step in which the weak leakage light intensity is detected is downstream.
[0015]
The present invention is not limited to the embodiments described above, and various modifications and changes are possible. For example, in the above-described embodiment, an example in which the light source device is arranged in the office or in the vicinity thereof and the optical fiber is compared in the middle of the optical line has been described. Of course, the light source device is installed on the subscriber home side or another office side. It is also possible to arrange and perform optical fiber contrast.
Further, in the above-described embodiment, an example is described in which the optical line between the station accommodating a plurality of subscribers and the subscriber home accommodated in the station is compared or identified. The present invention can also be applied to a case where an optical fiber contrast is performed in the optical path between the optical fiber and the optical fiber.
Furthermore, as an optical fiber to be compared, a single optical fiber, an optical fiber tape, or an optical fiber cord can be a control object.
Further, as an aperture defining the light receiving area of the light receiving element, an aperture is formed in the light receiving device main body to constitute the aperture, but an aperture may be provided as another member.
[0016]
【The invention's effect】
As described above, according to the present invention, the traveling direction of the reference light, that is, the upper and lower portions of the optical line can be reliably determined at a low cost (one light receiving element), and the relevant optical fiber can be specified, Since the cutting position of the optical fiber can be determined in detail, there is an effect that erroneous cutting of the optical fiber can be prevented.
Therefore, it is possible to greatly contribute to the reduction of the construction operation and the improvement of the reliability of the optical communication service in the future.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a conventional optical fiber contrast method.
FIG. 2 is a diagram showing a conventional light receiving device.
FIG. 3 is a diagram showing an overall system for implementing an optical fiber contrast method according to the present invention.
FIG. 4 is a diagram showing an example of a light receiving device according to the present invention.
FIG. 5 is a diagram illustrating various examples of openings according to the present invention.
FIG. 6 is a flowchart illustrating an algorithm of an optical fiber contrast method according to the present invention;
[Explanation of symbols]
REFERENCE SIGNS LIST 1 optical fiber 2 reference optical signal light source device 3 reference optical signal incident device 4 light receiving device 10 light receiving device main body 11 optical fiber guide section 12 light receiving element 13 aperture (aperture)

Claims (9)

複数の光ファイバを収容する局と当該局により収容された加入者宅との間又は局と別の局との間に敷設され又は敷設される予定の光ファイバを対照識別する光ファイバの対照方法であって、局側に配置した光源装置と当該局から見て下流側に配置した受光装置とを用い、光源装置を識別すべき光ファイバに光学的に結合して対照光を投射し、当該光ファイバから漏洩した光を前記受光装置により検出することにより光ファイバを識別する光ファイバ対照方法において、
前記受光装置として、対照すべき光ファイバをほぼ円弧状に湾曲させる光ファイバ案内部を有する受光装置本体と、この受光装置本体の光ファイバ案内部と対向するように配置され、単一の受光面により光ファイバから漏洩する光を検出する受光素子と、光ファイバ案内部と受光素子との間に位置し、前記受光素子に入射する光を規制する絞りとを具え、前記光ファイバ案内部は、第1の端部及び第1の端部とは反対側の第2の端部と、これら第1の端部と第2の端部との間に位置するほぼ円弧状の湾曲部を有し、前記受光素子及び絞りは円弧状湾曲部のピーク部と対向するように配置され、前記絞りの形状を、前記湾曲部の中心を通る中心線を含み、光ファイバ案内部を含む面とほぼ直交する面で前記受光素子の受光面を2分割した場合に、一方の側の受光面積が他方の側の受光面積よりも大きくなるように規定された受光装置を用い、
識別されるべき光ファイバに前記光源装置を光学的に結合し、前記受光装置に対照すべき光ファイバを装着する工程と、
前記光源装置から前記光ファイバに対照光を投射し、前記受光装置により光ファイバから漏洩する光を検出する第1の検出工程と、
漏洩光が検出された場合、当該光ファイバについて前記受光装置の装着方向を反対向きにして再度漏洩光を検出する第2の検出工程と、
第1の検出工程で検出された漏洩光の強度と第2の検出工程で検出された漏洩光の強度とを比較する工程とを具え、
前記比較結果に基づいて光ファイバの識別及び識別された光ファイバの局から加入者宅へ又は局から別の局へ送出される光信号の伝搬方向を特定することを特徴とする光ファイバ対照方法。
Optical fiber contrast method for identifying an optical fiber laid or to be laid between a station accommodating a plurality of optical fibers and a subscriber house accommodated by the station or between the station and another station. Using a light source device arranged on the station side and a light receiving device arranged downstream from the station, optically couples the light source device to an optical fiber to be identified and projects control light, In an optical fiber contrast method for identifying an optical fiber by detecting light leaked from the optical fiber by the light receiving device,
As the light receiving device, a light receiving device main body having an optical fiber guide portion for bending an optical fiber to be contrasted into a substantially arc shape, and a single light receiving surface disposed so as to face the optical fiber guide portion of the light receiving device main body. A light-receiving element that detects light leaking from the optical fiber, and a diaphragm that is located between the optical fiber guide and the light-receiving element and that regulates light incident on the light-receiving element, the optical fiber guide is provided with: A first end, a second end opposite to the first end, and a substantially arc-shaped curved portion located between the first end and the second end; The light receiving element and the stop are arranged so as to face a peak portion of the arcuate curved portion, and the shape of the stop is substantially orthogonal to a plane including a center line passing through the center of the curved portion and including the optical fiber guide. When the light receiving surface of the light receiving element is divided into two Using a defined light receiving device to be larger than the light receiving area of the light receiving area and the other side of the one side,
Optically coupling the light source device to an optical fiber to be identified, and mounting an optical fiber to be contrasted to the light receiving device;
A first detection step of projecting control light from the light source device to the optical fiber and detecting light leaking from the optical fiber by the light receiving device,
When leakage light is detected, a second detection step of detecting the leakage light again with the mounting direction of the light receiving device being opposite to the optical fiber,
Comparing the intensity of the leakage light detected in the first detection step with the intensity of the leakage light detected in the second detection step;
An optical fiber contrast method comprising: identifying an optical fiber based on the comparison result and specifying a propagation direction of an optical signal transmitted from a station of the identified optical fiber to a subscriber home or from a station to another station. .
請求項1に記載の光ファイバ対照方法において、前記光源装置を局又はその近傍に配置し、前記受光装置を当該局と加入者宅との間の途中の位置又は局と別の局との間の途中の位置に配置して光ファイバの対照及び局から送出される光信号の伝搬方向を特定することを特徴とする光ファイバの心線対照方法。2. The optical fiber contrast method according to claim 1, wherein the light source device is disposed at or near a station, and the light receiving device is located at an intermediate position between the station and a subscriber's house or between a station and another station. Characterized in that the optical fiber is located at an intermediate position of the optical fiber and the propagation direction of the optical signal transmitted from the station is specified. 請求項2に記載の光ファイバ対照方法において、より強い漏洩光強度が検出された漏洩光検出工程において前記受光素子の受光面積が大きい側に向く光ファイバの延在方向を下流側と判定することを特徴とする光ファイバ対照方法。3. The optical fiber contrast method according to claim 2, wherein, in a leakage light detection step in which a higher leakage light intensity is detected, an extending direction of the optical fiber facing a side having a larger light receiving area of the light receiving element is determined to be a downstream side. An optical fiber contrast method. 請求項2に記載の光ファイバ対照方法において、より弱い漏洩光強度が検出された漏洩光検出工程において前記受光素子の受光面積が小さい側に向く光ファイバの延在方向を下流側と判定することを特徴とする光ファイバ対照方法。3. The optical fiber contrast method according to claim 2, wherein in the leakage light detection step in which a weaker leakage light intensity is detected, it is determined that the extending direction of the optical fiber facing the side where the light receiving area of the light receiving element is smaller is the downstream side. An optical fiber contrast method. 請求項1から4までのいずれか1項に記載の光ファイバ対照方法において、前記第1の漏洩光検出工程において漏洩光が検出されなかった場合、別の光ファイバについて漏洩光の検出処理を実行することを特徴とする光ファイバ対照方法。5. The optical fiber contrast method according to claim 1, wherein if no leakage light is detected in the first leakage light detection step, leakage light detection processing is performed on another optical fiber. 6. An optical fiber contrast method, comprising: 複数の光ファイバから特定の光ファイバを識別する光ファイバ対照方法に用いられる受光装置であって、
対照すべき光ファイバをほぼ円弧状に湾曲させる光ファイバ案内部を有する受光装置本体と、この受光装置本体の光ファイバ案内部と対向するように配置され、単一の受光面を有する受光素子と、光ファイバ案内部と受光素子との間に位置し、前記受光素子の受光面積を規制する絞りとを具え、
前記光ファイバ案内部は、第1の端部及び第1の端部とは反対側の第2の端部と、これら第1の端部と第2の端部との間に位置するほぼ円弧状の湾曲部を有し、
前記受光素子及び絞りは円弧状湾曲部のピーク部と対向するように配置され、前記絞りの形状を、前記湾曲部の中心を通る中心線を含み、光ファイバ案内部を含む面とほぼ直交する面で前記受光素子の受光面を2分割した場合に、一方の側の受光面積が他方の側の受光面積よりも大きくなるように規定したことを特徴とする受光装置。
A light receiving device used in an optical fiber contrast method for identifying a specific optical fiber from a plurality of optical fibers,
A light receiving device main body having an optical fiber guide portion for bending an optical fiber to be compared into a substantially arc shape, and a light receiving element having a single light receiving surface, which is disposed so as to face the optical fiber guide portion of the light receiving device main body. A stop located between the optical fiber guide and the light receiving element, and a stop for regulating the light receiving area of the light receiving element,
The optical fiber guide includes a first end and a second end opposite to the first end, and a substantially circle located between the first end and the second end. It has an arcuate curved part,
The light receiving element and the stop are disposed so as to face a peak portion of the arcuate curved portion, and the shape of the stop includes a center line passing through the center of the curved portion, and is substantially orthogonal to a plane including the optical fiber guide. A light receiving device characterized in that, when the light receiving surface of the light receiving element is divided into two parts, the light receiving area on one side is larger than the light receiving area on the other side.
請求項6に記載の受光装置において、前記受光装置本体は、光ファイバ案内部の円弧状湾曲部と対向する位置に開口部を有し、当該開口部が前記絞りを形成することを特徴とする受光装置。7. The light receiving device according to claim 6, wherein the light receiving device main body has an opening at a position facing the arcuate curved portion of the optical fiber guide, and the opening forms the stop. Light receiving device. 請求項6に記載の受光装置において、前記受光装置本体の光ファイバ案内部の円弧状湾曲部のピーク部と対向する部分に開口部を設け、当該開口部と前記受光素子との間に特有の開口形状を有する絞りを配置したことを特徴とする受光装置。7. The light-receiving device according to claim 6, wherein an opening is provided at a portion of the optical fiber guide of the light-receiving device main body, the opening facing a peak portion of the arcuate curved portion, and a specific portion is provided between the opening and the light-receiving element. A light-receiving device comprising a stop having an aperture shape. 請求項6から8までのいずれか1項に記載の受光装置において、前記絞りの形状を三角形、5角形又は台形としたことを特徴とする受光装置。9. The light receiving device according to claim 6, wherein said stop has a triangular, pentagonal or trapezoidal shape.
JP2003122141A 2003-04-25 2003-04-25 Optical fiber contrast method and light receiving device Expired - Lifetime JP4087282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003122141A JP4087282B2 (en) 2003-04-25 2003-04-25 Optical fiber contrast method and light receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003122141A JP4087282B2 (en) 2003-04-25 2003-04-25 Optical fiber contrast method and light receiving device

Publications (2)

Publication Number Publication Date
JP2004325334A true JP2004325334A (en) 2004-11-18
JP4087282B2 JP4087282B2 (en) 2008-05-21

Family

ID=33500469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003122141A Expired - Lifetime JP4087282B2 (en) 2003-04-25 2003-04-25 Optical fiber contrast method and light receiving device

Country Status (1)

Country Link
JP (1) JP4087282B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008033195A (en) * 2006-08-01 2008-02-14 Fujikura Ltd Optical connector
JP2009020320A (en) * 2007-07-12 2009-01-29 Nippon Telegr & Teleph Corp <Ntt> Upper part/lower part determination method for optical fiber
CN101411098A (en) * 2006-11-17 2009-04-15 Afl电信公司 Signal identifying apparatus for an optical fiber
US8731341B2 (en) 2006-11-17 2014-05-20 Afl Telecommunications Llc Signal identifying apparatus for an optical fiber
CN108195562A (en) * 2017-12-18 2018-06-22 南京仁光电子科技有限公司 Regulating part, for detecting the detection method whether infrared light curtain is parallel to screen

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008033195A (en) * 2006-08-01 2008-02-14 Fujikura Ltd Optical connector
JP4684182B2 (en) * 2006-08-01 2011-05-18 株式会社フジクラ Optical connector
CN101411098A (en) * 2006-11-17 2009-04-15 Afl电信公司 Signal identifying apparatus for an optical fiber
EP2084836A2 (en) * 2006-11-17 2009-08-05 AFL Telecommunications LLC Signal identifying apparatus for an optical fiber
EP2084836A4 (en) * 2006-11-17 2011-03-30 Afl Telecommunications Llc Signal identifying apparatus for an optical fiber
US8731341B2 (en) 2006-11-17 2014-05-20 Afl Telecommunications Llc Signal identifying apparatus for an optical fiber
JP2009020320A (en) * 2007-07-12 2009-01-29 Nippon Telegr & Teleph Corp <Ntt> Upper part/lower part determination method for optical fiber
CN108195562A (en) * 2017-12-18 2018-06-22 南京仁光电子科技有限公司 Regulating part, for detecting the detection method whether infrared light curtain is parallel to screen

Also Published As

Publication number Publication date
JP4087282B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
CA2222845C (en) An inexpensive single-fiber bidirectional data link
CA2536236C (en) Method, apparatus and system for minimally intrusive fiber identification
US7376293B2 (en) Remote location of active section of fiber in a multimode intrusion detection system
US20060002650A1 (en) Intrusion detection system for use on an optical fiber using a translator of transmitted data for optimum monitoring conditions
US7403675B2 (en) Method of high order mode excitation for multimode intrusion detection
WO2005106899A1 (en) An optically traceable transmission cable for transmitting data or electricity and a traceable conduit
JP2009025210A (en) Optical fiber lateral incidence method and its device
US5784514A (en) Apparatus and methods for optical communication and for identification of optical fiber
JP4087282B2 (en) Optical fiber contrast method and light receiving device
US7393145B1 (en) Fault location in optical networks
US4840482A (en) Method of coated fiber identification in optical transmission network
JP2009222983A (en) Optical connection member
JP3711121B2 (en) Optical fiber contrast method and light receiving device
JP2003254857A (en) Handy fiber tester
US6522434B1 (en) System and method for determining optical loss characteristics of optical fibers in an optical fiber network
JP5345459B2 (en) Local signal light input / output method and local signal light input / output device
CN105278058A (en) ONU (optical network unit) triplexer optical assembly with optical time domain signal reflection function
JP3778433B2 (en) Optical signal receiving device for contrasting cord and method of using the same
JP5483738B2 (en) Light incident / exit device and light incident / exit method
JP2899586B1 (en) Optical fiber continuity test equipment
JP6294858B2 (en) Optical fiber core inspection apparatus and method
JPH06281534A (en) Optical fiber collation device
JP2009025211A (en) Coated-fiber identification system and coated-fiber identification method
JP3112155B2 (en) Connection method between optical waveguide and optical fiber
JP3745247B2 (en) Optical line test system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050713

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070613

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4087282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term