JP3778433B2 - Optical signal receiving device for contrasting cord and method of using the same - Google Patents

Optical signal receiving device for contrasting cord and method of using the same Download PDF

Info

Publication number
JP3778433B2
JP3778433B2 JP2002032237A JP2002032237A JP3778433B2 JP 3778433 B2 JP3778433 B2 JP 3778433B2 JP 2002032237 A JP2002032237 A JP 2002032237A JP 2002032237 A JP2002032237 A JP 2002032237A JP 3778433 B2 JP3778433 B2 JP 3778433B2
Authority
JP
Japan
Prior art keywords
optical fiber
fiber core
holding
curvature
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002032237A
Other languages
Japanese (ja)
Other versions
JP2003232701A (en
Inventor
正裕 在間
郁昭 田中
正男 立蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002032237A priority Critical patent/JP3778433B2/en
Publication of JP2003232701A publication Critical patent/JP2003232701A/en
Application granted granted Critical
Publication of JP3778433B2 publication Critical patent/JP3778433B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は光ファイバ通信網の建設や保守にあたり、光ファイバ心線の誤切断や誤接続を回避するために、光ファイバ心線の特定を行う心線対照システムで使用する心線対照用光信号受光装置、および、この装置の使用方法に関する。
【0002】
【従来の技術】
光ファイバ通信網の建設や保守にあたり、光ファイバ心線の誤切断や誤接続といった事態を発生させないために、作業現場において光ファイバケーブル内の光ファイバ心線、あるいは、お客さま宅の光ファイバ心線の個別識別を行う必要がある。この作業を心線対照と呼び、通常は図1に示すような方法で実施されている。
【0003】
即ち、図1において、対照を必要とする光ファイバ心線1の上部側(図1では左側)に設置した心線対照用光信号光源装置(以下「光源装置」という)2から、心線対照用光信号入射装置(以下「入射装置」という)3を介して、光ファイバ心線1に心線対照用光信号(以下、「対照光」という)を入射する。光ファイバ心線1の下部側(図1では右側)では、心線対照用光信号受光装置(以下「受光装置」という)4を用いて光ファイバ心線1に曲げを与えることにより、対照光を光ファイバ心線1外へ放射させて、この対照光を検出する。
【0004】
ここで、光源装置2は、お客さま宅へ情報等を提供するために光ファイバ心線1を伝搬する通信用光信号(以下「通信光」という)よりも波長が長いレーザーダイオード(LD)や発光ダイオード(LED)等の光に270Hzの周波数変調を加えた光を発光する装置である。例えば、通信光の波長が1.31μmの場合は対照光の波長に1.55μmが採用され、通信光の波長が1.55μmの場合は対照光の波長に1.65μmが採用される。
【0005】
入射装置3としては、光ファイバカップラや導波路型方向性結合器などが用いられたり、あるいは、光ファイバ心線1の上部側端面から直接対照光が入射されたりする。
【0006】
受光装置4には、通信光の損失をある所定のレベルに抑制しつつ、光ファイバ心線1外へ対照光のみを効率的に放射させるための湾曲機構が設けられているとともに、この放射させた光を受光するためのGeフォトダイオードやInGaAsフォトダイオード等の心線対照用光信号受光素子(以下「受光素子」という)が設けられており、対照光の有無や強度測定をすることができる。
【0007】
このような構成により、通信光の送受信中であっても、光ファイバ心線1の上部側から入射した対照光を下部側の作業者が受光装置4を用いて検出することにより、心線対照が遂行される。
【0008】
なお、従来から使用している光源装置2、入射装置3及び受光装置4からなる心線対照システムの代表的なものとしては、例えば下記文献に示されている。
文献:「榎本ほか:”ハイブリッド型光モジュールを用いた小型光ファイバIDテスタの設計”、1996年電子情報通信学会通信ソサイエティ大会講演論文集(分冊:通信2)、講演番号B−976、P.461」
【0009】
図2に、従来から使用している受光装置4が光ファイバ心線1に与える湾曲の形状を示す。図2中の湾曲部分4aの形状から判るように、従来は湾曲形状が左右対称であり、そのため、光ファイバ心線1の上部側(図2では左側)、下部側(図2では右側)のどちらから対照光が入射されても、心線対照が可能で、なおかつ、対照光の強度測定においても同じ計測値が得られることから、作業の簡素化が図られていた。
【0010】
【発明が解決しようとする課題】
前述のとおり、従来の心線対照システムでは、受光装置4を用いて光ファイバ心線1に左右対称の湾曲を与え、光ファイバ心線1外に対照光を放射させ、これを受光素子で検出することにより、心線対照を可能にしている。このとき、情報提供等のサービスに影響のない範囲ではあるが、通信光にも光ファイバ心線1を湾曲させたことによる損失が発生する。
【0011】
そこで、従来の受光装置4では、光ファイバ心線1を挾持しても光ファイバ心線1が破損や欠損しないことはもちろんのこと、確実に対照光を検出できるように対照光を光ファイバ心線1外へ放射でき、かつ、通信光の損失をある所定のレベルに抑制するべく、光ファイバ心線1を圧接し挾持する曲率半径を選択している。
【0012】
しかしながら、近年、通信光として従来から使用してきた1.31μmと1.55μmに加え、Lバンド(1.565μm〜1.625μm:ITU−T勧告)帯域の波長が使用されつつある。光ファイバ心線1を湾曲させたことにより発生する損失は波長が長くなるにつれて大きくなることは原理的にいうまでもないことであるが、従来の受光装置4はLバンド通信光に対する損失を抑制するようには設計されていないため、心線対照作業時に送受信中のLバンド通信光に大きな損失を発生させ、通信品質が低下する恐れがあった。
【0013】
Lバンド通信光の損失を抑制するだけならば、原理的に、単純に光ファイバ心線1に与える湾曲の曲率半径を大きくすれば良いが、そうすると逆に、対照光の放射量が減少し、確実な対照光の検出が行えず、ひいては心線対照が行えないことになり、光ファイバ通信網の建設や保守などの工事遂行にとって大きな妨げとなる。
【0014】
また、これまでの光ファイバケーブルの設備量が少ない光サービス需要の黎明期において主流であったスター網においては、光線路の上部下部の特定は目視で十分可能であり、従来から使用してきた受光装置4の湾曲形状が左右対称であることによる効果が発揮できた。
【0015】
しかし、今後増加していく光サービス需要のための配線形態の1つであるループ網においては、1本1本の光ファイバ心線1個々の上部下部の特定は、目視はおろか、従来の受光装置4を用いたとしても、行うことができない。
【0016】
これは、光線路の上部下部は対照光の進行方向に関係するものなので、ループ網では光ファイバ心線1の上部側にて対照光を入射しても、対照光が下部側から受光装置4に達することがあるためである。言い換えれば、ループ網の場合、従来の受光装置4は湾曲形状が左右対称であるため下部側からの対照光も検出することになる。
【0017】
従って、従来の受光装置4を用いた場合、ループ網では、該当する光ファイバ心線1の特定までしか行うことができず、光ファイバ心線1の切断位置を詳細に決めるための光線路の上部下部を特定することはできず、誤った位置で光ファイバ心線1を切断してしまう可能性があった。
【0018】
本発明は上述の事情に鑑みてなされたものであり、その目的の1つは、通信光としてLバンドが使用された環境下でも、通信光の損失を抑制しつつ効率的に光ファイバ心線の特定を行うことができる手段を提供することである。
【0019】
本発明のもう1つの目的は、光線路の上部と下部の判定を確実に行うことができる手段を提供することである。
【0020】
【課題を解決するための手段】
1番目の目的は、受光装置において、通信光の強度や、光ファイバ心線外へ放射させる対照光の強度を変化させることにより達成できる。これらの光強度は、例えば、光ファイバ心線に与える湾曲の形状を変えることで変化させることが可能である。2番目の目的は、受光装置において、光ファイバ心線に与える湾曲の形状を左右非対称とすることにより達成できる。以下、発明特定事項を示す。
【0021】
第7発明は、光ファイバ通信網の建設や保守にあたって、光ファイバ心線の誤切断や誤接続を回避するために心線対照を行うシステムで使用され、光ファイバ心線の下部側で前記光ファイバ心線に湾曲を与えることにより、前記光ファイバ心線に光ファイバ心線の上部側で入射された心線対照用光信号を光ファイバ心線外へ放射させ、前記放射された心線対照用光信号を検出する心線対照用光信号受光装置であって、光ファイバ心線外へ放射させる前記心線対照用光信号の強度、及び、前記光ファイバ心線を伝搬する通信用光信号の強度を変化させることが可能な光強度変化手段を具備した心線対照用光信号受光装置において、前記光強度変化手段は、前記光ファイバ心線に与える湾曲の形状を変えることで、光ファイバ心線外へ放射させる前記心線対照用光信号の強度、及び、前記光ファイバ心線を伝搬する通信用光信号の強度を変化させることが可能な湾曲手段を具備し、前記湾曲手段は、前記光ファイバ心線を挾持して所定の異なる湾曲を与えるため、第1の曲率半径の凹部が形成された部分(以下「挾持凹部」という)と、この挾持凹部に対向する前記第1の曲率半径より小さい第2の曲率半径の凸部とこの凸部の両翼にあり湾曲面を一にする第3の曲率半径の第一の側凹部および第2の側凹部とが形成された部分(以下「挾持凸部」という)と、前記挾持凹部と前記挾持凸部の両翼との間に配置され、前記挾持凹部及び前記挾持凸部と共に前記光ファイバ心線を圧接し挾持することが可能な第1のアタッチメント部材および第2のアタッチメント部材とによって構成され、前記第1側凹部と前記第1アタッチメント部材との間及び前記挾持凹部と前記第2アタッチメント部材との間、又は、前記挾持凹部と前記第 1 アタッチメント部材との間及び前記第2側凹部と前記第2アタッチメント部材との間に前記光ファイバ心線を挾持させることで、前記光ファイバ心線に与える湾曲の曲率半径が、前記第1側凹部側又は前記第2側凹部側の一方が小さく、他方が大きくなることを特徴とする。
【0025】
第3発明は、光ファイバ通信網の建設や保守にあたって、光ファイバ心線の誤切断や誤接続を回避するために心線対照を行うシステムで使用され、光ファイバ心線の下部側で前記光ファイバ心線に湾曲を与えることにより、前記光ファイバ心線に光ファイバ心線の上部側で入射された心線対照用光信号を光ファイバ心線外へ放射させ、前記放射された心線対照用光信号を検出する心線対照用光信号受光装置であって、光ファイバ心線外へ放射させる前記心線対照用光信号の強度、及び、前記光ファイバ心線を伝搬する通信用光信号の強度を変化させることが可能な光強度変化手段を具備した心線対照用光信号受光装置において、前記光強度変化手段は、前記光ファイバ心線に与える湾曲の形状を変えることで、光ファイバ心線外へ放射させる前記心線対照用光信号の強度、及び、前記光ファイバ心線を伝搬する通信用光信号の強度を変化させることが可能な湾曲手段を具備し、前記湾曲手段が第1湾曲手段と第2湾曲手段で構成され、第1湾曲手段は、光ファイバ心線を挾持して所定の湾曲を与えるため、第1の曲率半径の凹部が形成された挾持凹部と、この挾持凹部に対向する前記第1の曲率半径より小さい第2の曲率半径の凸部とこの凸部の片方の翼にあり湾曲面を一にする第3の曲率半径の側凹部と前記凸部のもう片方の翼にあり湾曲面を一にする第1の曲率半径の側凸部とが形成された挾持凸部と、前記挾持凹部と前記挾持凸部の前記片方の翼との間に配置され、前記挾持凹部及び前記挾持凸部と共に前記光ファイバ心線を圧接し挾持することが可能なアタッチメント部材とによって構成されたこと、第2湾曲手段が、光ファイバ心線を挾持して所定の湾曲を与えるため、第1の曲率半径の凹部が形成された挾持凹部と、この挾持凹部に対向する第2の曲率半径の凸部とこの凸部の、第1湾曲手段における側凹部とは逆の片方の翼にあり湾曲面を一にする第3の曲率半径の側凹部と前記凸部のもう片方の翼にあり湾曲面を一にする第1の曲率半径の側凸部とが形成された挾持凸部と、前記挾持凹部と前記挾持凸部の前記片方の翼との間に配置され、前記挾持凹部及び前記挾持凸部と共に前記光ファイバ心線を圧接し挾持することが可能なアタッチメント部材とによって構成されたことを特徴とする。
【0026】
第4発明は、光ファイバ通信網の建設や保守にあたって、光ファイバ心線の誤切断や誤接続を回避するために心線対照を行うシステムで使用され、光ファイバ心線の下部側で前記光ファイバ心線に湾曲を与えることにより、前記光ファイバ心線に光ファイバ心線の上部側で入射された心線対照用光信号を光ファイバ心線外へ放射させ、前記放射された心線対照用光信号を検出する心線対照用光信号受光装置であって、光ファイバ心線外へ放射させる前記心線対照用光信号の強度、及び、前記光ファイバ心線を伝搬する通信用光信号の強度を変化させることが可能な光強度変化手段を具備した心線対照用光信号受光装置において、前記光強度変化手段は、前記光ファイバ心線に与える湾曲の形状を変えることで、光ファイバ心線外へ放射させる前記心線対照用光信号の強度、及び、前記光ファイバ心線を伝搬する通信用光信号の強度を変化させることが可能な湾曲手段を具備し、前記湾曲手段が、光ファイバ心線を挾持して所定の湾曲を与えるため、第1の曲率半径の凹部が形成された挾持凹部と、この挾持凹部に対向する前記第1の曲率半径より小さい第2の曲率半径の凸部とこの凸部の片方の翼にあり湾曲面を一にする第3の曲率半径の側凹部と前記凸部のもう片方の翼にあり湾曲面を一にする前記第1の曲率半径の側凸部とが形成された挾持凸部と、前記挾持凹部と前記挾持凸部の前記片方の翼との間に配置され、前記挾持凹部及び前記挾持凸部と共に前記光ファイバ心線を圧接し挾持することが可能なアタッチメント部材とによって構成されたことを特徴とする。
【0027】
第1発明は、光ファイバ通信網の建設や保守にあたって、光ファイバ心線の誤切断や誤接続を回避するために心線対照を行うシステムで使用され、光ファイバ心線の下部側で前記光ファイバ心線に湾曲を与えることにより、前記光ファイバ心線に光ファイバ心線の上部側で入射された心線対照用光信号を光ファイバ心線外へ放射させ、前記放射された心線対照用光信号を検出する心線対照用光信号受光装置であって、光ファイバ心線外へ放射させる前記心線対照用光信号の強度、及び、前記光ファイバ心線を伝搬する通信用光信号の強度を変化させることが可能な光強度変化手段を具備した心線対照用光信号受光装置において、前記光強度変化手段は、前記光ファイバ心線に与える湾曲の形状を変えることで、光ファイバ心線外へ放射させる前記心線対照用光信号の強度、及び、前記光ファイバ心線を伝搬する通信用光信号の強度を変化させることが可能な湾曲手段を具備し、前記湾曲手段は、前記光ファイバ心線を挾持して所定の異なる湾曲を与えるため、第1の曲率半径の凹部が形成された部分(以下「挾持凹部」という)と、この挾持凹部に対向する前記第1の曲率半径より小さい第2の曲率半径の凸部とこの凸部の両翼にあり湾曲面を一にする第3の曲率半径の第一の側凹部および第2の側凹部とが形成された部分(以下「挾持凸部」という)と、前記挾持凹部と前記挾持凸部の両翼との間に配置され、前記挾持凹部及び前記挾持凸部と共に前記光ファイバ心線を圧接し挾持することが可能な第1のアタッチメント部材および第2のアタッチメント部材とによって構成され、前記第1側凹部と前記第1アタッチメント部材との間及び前記挾持凹部と前記第2アタッチメント部材との間、又は、前記挾持凹部と前記第 1 アタッチメント部材との間及び前記第2側凹部と前記第2アタッチメント部材との間に前記光ファイバ心線を挾持させることで、前記光ファイバ心線に与える湾曲の曲率半径が、前記第1側凹部側又は前記第2側凹部側の一方が小さく、他方が大きくなる心線対照用光信号受光装置を使用する方法であって、前記アタッチメント部材の位置を調節して、通信光の損失を所定のレベルに抑制しつつ、光ファイバ心線外へ放出させた対照光を検出できるような湾曲を前記光ファイバ心線に与え、心線対照を行うことを特徴とする。言い換えれば、通信光の損失を抑制しつつ、光ファイバ心線外へ放出させる対照光を検出するために、受光装置を用いて光ファイバ心線に与える湾曲形状において、アタッチメント部材の位置を調節して、対照光が光ファイバ心線外へ放射しても心線対照のための受光に寄与しない部分の湾曲を緩和し、湾曲の総量を削減する。
【0028】
第2発明は、光ファイバ通信網の建設や保守にあたって、光ファイバ心線の誤切断や誤接続を回避するために心線対照を行うシステムで使用され、光ファイバ心線の下部側で前記光ファイバ心線に湾曲を与えることにより、前記光ファイバ心線に光ファイバ心線の上部側で入射された心線対照用光信号を光ファイバ心線外へ放射させ、前記放射された心線対照用光信号を検出する心線対照用光信号受光装置であって、光ファイバ心線外へ放射させる前記心線対照用光信号の強度、及び、前記光ファイバ心線を伝搬する通信用光信号の強度を変化させることが可能な光強度変化手段を具備した心線対照用光信号受光装置において、前記光強度変化手段は、前記光ファイバ心線に与える湾曲の形状を変えることで、光ファイバ心線外へ放射させる前記心線対照用光信号の強度、及び、前記光ファイバ心線を伝搬する通信用光信号の強度を変化させることが可能な湾曲手段を具備し、前記湾曲手段は、前記光ファイバ心線を挾持して所定の異なる湾曲を与えるため、第1の曲率半径の凹部が形成された部分(以下「挾持凹部」という)と、この挾持凹部に対向する前記第1の曲率半径より小さい第2の曲率半径の凸部とこの凸部の両翼にあり湾曲面を一にする第3の曲率半径の第一の側凹部および第2の側凹部とが形成された部分(以下「挾持凸部」という)と、前記挾持凹部と前記挾持凸部の両翼との間に配置され、前記挾持凹部及び前記挾持凸部と共に前記光ファイバ心線を圧接し挾持することが可能な第1のアタッチメント部材および第2のアタッチメント部材とによって構成され、前記第1側凹部と前記第1アタッチメント部材との間及び前記挾持凹部と前記第2アタッチメント部材との間、又は、前記挾持凹部と前記第 1 アタッチメント部材との間及び前記第2側凹部と前記第2アタッチメント部材との間に前記光ファイバ心線を挾持させることで、前記光ファイバ心線に与える湾曲の曲率半径が、前記第1側凹部側又は前記第2側凹部側の一方が小さく、他方が大きくなる心線対照用光信号受光装置を使用する方法であって、前記アタッチメント部材の位置を調節して、対照光の進行方向、つまり、光線路の上部下部を判定できるような湾曲を前記光ファイバ心線に与え、心線対照を行うことを特徴とする。言い換えれば、光線路の上部下部の判定を行うため、受光装置を用いて光ファイバ心線に与える湾曲形状において、アタッチメント部材の位置を調節し、対照光の進行方向と、対照光を光ファイバ心線外へ放射可能な湾曲方向が合致したときのみ対照光の検出を可能とするように湾曲形状を設定する。
【0029】
第5発明は、第3発明の受光装置を使用する方法であって、第1の湾曲手段と第2の湾曲手段を切り換えて光ファイバ心線に湾曲を与え、光線路の上部下部の特定を行うことを特徴とする。
【0030】
第6発明は、第4発明の受光装置自体を持ち替えて、光線路の上部下部の特定を行うことを特徴とする心線対照用光信号受光装置の使用方法である。例えば、光ファイバ心線を下から受光装置で挾持したり、上から受光装置で挾持することで、光線路の上部下部の特定を行う。
【0031】
上述した手段により、通信光として従来から使用してきた1.31μmと1.55μmに加え、Lバンド(1.565μm〜1.625μm)帯域の波長を使用しても、心線対照を行うため受光装置で光ファイバ心線に湾曲を与えた際に発生する通信光の損失を抑制しつつ、なおかつ、効率的に光ファイバ心線外に対照光を放射させ、検出することができる。従って、通信品質の低下を防止できる。また、対照光の方向性(進行方向)を確実に判定でき、該当の光ファイバ心線の特定はもちろんのこと、光ファイバ心線の切断位置を詳細に決めるための光線路の上部と下部の判定を確実に行うことができる。従って、光ファイバ心線の誤切断や誤接続を防止できる。
【0032】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態を説明する。
【0033】
[第1実施例]
図3により、本発明の第1実施例として、受光装置(心線対照用光信号受光装置)の構成を説明する。図3は、本実施例に係る受光装置4の全体構成を、光ファイバ心線を圧接・挾持しない状態(把持した状態で、保持しない状態)を示した図である。このうち、図3(a)は受光装置の側面図、図3(b)は上面図である。
【0034】
図3(a)(b)に示すように、本実施例の受光装置4は光強度変化手段として湾曲手段を具備するものであり、光ファイバ心線を挾持して所定の湾曲を与えるために、
(1) 所定の曲率半径(第1の曲率半径)の凹部10aが形成された挾持凹部10と、
(2) 所定の曲率半径(第2の曲率半径)の凸部15aと、この凸部15aの両翼にあり湾曲面を一にする所定の曲率半径(第3の曲率半径)の2つの側凹部15b、15cとが形成された挾持凸部15と、
(3) 挾持凹部10と挾持凸部15の両翼との間に配置され、挾持凹部10及び挾持凸部15と共に光ファイバ心線を圧接し挾持することが可能な2つのアタッチメント部材30、35と、
(4) 光ファイバ心線を挾持する際に作業者が握るグリップ20と、
(5) 挾持作業を行う際に作業者が手前(グリップ側)に引くトリガ25と、
(6) 挾持凹部10に内蔵した受光素子40と
により構成される。
【0035】
以下の説明では、図4、図5においては、符号15bで示す側凹部は挾持凸部15の左翼にあるので、側凹部Lと呼び、符号15cで示す側凹部は挾持凸部15の右翼にあるので、側凹部Rと呼ぶ。
【0036】
同様に、図4、図5においては、符号30で示すアタッチメント部材は挾持凸部15の左側に位置するので、アタッチメント部材Lと呼び、符号35で示すアタッチメント部材は挾持凸部15の右側に位置するので、アタッチメント部材Rと呼ぶ。
【0037】
挾持凹部10は受光装置4の本体をなす部分であり、図3(b)に示すように、挾持凹部10には、光ファイバ心線に湾曲を与えるための凹部10aが形成されている。この凹部10aの湾曲形状は左右対称である。受光素子40は、凹部10aの湾曲の中央(底部)から挾持凸部15を望むように、挾持凹部10内に配置されている。また、凹部10aには、図3(a)に示すように、光ファイバ心線を正しく挾持するため、光ファイバ心線が収まる形状の溝部10eが形成されている。受光素子40としては、例えばGeフォトダイオードやInGaAsフォトダイオード等が使用される。
【0038】
更に、挾持凹部10には、図3(b)に示すように、作業者がグリップ20を握り、トリガ25を手前(グリップ側)に引くと、その動きに連動して挾持凸部15が挾持凹部10に向かって移動するためのスライド機構10bと、挾持アタッチメント部材L30を保持しその位置を調整するためのスライド機構10cと、挾持アタッチメント部材R35を保持しその位置を調整するためのスライド機構10dが形成されている。
【0039】
以下の説明では、図4、図5においては、符号10bで示すスライド機構は中央に位置するので、スライド機構Cと呼び、符号10cで示すスライド機構は左側に位置するので、スライド機構Lと呼び、符号10dで示すスライド機構は右側に位置するので、スライド機構Rと呼ぶ。
【0040】
挾持凸部15は挾持凹部10と対向するように受光装置4の本体部分に設けられている。具体的には、挾持凸部15として、図3(b)に示すように、光ファイバ心線を挾持して所定の湾曲を与えるために、凹部10aと対向する所定の曲率半径の凸部15aと、この凸部15aの左右両翼にあり湾曲面を一にする所定の曲率半径の側凹部L15b、側凹部R15cとが形成されている。ここで、側凹部L15bと側凹部R15cの曲率半径は等しい(第3の曲率半径)。また、挾持凸部15には、図3(a)に示すように、光ファイバ心線を正しく挾持するため、光ファイバ心線が収まる形状の溝部15dが側凹部L15bから凸部15a及び側凹部R15cにかけて形成されている。
【0041】
この挾持凸部15の湾曲形状は左右対称であり、その中央(凸部15aの頂部)が挾持凹部10の中央に望むように、言い換えれば受光素子40に望むように配置されている。本例では、挾持凸部15は、その左右対称の湾曲の中心線(凸部15aの頂点と凸部15aの湾曲中心点とを結ぶ線)が挾持凸部10の左右対照の湾曲の中心線(凹部10aの底部と凹部10aの湾曲中心点とを結ぶ線)に一致して、スライド機構C10bにより移動するようにされている。
【0042】
アタッチメント部材L30には、図3(b)に示すように、光ファイバ心線に湾曲を与えるために、挾持凹部10側の凸部(以下、挾持凹部側凸部)30aと、挾持凸部15の側凹部L15b側の凸部(以下、挾持凸部側凸部)30bが形成されている。ここで、挾持凹部側凸部30aの曲率半径は凹部10aの曲率半径(第1の曲率半径)と等しく、挾持凸部側凸部30bの曲率半径は側凹部L15bの曲率半径(第3の曲率半径)と等しい。また、アタッチメント部材L30には、図3(a)に示すように、光ファイバ心線を正しく挾持するため、光ファイバ心線が収まる形状の挾持凹部10側の溝部(以下、挾持凹部側溝部)30cと、挾持凸部15側の溝部(以下、挾持凸部側溝部)30dが形成されている。
【0043】
このアタッチメント部材L30は、挾持凹部10に形成されたスライド機構L10cにより保持されるとともに、直接手動で位置を調整させたり、作業者がグリップ20を握ってトリガ25を手前(グリップ側)に引いて挾持凸部15を挾持凹部10に向かってスライドさせた際、その押圧力で間接的にスライドして位置を調整させたりできるようになっている。
【0044】
アタッチメント部材R35には、図3(b)に示すように、ファイバ心線に湾曲を与えるための挾持凹部10側の凸部(以下、挾持凹部側凸部)35aと、挾持凸部15の側凹部R15c側の凸部(以下、挾持凸部側凸部)35bが形成されている。ここで、挾持凹部側凸部35aの曲率半径は凹部10aの曲率半径(第1の曲率半径)と等しく、挾持凸部側凸部35bの曲率半径は側凹部R15cの曲率半径(第3の曲率半径)と等しい。また、アタッチメント部材R35には、図3(a)に示すように、光ファイバ心線を正しく挾持するため、光ファイバ心線が収まる形状の挾持凹部10側の溝部(以下、挾持凹部側溝部)35cと、挾持凸部15側の溝部(以下、挾持凸部側溝部)35dが形成されている。
【0045】
このアタッチメント部材R35は、挾持凹部10に形成されたスライド機構R10dにより保持されるとともに、直接手動で位置を調整させたり、作業者がグリップ20を握ってトリガ25を手前(グリップ側)に引いて挾持凸部15を挾持凹部10に向かってスライドさせた際、その押圧力で間接的にスライドして位置を調整させたりできるようになっている。
【0046】
ここで、光ファイバ心線を圧接し挾持可能にするために、凹部10aと挾持凹部側凸部30a及び挾持凹部側凸部35aの曲率半径は等しく(第1の曲率半径)、また、側凹部L15a及び側凹部R15bと、挾持凸部側凸部30b及び挾持凸部側凸部35bの曲率半径は等しくしてある(第3の曲率半径)。
【0047】
上述した構成の受光装置4においては、アタッチメント部材L30及びアタッチメント部材R35の位置を調整することで、
(1) アタッチメント部材L30及びアタッチメント部材R35をともに挾持凹部10に沿わせ、光ファイバ心線をアタッチメント部材L30と挾持凸部15との間、挾持凸部15と挾持凹部10との間、アタッチメント部材R35と挾持凸部15との間に通した状態で、または、
(2) アタッチメント部材L30のみ挾持凹部10に沿わせ、アタッチメント部材R35を挾持凸部15に沿わせ、光ファイバ心線をアタッチメント部材L30と挾持凸部15との間、挾持凸部15と挾持凹部10との間、アタッチメント部材R35と挾持凹部10との間に通した状態、または、
(3) アタッチメント部材L30を挾持凸部15に沿わせ、アタッチメント部材R35のみ挾持凹部10に沿わせ、光ファイバ心線をアタッチメント部材L30と挾持凹部10との間、挾持凸部15と挾持凹部10との間、アタッチメント部材R35と挾持凸部15との間に通した状態、または、
(4) アタッチメント部材L30及びアタッチメント部材R35をともに挾持凸部15に沿わせ、光ファイバ心線をアタッチメント部材L30と挾持凹部10との間、挾持凸部15と挾持凹部10との間、アタッチメント部材R35と挾持凹部10との間に通した状態で、
作業者がグリップ20を握り、トリガ25を手前(グリップ側)に引くことで、光ファイバ心線を圧接し挾持して種々の所定の湾曲を与えることができる。
【0048】
上記(1) の状態で光ファイバ心線に与える湾曲の形状と、上記(4) の状態で光ファイバ心線に与える湾曲の形状はともに左右対称であり、上記(2) の状態で光ファイバ心線に与える湾曲の形状と、上記(3) の状態で光ファイバ心線に与える湾曲の形状はともに左右非対称である。
【0049】
但し、一般に、挾持凸部15の凸部15aの曲率半径(第2の曲率半径)、及び、側凹部L15b、側凹部R15cの曲率半径(第3の曲率半径)は、挾持凹部10の凹部10aの曲率半径(第1の曲率半径)よりも小さいので、上記(1) の状態で光ファイバ心線に与える湾曲形状の曲率半径は、上記(4) の状態で光ファイバ心線に与える湾曲形状に比べ、小さい。
【0050】
なお、挾持凹部10に対する挾持凸部15のスライド機構C10bや、アタッチメント部材L30の、スライド機構L10c、、アタッチメント部材R35のスライド機構R10dは、本実施例では図示していないガイド溝とガイドからなるが、光ファイバ心線を挾持して所定の湾曲を与えることができる機構であれば、何でも良い。一例として、挾持凹部10、挾持凸部15、アタッチメント部材L30及びアタッチメント部材R35をそれぞれ支点により係止させた回転機構を採用することができる。
【0051】
[第2実施例]
次に、図4により、本発明の第2実施例として、第1実施例で説明した受光装置4の使用方法を説明する。図4(a)(b)は、この受光装置4を用いて心線対照を行う際に光ファイバ心線1に与える湾曲の状態を示している。
【0052】
図4(a)では、光ファイバ心線1の上部側(図4(a)では左側)に設置した光源装置2から入射装置3を介して光ファイバ心線1に対照光が入射され、この対照光はアタッチメント部材L30側からアタッチメント部材R35側へ(図4(a)では左側から右側へ)進行しており、アタッチメント部材L30を挾持凹部10に沿わせ、アタッチメント部材R35を挾持凸部15に沿わせ、作業者がグリップ20を握り、トリガ25を手前(グリップ側)に引いた際、光ファイバ心線1に与える湾曲の状態を示している。従って、光ファイバ心線1は挾持凸部15とアタッチメント部材L30との間、挾持凹部10と挾持凸部15との間、挾持凹部10とアタッチメント部材R35との間を通って圧接され挾持されて、左右非対称に湾曲している。
【0053】
図4(b)では、光ファイバ心線1の上部側が図4(a)とは逆の右側である。即ち、光ファイバ心線1の上部側(図4(b)では右側)に設置した光源装置2から入射装置3を介して光ファイバ心線1に対照光が入射され、この対照光はアタッチメント部材R35側からアタッチメント部材L30側へ(図4(b)では右側から左側へ)進行しており、アタッチメント部材L30を挾持凸部15に沿わせ、アタッチメント部材R35を挾持凹部10に沿わせ、作業者がグリップ20を握り、トリガ25を手前(グリップ側)に引いた際、光ファイバ心線1に与える湾曲の状態を示している。従って、光ファイバ心線1は挾持凹部10とアタッチメント部材L30との間、挾持凹部10と挾持凸部15との間、挾持凸部15とアタッチメント部材R35との間に通って圧接され挾持されて、左右非対称に湾曲している。
【0054】
その結果、図4(a)の湾曲状態においては、受光素子40から見ても光ファイバ心線1の湾曲形状が左右非対称であるから、凸部15aの湾曲を含んで受光素子40に至るまでのアタッチメント部材L30側の湾曲が、光ファイバ心線1外へ放射した対照光を受光素子40で受光でき心線対照に寄与する部分であって、曲率半径が小さい湾曲となり、受光素子40を過ぎたアタッチメント部材R35側の湾曲は、対照光が光ファイバ心線1外へ放射しても受光素子40が受光せず心線対照に寄与しない部分であって、曲率半径が十分大きな緩やかな湾曲となっている。
【0055】
また、図4(b)の湾曲状態においては、同じく受光素子40から見ても光ファイバ心線1の湾曲形状が左右非対称であるが、逆に、凸部15aの湾曲を含んで受光素子40に至るまでのアタッチメント部材R35側の湾曲が、光ファイバ心線1外へ放射した対照光を受光素子40で受光でき心線対照に寄与する部分であって、曲率半径が小さい湾曲となり、受光素子40を過ぎたアタッチメント部材L30側の湾曲は、対照光が光ファイバ心線1外へ放射しても受光素子40が受光せず心線対照に寄与しない部分であって、曲率半径が十分大きな緩やかな湾曲となっている。
【0056】
このように、作業者がアタッチメント部材L30やアタッチメント部材R35の位置を調整して、図4(a)や図4(b)に示す湾曲状態にすることにより、対照光が光ファイバ心線1外へ放射しても心線対照のための受光に寄与しない部分の湾曲を緩和し、受光装置4内での湾曲の総量を削減することが実現でき、通信光の損失を抑制しつつ、なおかつ、確実に対照光を検出できる。
【0057】
ここで、対照光を光ファイバ心線1外へ放射させて心線対照のための受光に寄与する部分の湾曲を構成する、凸部15a、側凹部L15b、側凹部R15c、挾持凸部側凸部30b及び挾持凸部側凸部35bの各曲率半径(第2の曲率半径、第3の曲率半径)は、光ファイバ心線1を挾持しても光ファイバ心線1が破損あるいは欠損しないことはもちろんのこと、確実に対照光を検出できるように対照光を光ファイバ心線1外へ放射でき、かつ、通信光の損失をある所定のレベルに抑制するような値、例えば3mmから10mmの範囲から選択して設定する。側凹部L15b及び側凹部R15cは、凸部15aにより急峻な湾曲が与えられた光ファイバ心線1を滑らかに受光装置4外へ案内する機能を果たすので、第3の曲率半径が第2の曲率半径より大きくてもかまわない。
【0058】
また、対照光が光ファイバ心線1外へ放射しても心線対照のための受光に寄与しない部分の湾曲を構成する、凹部10a、挾持凹部側凸部30a及び挾持凹部側凸部35aの各曲率半径(第1の曲率半径)は、光ファイバ心線1を挾持しても光ファイバ心線1が破損あるいは欠損しないことはもちろんのこと、対照光の光ファイバ心線1外への放射も、通信光の損失も発生させないような値、例えば30mmから無限大(直線)の範囲から選択して設定する。
【0059】
例えば、心線対照作業を実施する個所が光源装置2に近くで、対照光の強度が十分強い場合などは、緩やかな湾曲であっても対照光の光ファイバ心線1外への放射量を大きく稼ぐことができるため、対照光が光ファイバ心線1外へ放射して心線対照のための受光に寄与する部分の曲率半径を大きくし、結果として、通信光の損失を更に抑制することが可能となる。その以外にも、湾曲で発生する通信光の損失において所定の要求値に対し十分な余裕があれば、その余裕の範囲内で、更に対照光が光ファイバ心線1外へ放射して心線対照のための受光に寄与する部分の曲率半径を小さくし、結果として、対照光の光ファイバ心線1外への放射量を増やし、検出感度を高めることが可能となる。
【0060】
もちろん、湾曲で発生する通信光の損失において、所定の要求値に対し十分な余裕があれば、アタッチメント部材L30及びアタッチメント部材R35共に挾持凹部10に沿わせた状態で、光ファイバ心線1をアタッチメント部材L30及びアタッチメント部材R35と挾持凸部15とで挾持して心線対照を行っても構わない。
【0061】
また、通信光の波長がLバンド帯域ではなく、従来から使用されている1.31μmや1.55μmなどである場合は、アタッチメント部材L30及びアタッチメント部材R35共に挾持凸部15に沿わせた状態で、光ファイバ心線1をアタッチメント部材L30及びアタッチメント部材R35と挾持凹部10とで挾持して心線対照を行っても構わない。
【0062】
このように、アタッチメント部材L30及びアタッチメント部材R35の位置調節だけでなく、外的要因に合わせて、対照光が光ファイバ心線1外へ放射して心線対照のための受光に寄与する部分の湾曲の曲率半径の組み合わせを変えて、光ファイバ心線1に与える湾曲を所定の形状に形成することも可能である。
【0063】
[第3実施例]
次に、図5により、本発明の第2実施例として、第1実施例で説明した受光装置4の別の使用方法を説明する。図5(a)(b)は、この受光装置4を用いて光線路の上部と下部の判定を行う際の、湾曲の状態と対照光の進行方向の状態を示している。
【0064】
図5(a)では、対照光の進行方向と光ファイバ心線1の湾曲状態が図4(a)と同様である。即ち、光ファイバ心線1の上部側(図5(a)では左側)に設置した光源装置2から入射装置3を介して光ファイバ心線1に対照光が入射され、この対照光はアタッチメント部材L30側からアタッチメント部材R35側へ(図5(a)では左側から右側へ)進行しており、アタッチメント部材L30を挾持凹部10に沿わせ、アタッチメント部材R35を挾持凸部15に沿わせ、作業者がグリップ20を握り、トリガ25を手前(グリップ側)に引いた際、光ファイバ心線1に与える湾曲の状態を示している。従って、光ファイバ心線1はアタッチメント部材L30と挾持凸部15との間、挾持凹部10と挾持凸部15との間、挾持凹部10とアタッチメント部材R35との間を通って挾持されて、湾曲している。
【0065】
図5(b)では、光ファイバ心線1の上部側が図5(a)とは逆の右側であるが、光ファイバ心線1の湾曲状態は図5(a)と同じである。即ち、光ファイバ心線1の上部側(図5(b)では右側)に設置した光源装置2から入射装置3を介して光ファイバ心線1に対照光が入射され、この対照光はアタッチメント部材R35側からアタッチメント部材L30側へ(図5(b)では右側から左側へ)進行しており、アタッチメント部材L30を挾持凹部10に沿わせ、アタッチメント部材R35を挾持凸部15に沿わせ、作業者がグリップ20を握り、トリガ25を手前(グリップ側)に引いた際、光ファイバ心線1に与える湾曲の状態を示している。従って、光ファイバ心線1は挾持凸部15とアタッチメント部材L30との間、挾持凹部10と挾持凸部15との間、挾持凹部10とアタッチメント部材R35との間を通って挾持されて、湾曲している。
【0066】
そして心線対照に際し、図5(a)においては、対照光は、この対照光が光ファイバ心線1外へ放射して心線対照のための受光に寄与する部分の湾曲である側凹部L15bと凸部側凸部30cとの圧接面を通過して、凸部15a及び受光素子40に到達しており、対照光の進行方向と、対照光の光ファイバ心線1外への放射を促す湾曲の方向とが合致しているため、対照光が光ファイバ心線1外へ受光素子40に対して放射され、受光素子40で対照光の検出ができる。
【0067】
図5(b)においては、対照光が、凸部15a及び受光素子40を過ぎてから、側凹部L15bと凸部側凸部30cとの圧接面を通過しており、対照光の進行方向と、対照光の光ファイバ心線1外への放射を促す湾曲の方向とが合致しないため、対照光が光ファイバ心線1外へ放射されても受光素子40に対しては放射されず、受光素子40で対照光の検出ができない。
【0068】
従って、もし仮に、対照光の進行方向が不明であっても、図4(a)と図4(b)に示す異なる湾曲状態で心線対照を行った結果が、図4(a)に示す湾曲状態で対照光を検出できて、図4(b)に示す湾曲状態では対照光を検出できなかったとすれば、対照光がアタッチメント部材L30側からアタッチメント部材R35側へ進行しているということが判る。つまり、この場合の光ファイバ心線1の上部は、アタッチメント部材L30側であると特定できる。
【0069】
この逆も然りであり、図4(a)に示す湾曲状態では対照光を検出できず、図4(b)に示す湾曲状態で対照光を検出できたとすれば、対照光がアタッチメント部材R35側からアタッチメント部材L30側へ進行しているということが判る。つまり、この場合の光ファイバ心線1の上部は、アタッチメント部材R35側であると特定できる。
【0070】
このように、作業者が、図4(a)と図4(b)に示す湾曲状態となるようにアタッチメント部材L30及びアタッチメント部材R35の位置を調整し、対照光の検出が可能な湾曲の方向を特定することにより、対照光の進行方向、つまり、光線路の上部下部を確実に特定できる。
【0071】
なお、湾曲手段としては、図4(a)や図4(b)に示したように光ファイバ心線1を挾持して所定の湾曲を与えることができるものであれば、図3に示した構成のものに限定されることはない。
【0072】
例えば、図3の構成に準じて、アタッチメント部材L30と挾持凹部10とを1固体とした凹凸部と、アタッチメント部材R35と挾持凸部15とを1固体とした凹凸部とで、図4(a)に示す湾曲を光ファイバ心線1に与える湾曲手段を構成し、また、これとは別に、図3の構成に準じて、アタッチメント部材R35と挾持凹部10とを1固体とした凹凸部と、アタッチメント部材L30と挾持凸部15とを1固体とした凹凸部とで、図4(b)に示す湾曲を光ファイバ心線1に与える湾曲手段を構成し、これら2種類の湾曲手段を採用して受光装置4に備える。このような受光装置にあっては、2種類の湾曲手段を切り換えて光ファイバ心線1を挾持して湾曲を与えることにより、心線対照を行うことができる。心線対照における光ファイバ心線1の特定、及び、光線路の上部下部の特定の原理は、上述したとおりである。
【0073】
この場合、1個の受光素子40を2つの湾曲手段の両方に対応するように設けたり、2個の受光素子40を2つの湾曲手段に別々に設けたりすることができる。
【0074】
また、図3の構成に準じて、アタッチメント部材L30と挾持凹部10とを1固体とした凹凸部と、アタッチメント部材R35と挾持凸部15とを1固体とした凹凸部とで、図4(a)に示す湾曲を光ファイバ心線1に与える湾曲手段のみを構成して受光装置4に備え、あるいは、図3の構成に準じて、アタッチメント部材R35と挾持凹部10とを1固体とした凹凸部と、アタッチメント部材L30と挾持凸部15とを1固体とした凹凸部とで、図4(b)に示す湾曲を光ファイバ心線1に与える湾曲手段のみを構成して受光装置4に備え、この1種類の湾曲手段のみを備えた受光装置4自体を作業者が持ち替えて、例えば、光ファイバ心線1を下から受光装置4で挾持したり、上から受光装置4で挾持することで、心線対照を行うことができる。あるいは、光ファイバ心線1を右側から受光装置4で挾持したり、左側から受光装置4で挾持するように、受光装置4自体を作業者が持ち替えることで、心線対照を行うことができる。心線対照における光ファイバ心線1の特定、及び、光線路の上部下部の特定の原理は、上述したとおりである。
【0075】
【発明の効果】
以上の説明から判るように、本発明によれば、通信光の強度、及び、光ファイバ心線外へ放射させる対照光の強度を変化させる手段、例えば、光ファイバ心線に与える湾曲の形状を変える湾曲手段を受光装置に具備したことにより、通信光としてLバンド(1.565μm〜1.625μm)帯域の波長など、長い波長を使用しても、通信光の損失をある所定のレベルに抑制することはもちろんのこと、従来から使用されている1.31μmと1.55μmの波長の通信光については、従来にも増して損失を低減しつつ、なおかつ、効率的に対照光を検出することができるようになるため、通信品質の低下を防止できる。
【0076】
また、本発明によれば、湾曲手段により左右非対称の湾曲形状を光ファイバ心線に与えることができるので、対照光の方向性を確実に判定でき、該当する光ファイバ心線の特定はもちろんのこと、光ファイバ心線の切断位置を詳細に決めるため光線路の上部下部を確実に特定できるようになるため、光ファイバ心線の誤切断や誤接続を防止できる。
【0077】
このように、本発明は今後の光通信サービスの工事稼働削減や信頼性向上に大きく寄与する。
【図面の簡単な説明】
【図1】従来の心線対照方法の一例を示す概略図。
【図2】従来の心線対照用光信号受光装置が光ファイバ心線に与える湾曲形状を示す図。
【図3】本発明の第1実施例に係る心線対照用光信号受光装置の構成を示す図。
【図4】本発明の第2実施例に係る心線対照用光信号受光装置の使用方法として、心線対照を行う際の湾曲の状態を示す図。
【図5】本発明の第3実施例に係る心線対照用光信号受光装置の使用方法)として、光線路の上部下部の判定を行う際の湾曲の状態と心線対照用光信号の進行方向を示す図。
【符号の説明】
1 光ファイバ心線
2 光源装置(心線対照用光信号光源装置)
3 入射装置(心線対照用光信号入射装置)
4 受光装置(心線対照用光信号受光装置)
10 挾持凹部(光強度変化手段の一部、湾曲手段の一部)
10a 凹部
10b スライド機構C
10c スライド機構L
10d スライド機構R
10e 溝部
15 挾持凸部(光強度変化手段の一部、湾曲手段の一部)
15a 凸部
15b 側凹部L
15c 側凹部R
15d 溝部
20 グリップ
25 トリガ
30 挾持アタッチメント部材(光強度変化手段の一部、湾曲手段の一部)
30a 挾持凹部側凸部
30b 挾持凸部側凸部
30c 挾持凹部側溝部
30d 挾持凸部側溝部
35 挾持アタッチメント部材(光強度変化手段の一部、湾曲手段の一部)
35a 挾持凹部側凸部
35b 挾持凸部側凸部
35c 挾持凹部側溝部
35d 挾持凸部側溝部
40 受光素子(心線対照用光信号受光素子)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical signal for core-line control used in a core-line control system for identifying an optical fiber core in order to avoid erroneous disconnection or erroneous connection of the optical fiber in the construction or maintenance of an optical fiber communication network. The present invention relates to a light receiving device and a method of using the device.
[0002]
[Prior art]
In the construction and maintenance of the optical fiber communication network, the optical fiber core in the optical fiber cable or the optical fiber core at the customer's house at the work site should not occur in order to prevent accidental disconnection or misconnection of the optical fiber core. Individual line identification is required. This operation is called cord control, and is usually performed by the method shown in FIG.
[0003]
That is, in FIG. 1, an optical fiber light source device (hereinafter referred to as “light source device”) 2 installed on the upper side (left side in FIG. 1) of the optical fiber core 1 that needs to be controlled is used. An optical signal for optical fiber reference (hereinafter referred to as “control light”) is incident on the optical fiber core wire 1 via an optical signal input device for optical use (hereinafter referred to as “incident device”) 3. On the lower side (right side in FIG. 1) of the optical fiber core wire 1, the optical fiber core wire 1 is bent using a optical fiber light receiving device (hereinafter referred to as “light receiving device”) 4 for controlling the optical fiber. Is emitted outside the optical fiber core 1 to detect the control light.
[0004]
Here, the light source device 2 is a laser diode (LD) having a wavelength longer than that of a communication optical signal (hereinafter referred to as “communication light”) that propagates through the optical fiber core 1 in order to provide information to a customer's home. It is a device that emits light obtained by adding 270 Hz frequency modulation to light such as a light emitting diode (LED). For example, when the wavelength of the communication light is 1.31 μm, 1.55 μm is adopted as the wavelength of the control light, and when the wavelength of the communication light is 1.55 μm, 1.65 μm is adopted as the wavelength of the control light.
[0005]
As the incident device 3, an optical fiber coupler, a waveguide type directional coupler, or the like is used, or the reference light is directly incident from the upper end face of the optical fiber core wire 1.
[0006]
The light receiving device 4 is provided with a bending mechanism for efficiently emitting only the reference light to the outside of the optical fiber core 1 while suppressing the loss of communication light to a predetermined level. An optical signal light receiving element (hereinafter referred to as “light receiving element”) for detecting a core wire, such as a Ge photodiode or an InGaAs photodiode, for receiving received light is provided, and the presence or intensity of the reference light can be measured. .
[0007]
With such a configuration, even when communication light is being transmitted / received, the control light incident from the upper side of the optical fiber core wire 1 is detected by the lower worker using the light receiving device 4, so that the core wire control is performed. Is carried out.
[0008]
In addition, as a typical thing of the core line contrast system which consists of the light source device 2, the incident device 3, and the light-receiving device 4 used conventionally, it is shown by the following literature, for example.
Literature: “Enomoto et al .:“ Design of a compact optical fiber ID tester using a hybrid optical module ”, Proceedings of the 1996 IEICE Communication Society Conference (separate volume: Communication 2), Lecture No. B-976, p. 461 "
[0009]
In FIG. 2, the shape of the curve which the light-receiving device 4 currently used gives to the optical fiber core wire 1 is shown. As can be seen from the shape of the curved portion 4a in FIG. 2, the curved shape is conventionally symmetrical, so that the upper side (left side in FIG. 2) and the lower side (right side in FIG. 2) of the optical fiber core 1 are arranged. Even if the control light is incident from either side, the cord can be controlled, and the same measurement value can be obtained in the measurement of the intensity of the control light, thus simplifying the operation.
[0010]
[Problems to be solved by the invention]
As described above, in the conventional core wire contrast system, the optical fiber core wire 1 is bent symmetrically by using the light receiving device 4, and the control light is emitted outside the optical fiber core wire 1 and this is detected by the light receiving element. This makes it possible to control the core. At this time, although there is no influence on services such as information provision, loss due to the bending of the optical fiber core wire 1 also occurs in the communication light.
[0011]
Therefore, in the conventional light receiving device 4, the optical fiber core 1 is not damaged or lost even if the optical fiber core 1 is held, and the reference light is optical fiber core so that the reference light can be reliably detected. The radius of curvature for pressing and holding the optical fiber core wire 1 is selected so that the optical fiber core wire 1 can be radiated out of the line 1 and the loss of communication light can be suppressed to a predetermined level.
[0012]
However, in recent years, wavelengths in the L band (1.565 μm to 1.625 μm: ITU-T recommendation) band are being used in addition to the conventional 1.31 μm and 1.55 μm used as communication light. It goes without saying that the loss generated by bending the optical fiber core 1 increases with increasing wavelength, but the conventional light receiving device 4 suppresses the loss of the L-band communication light. Since it is not designed to do so, a large loss is generated in the L-band communication light being transmitted / received at the time of the contrast control work, and the communication quality may be deteriorated.
[0013]
If only the loss of the L-band communication light is suppressed, in principle, the curvature radius of the curve given to the optical fiber core wire 1 may be simply increased, but conversely, the radiation amount of the control light decreases, As a result, it is impossible to reliably detect the contrast light, and consequently, it is not possible to perform the core line contrast, which greatly impedes construction work such as construction and maintenance of the optical fiber communication network.
[0014]
In the star network, which has been the mainstream in the early days of the demand for optical services, where the amount of optical fiber cables is small, it is possible to identify the upper and lower parts of the optical line by visual inspection. The effect by the curved shape of the apparatus 4 being left-right symmetric was able to be exhibited.
[0015]
However, in the loop network, which is one of the wiring forms for increasing demand for optical services in the future, the identification of the upper and lower parts of each optical fiber core 1 is not limited to visual observation, but the conventional light reception. Even if the device 4 is used, it cannot be performed.
[0016]
This is because the upper and lower portions of the optical line relate to the traveling direction of the reference light, so even if the reference light is incident on the upper side of the optical fiber core wire 1 in the loop network, the reference light is received from the lower side. It is because it may reach. In other words, in the case of a loop network, the conventional light receiving device 4 has a symmetrical left and right curved shape, and therefore detects the contrast light from the lower side.
[0017]
Therefore, when the conventional light receiving device 4 is used, in the loop network, only the corresponding optical fiber core wire 1 can be specified, and an optical line for determining the cutting position of the optical fiber core wire 1 in detail is possible. The upper and lower portions cannot be specified, and the optical fiber core wire 1 may be cut at an incorrect position.
[0018]
The present invention has been made in view of the above-described circumstances, and one of the purposes thereof is an optical fiber core efficiently while suppressing loss of communication light even in an environment where an L band is used as communication light. It is to provide a means by which the identification can be performed.
[0019]
Another object of the present invention is to provide means that can reliably determine the upper and lower parts of an optical line.
[0020]
[Means for Solving the Problems]
The first object can be achieved by changing the intensity of communication light and the intensity of control light emitted outside the optical fiber core in the light receiving device. These light intensities can be changed, for example, by changing the shape of the curve given to the optical fiber core wire. The second object can be achieved by making the shape of the curve given to the optical fiber core asymmetrical in the light receiving device. The invention-specific matters are shown below.
[0021]
  The seventh aspect of the invention is used in a system for performing a core contrast to avoid erroneous disconnection or erroneous connection of an optical fiber core in construction or maintenance of an optical fiber communication network, and the optical fiber is connected to the lower side of the optical fiber core. By bending the optical fiber, the optical fiber for optical fiber core incident on the upper side of the optical fiber is radiated to the outside of the optical fiber, and the emitted optical fiber is compared. An optical signal receiving device for detecting a core wire for detecting an optical signal for communication, wherein the intensity of the optical signal for core wire to be radiated out of the optical fiber core and the optical signal for communication propagating through the optical fiber core wire In the optical fiber light receiving device for contrasting the optical fiber comprising the optical intensity changing means capable of changing the intensity of the optical fiber, the optical intensity changing means changes the shape of the curve given to the optical fiber core, thereby changing the optical fiber. Radiate out of the core A bending means capable of changing the intensity of the optical signal for controlling the core wire and the intensity of the optical signal for communication propagating through the optical fiber core; and the bending means includes the optical fiber core wire. In order to hold and give a predetermined different curvature, a portion in which a recess having a first radius of curvature is formed (hereinafter referred to as “holding recess”) and a second smaller than the first radius of curvature facing the holding recess. A portion having a convex portion having a radius of curvature and a first side concave portion and a second side concave portion having a third radius of curvature that are on both wings of the convex portion and have a curved surface (hereinafter referred to as “holding convex portion”). ) And the first and second attachment members that are arranged between the holding recess and both wings of the holding projection and are capable of pressing and holding the optical fiber core wire together with the holding recess and the holding projection. And two attachment members. Wherein between the second attachment members and between the clamping recess of the first attachment member and the first side concave portion, or, with the pinching recess first 1 By bending the optical fiber core wire between the attachment member and between the second side concave portion and the second attachment member, the curvature radius of the curve applied to the optical fiber core wire is set to the first side concave portion. One of the side or the second concave side is small and the other is large.
[0025]
  The third aspect of the invention is used in a system for performing a core contrast to avoid erroneous disconnection or misconnection of optical fiber cores in the construction or maintenance of an optical fiber communication network. By bending the optical fiber, the optical fiber for optical fiber core incident on the upper side of the optical fiber is radiated to the outside of the optical fiber, and the emitted optical fiber is compared. An optical signal receiving device for detecting a core wire for detecting an optical signal for communication, wherein the intensity of the optical signal for core wire to be radiated out of the optical fiber core and the optical signal for communication propagating through the optical fiber core wire In the optical fiber light receiving device for contrasting the optical fiber comprising the optical intensity changing means capable of changing the intensity of the optical fiber, the optical intensity changing means changes the shape of the curve given to the optical fiber core, thereby changing the optical fiber. Radiate out of the core Strength Kikokoro line control light signal, and, equipped with a curved section capable of changing the intensity of the communication optical signal propagating through the optical fiber, whereinThe bending means is composed of a first bending means and a second bending means, and the first bending means holds the optical fiber core wire so as to give a predetermined curve, so that a holding recess having a first radius of curvature is formed. And facing this holding recessSmaller than the first radius of curvatureA convex portion having a second radius of curvature and one wing of the convex portion and having a curved surface on one side, a concave portion on a side having a third radius of curvature and the other wing of the convex portion having a curved surface on the same side. A holding convex portion formed with a side convex portion having a radius of curvature of 1 and the optical fiber together with the holding concave portion and the holding convex portion, disposed between the holding concave portion and the one wing of the holding convex portion. Since the second bending means holds the optical fiber core wire and gives a predetermined curvature, the concave portion having the first radius of curvature is formed. The third concave portion, the convex portion having the second radius of curvature facing the clamping concave portion, and the wing on one side of the convex portion opposite to the side concave portion in the first bending means, and having a curved surface as a third. The first curvature which is on the side concave portion of the radius of curvature and the other wing of the convex portion and makes the curved surface the same A holding convex part formed with a side convex part of a diameter, and the optical fiber core wire is disposed between the holding concave part and the one wing of the holding convex part, together with the holding concave part and the holding convex part. And an attachment member capable of being pressed and held.
[0026]
  The fourth aspect of the invention is used in a system for performing a core contrast in order to avoid erroneous disconnection or erroneous connection of an optical fiber core in the construction or maintenance of an optical fiber communication network, and the optical fiber is connected below the optical fiber core. By bending the optical fiber, the optical fiber for optical fiber core incident on the upper side of the optical fiber is radiated to the outside of the optical fiber, and the emitted optical fiber is compared. An optical signal receiving device for detecting a core wire for detecting an optical signal for communication, wherein the intensity of the optical signal for core wire to be radiated out of the optical fiber core and the optical signal for communication propagating through the optical fiber core wire In the optical fiber light receiving device for contrasting the optical fiber comprising the optical intensity changing means capable of changing the intensity of the optical fiber, the optical intensity changing means changes the shape of the curve given to the optical fiber core, thereby changing the optical fiber. Radiate out of the core Strength Kikokoro line control light signal, and, equipped with a curved section capable of changing the intensity of the communication optical signal propagating through the optical fiber, whereinIn order for the bending means to hold the optical fiber core wire to give a predetermined curve, a holding recess formed with a recess having a first radius of curvature is opposed to the holding recess.Smaller than the first radius of curvatureThe convex portion having the second radius of curvature and one wing of the convex portion and the curved surface on the other side of the third radius of curvature and the convex portion on the other side of the convex portion and the curved surface being the same. A holding convex portion formed with a side convex portion having a first radius of curvature, and the light is disposed between the holding concave portion and the one wing of the holding convex portion, together with the holding concave portion and the holding convex portion. And an attachment member capable of pressing and holding the fiber core wire.
[0027]
  The first aspect of the invention is used in a system for performing a core contrast to avoid erroneous disconnection or misconnection of an optical fiber core in construction or maintenance of an optical fiber communication network. By bending the optical fiber, the optical fiber for the optical fiber that is incident on the upper side of the optical fiber is emitted to the outside of the optical fiber, and the emitted optical fiber is compared. An optical signal receiving device for detecting a core wire for detecting an optical signal for an optical fiber, wherein the intensity of the optical signal for core wire comparison to be radiated out of the optical fiber core wire and the optical signal for communication propagating through the optical fiber core wire In the optical fiber light receiving device for contrasting the optical fiber comprising the optical intensity changing means capable of changing the intensity of the optical fiber, the optical intensity changing means changes the shape of the curve given to the optical fiber core, thereby changing the optical fiber. Radiate out of the core A bending means capable of changing the intensity of the optical signal for controlling the core wire and the intensity of the optical signal for communication propagating through the optical fiber core; and the bending means includes the optical fiber core wire. In order to hold and give a predetermined different curvature, a portion in which a recess having a first radius of curvature is formed (hereinafter referred to as “holding recess”) and a second smaller than the first radius of curvature facing the holding recess. A portion having a convex portion having a radius of curvature and a first side concave portion and a second side concave portion having a third radius of curvature that are on both wings of the convex portion and have a curved surface (hereinafter referred to as “holding convex portion”). ) And the first and second attachment members which are arranged between the holding recess and the blades of the holding projection, and which can press and hold the optical fiber core wire together with the holding recess and the holding projection. And two attachment members. Wherein between the second attachment members and between the clamping recess of the first attachment member and the first side concave portion, or, with the pinching recess first 1 By bending the optical fiber core between the attachment member and between the second side concave portion and the second attachment member, the curvature radius of the curvature applied to the optical fiber core wire is changed to the first side concave portion. One of the side or the second side recess side is small, and the other is a method of using the optical signal receiving device for contrasting with the core wire,By adjusting the position of the attachment member to suppress the loss of communication light to a predetermined level, the optical fiber core wire is curved so that the control light emitted outside the optical fiber core wire can be detected. It is characterized by performing line contrast. In other words, communication lightWhile controlling the lossIn order to detect the control light emitted to the outside of the optical fiber, the position of the attachment member is adjusted in the curved shape given to the optical fiber by using the light receiving device, and the control light is moved out of the optical fiber. The curvature of the portion which does not contribute to the light reception for the core line control even when radiated is relaxed, and the total amount of the curvature is reduced.
[0028]
  The second aspect of the invention is used in a system for performing a core contrast in order to avoid erroneous disconnection or misconnection of optical fiber cores in the construction and maintenance of an optical fiber communication network. By bending the optical fiber, the optical fiber for optical fiber core incident on the upper side of the optical fiber is radiated to the outside of the optical fiber, and the emitted optical fiber is compared. An optical signal receiving device for detecting a core wire for detecting an optical signal for communication, wherein the intensity of the optical signal for core wire to be radiated out of the optical fiber core and the optical signal for communication propagating through the optical fiber core wire In the optical fiber light receiving device for contrasting the optical fiber comprising the optical intensity changing means capable of changing the intensity of the optical fiber, the optical intensity changing means changes the shape of the curve given to the optical fiber core, thereby changing the optical fiber. Radiate out of the core A bending means capable of changing the intensity of the optical signal for controlling the core wire and the intensity of the optical signal for communication propagating through the optical fiber core; and the bending means includes the optical fiber core wire. In order to hold and give a predetermined different curvature, a portion in which a recess having a first radius of curvature is formed (hereinafter referred to as “holding recess”) and a second smaller than the first radius of curvature facing the holding recess. A portion having a convex portion having a radius of curvature and a first side concave portion and a second side concave portion having a third radius of curvature that are on both wings of the convex portion and have a curved surface (hereinafter referred to as “holding convex portion”). ) And the first and second attachment members which are arranged between the holding recess and the blades of the holding projection, and which can press and hold the optical fiber core wire together with the holding recess and the holding projection. And two attachment members. Wherein between the second attachment members and between the clamping recess of the first attachment member and the first side concave portion, or, with the pinching recess first 1 By bending the optical fiber core between the attachment member and between the second side concave portion and the second attachment member, the curvature radius of the curvature applied to the optical fiber core wire is changed to the first side concave portion. One of the side or the second side recess side is small, and the other is a method of using an optical signal light receiving device for contrasting cores,By adjusting the position of the attachment member, the optical fiber core wire is bent so as to determine the traveling direction of the reference light, that is, the upper and lower portions of the optical line, and the optical fiber core wire is compared. In other words, in order to determine the upper and lower portions of the optical line, the position of the attachment member is adjusted in the curved shape given to the optical fiber core using the light receiving device, and the traveling direction of the reference light and the reference light are set to the optical fiber core. The curve shape is set so that the control light can be detected only when the curve direction that can be emitted out of the line matches.
[0029]
  The fifth invention is the third inventionIn this method, the first bending means and the second bending means are switched to bend the optical fiber to identify the upper and lower portions of the optical line.
[0030]
  6th invention is 4th inventionThis is a method of using an optical signal light receiving device for contrasting a core, characterized in that the light receiving device itself is changed and the upper and lower portions of the optical line are specified. For example, the upper and lower portions of the optical line are specified by holding the optical fiber core from below with a light receiving device or by holding it with a light receiving device from above.
[0031]
By the means described above, in addition to the 1.31 μm and 1.55 μm conventionally used as communication light, even if the wavelength in the L band (1.565 μm to 1.625 μm) is used, the light is received for contrasting the cores. The control light can be efficiently emitted and detected outside the optical fiber core while suppressing the loss of communication light that occurs when the optical fiber core is bent by the apparatus. Therefore, it is possible to prevent a decrease in communication quality. In addition, the directivity (traveling direction) of the reference light can be reliably determined, and not only the corresponding optical fiber core wire is specified, but also the upper and lower portions of the optical line for determining the cutting position of the optical fiber core wire in detail. The determination can be made reliably. Accordingly, it is possible to prevent erroneous disconnection or erroneous connection of the optical fiber core wire.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0033]
[First embodiment]
With reference to FIG. 3, the configuration of a light receiving device (core line contrast optical signal light receiving device) will be described as a first embodiment of the present invention. FIG. 3 is a diagram illustrating the entire configuration of the light receiving device 4 according to the present embodiment in a state where the optical fiber core wire is not pressed and held (in a gripped state but not held). Among these, Fig.3 (a) is a side view of a light-receiving device, FIG.3 (b) is a top view.
[0034]
As shown in FIGS. 3 (a) and 3 (b), the light receiving device 4 of the present embodiment includes a bending means as a light intensity changing means, and holds the optical fiber core wire to give a predetermined curvature. ,
(1) a holding recess 10 in which a recess 10a having a predetermined radius of curvature (first radius of curvature) is formed;
(2) A convex portion 15a having a predetermined curvature radius (second curvature radius) and two side concave portions having a predetermined curvature radius (third curvature radius) on both wings of the convex portion 15a and having the same curved surface Holding protrusions 15 formed with 15b, 15c,
(3) Two attachment members 30 and 35 that are arranged between the holding recess 10 and both wings of the holding projection 15 and are capable of pressing and holding the optical fiber core wire together with the holding recess 10 and the holding projection 15. ,
(4) a grip 20 gripped by an operator when holding the optical fiber core;
(5) a trigger 25 that the operator pulls forward (grip side) when holding work;
(6) the light receiving element 40 built in the holding recess 10 and
Consists of.
[0035]
In the following description, in FIG. 4 and FIG. 5, the side concave portion indicated by reference numeral 15 b is on the left wing of the holding convex portion 15, so it is called side concave portion L, and the side concave portion indicated by reference numeral 15 c is on the right wing of the holding convex portion 15. Since there exists, it calls the side recessed part R.
[0036]
Similarly, in FIG. 4 and FIG. 5, the attachment member indicated by reference numeral 30 is located on the left side of the holding convex portion 15, and hence is called the attachment member L, and the attachment member indicated by reference numeral 35 is located on the right side of the holding convex portion 15. Therefore, it is called an attachment member R.
[0037]
The holding recess 10 is a portion forming the main body of the light receiving device 4, and as shown in FIG. 3B, the holding recess 10 is formed with a recess 10 a for bending the optical fiber core wire. The curved shape of the recess 10a is symmetrical. The light receiving element 40 is arranged in the holding recess 10 so that the holding projection 15 is desired from the center (bottom) of the curvature of the recess 10a. Further, as shown in FIG. 3A, a groove 10e having a shape that can accommodate the optical fiber core wire is formed in the concave portion 10a in order to correctly hold the optical fiber core wire. As the light receiving element 40, for example, a Ge photodiode or an InGaAs photodiode is used.
[0038]
Furthermore, as shown in FIG. 3B, when the operator holds the grip 20 and pulls the trigger 25 toward the front (grip side), the gripping convex portion 15 is gripped in the gripping recess 10 in conjunction with the movement. A slide mechanism 10b for moving toward the recess 10, a slide mechanism 10c for holding and adjusting the holding attachment member L30, and a slide mechanism 10d for holding and adjusting the holding attachment member R35. Is formed.
[0039]
In the following description, in FIG. 4 and FIG. 5, the slide mechanism indicated by reference numeral 10b is located at the center, and hence is referred to as the slide mechanism C, and the slide mechanism indicated by reference numeral 10c is located on the left side and is therefore referred to as the slide mechanism L. Since the slide mechanism indicated by reference numeral 10d is located on the right side, it is called a slide mechanism R.
[0040]
The holding convex part 15 is provided in the main body part of the light receiving device 4 so as to face the holding concave part 10. Specifically, as shown in FIG. 3B, the holding convex portion 15 has a predetermined curvature radius facing the concave portion 10a so as to hold the optical fiber core wire and give a predetermined curvature. And a side concave portion L15b and a side concave portion R15c having a predetermined curvature radius on the left and right wings of the convex portion 15a and having the same curved surface. Here, the curvature radii of the side recess L15b and the side recess R15c are equal (third curvature radius). Further, as shown in FIG. 3A, the holding convex portion 15 has a groove portion 15d having a shape in which the optical fiber core wire can be accommodated so as to correctly hold the optical fiber core wire. It is formed over R15c.
[0041]
The curved shape of the gripping convex portion 15 is bilaterally symmetric, and the center (the top of the convex portion 15a) is desired to be centered on the gripping concave portion 10, in other words, the light receiving element 40 is disposed as desired. In this example, the gripping convex portion 15 has a symmetrical center line (a line connecting the vertex of the convex portion 15a and the curved center point of the convex portion 15a) of the left and right symmetrical curves of the gripping convex portion 10. It is moved by the slide mechanism C10b so as to coincide with (a line connecting the bottom of the recess 10a and the center of curvature of the recess 10a).
[0042]
As shown in FIG. 3 (b), the attachment member L30 has a convex portion on the side of the holding recess 10 (hereinafter referred to as a holding recess side convex portion) 30a and a holding convex portion 15 in order to give the optical fiber core a curve. A convex portion (hereinafter referred to as a holding convex portion side convex portion) 30b on the side concave portion L15b side is formed. Here, the radius of curvature of the holding recess side convex portion 30a is equal to the radius of curvature of the concave portion 10a (first curvature radius), and the curvature radius of the holding convex portion side convex portion 30b is the curvature radius of the side concave portion L15b (third curvature). Radius). Further, as shown in FIG. 3A, the attachment member L30 has a groove portion on the side of the holding recess 10 (hereinafter referred to as a holding recess side groove portion) in which the optical fiber core wire is accommodated in order to correctly hold the optical fiber core wire. 30c and the groove part by the side of the clamping convex part 15 (henceforth a clamping convex part side groove part) 30d are formed.
[0043]
The attachment member L30 is held by the slide mechanism L10c formed in the holding recess 10, and the position is directly manually adjusted, or the operator holds the grip 20 and pulls the trigger 25 toward the front (grip side). When the gripping convex portion 15 is slid toward the gripping concave portion 10, it can be indirectly slid with the pressing force to adjust the position.
[0044]
As shown in FIG. 3 (b), the attachment member R 35 includes a protrusion on the holding recess 10 side (hereinafter referred to as a holding recess-side protrusion) 35 a for bending the fiber core wire, and a holding protrusion 15 side. A convex portion (hereinafter referred to as a holding convex portion side convex portion) 35b on the concave portion R15c side is formed. Here, the radius of curvature of the holding recess side convex portion 35a is equal to the radius of curvature of the concave portion 10a (first curvature radius), and the radius of curvature of the holding convex portion side convex portion 35b is the curvature radius (third curvature) of the side recess R15c. Radius). Further, as shown in FIG. 3 (a), the attachment member R35 has a groove portion on the side of the holding recess 10 (hereinafter referred to as a holding recess side groove portion) in which the optical fiber core wire is accommodated in order to correctly hold the optical fiber core wire. 35c and the groove part (henceforth the holding convex part side groove part) 35d by the side of the holding convex part 15 are formed.
[0045]
The attachment member R35 is held by the slide mechanism R10d formed in the holding recess 10, and the position is directly adjusted manually, or the operator holds the grip 20 and pulls the trigger 25 toward the front (grip side). When the gripping convex portion 15 is slid toward the gripping concave portion 10, it can be indirectly slid with the pressing force to adjust the position.
[0046]
Here, in order to be able to press and hold the optical fiber core wire, the concave portion 10a, the holding concave portion side convex portion 30a and the holding concave portion side convex portion 35a have the same radius of curvature (first curvature radius), and the side concave portion. The curvature radii of L15a and the side recess R15b, and the holding convex part side convex part 30b and the holding convex part side convex part 35b are equal (third curvature radius).
[0047]
In the light receiving device 4 configured as described above, by adjusting the positions of the attachment member L30 and the attachment member R35,
(1) The attachment member L30 and the attachment member R35 are both placed along the holding recess 10, and the optical fiber core wire is connected between the attachment member L30 and the holding projection 15 and between the holding projection 15 and the holding recess 10. In a state where it is passed between R35 and the holding convex portion 15, or
(2) Only the attachment member L30 is provided along the holding concave portion 10, the attachment member R35 is provided along the holding convex portion 15, and the optical fiber is connected between the attachment member L30 and the holding convex portion 15, and the holding convex portion 15 and the holding concave portion. 10 between the attachment member R35 and the holding recess 10, or
(3) Attaching the attachment member L30 along the holding convex portion 15, only the attachment member R35 along the holding concave portion 10, and connecting the optical fiber core wire between the attachment member L30 and the holding concave portion 10, the holding convex portion 15 and the holding concave portion 10 Between the attachment member R35 and the holding convex portion 15, or
(4) The attachment member L30 and the attachment member R35 are both along the holding convex portion 15, and the optical fiber core wire is connected between the attachment member L30 and the holding concave portion 10, between the holding convex portion 15 and the holding concave portion 10, and the attachment member. In a state of passing between R35 and the holding recess 10,
When the operator holds the grip 20 and pulls the trigger 25 toward the front (grip side), the optical fiber core wire can be pressed and held to give various predetermined curves.
[0048]
The shape of the bend applied to the optical fiber core in the state of (1) and the shape of the bend applied to the optical fiber core in the state of (4) are both bilaterally symmetric, and the optical fiber in the state of (2) above. The shape of the curve given to the core wire and the shape of the curve given to the optical fiber core wire in the state (3) are both asymmetrical.
[0049]
However, in general, the curvature radius (second curvature radius) of the convex portion 15a of the holding convex portion 15, and the curvature radius (third curvature radius) of the side concave portion L15b and the side concave portion R15c are the concave portion 10a of the holding concave portion 10. Therefore, the radius of curvature of the curved shape given to the optical fiber core in the state (1) is the curved shape given to the optical fiber core in the state (4) above. Smaller than
[0050]
Note that the slide mechanism C10b of the gripping convex portion 15 with respect to the gripping concave portion 10, the slide mechanism L10c of the attachment member L30, and the slide mechanism R10d of the attachment member R35 include a guide groove and a guide not shown in the present embodiment. Any mechanism can be used as long as it can hold the optical fiber core and give a predetermined curvature. As an example, it is possible to employ a rotation mechanism in which the holding recess 10, the holding protrusion 15, the attachment member L30, and the attachment member R35 are locked by fulcrums.
[0051]
[Second Embodiment]
Next, referring to FIG. 4, a method of using the light receiving device 4 described in the first embodiment will be described as a second embodiment of the present invention. 4 (a) and 4 (b) show a state of bending given to the optical fiber core wire 1 when the optical fiber core wire is contrasted using the light receiving device 4. FIG.
[0052]
In FIG. 4A, the reference light is incident on the optical fiber core 1 from the light source device 2 installed on the upper side of the optical fiber core 1 (left side in FIG. 4A) via the incident device 3. The contrast light travels from the attachment member L30 side to the attachment member R35 side (from the left side to the right side in FIG. 4 (a)). The attachment member L30 is moved along the holding recess 10 and the attachment member R35 is moved to the holding projection 15. A curved state applied to the optical fiber core wire 1 when the operator holds the grip 20 and pulls the trigger 25 toward the front (grip side) is shown. Therefore, the optical fiber core wire 1 is pressed and clamped between the holding convex portion 15 and the attachment member L30, between the holding concave portion 10 and the holding convex portion 15, and between the holding concave portion 10 and the attachment member R35. It is curved asymmetrically.
[0053]
In FIG.4 (b), the upper side of the optical fiber core wire 1 is the right side opposite to Fig.4 (a). That is, the reference light is incident on the optical fiber core wire 1 from the light source device 2 installed on the upper side (right side in FIG. 4B) of the optical fiber core wire 1 through the incident device 3, and this reference light is attached to the attachment member. Progressing from the R35 side to the attachment member L30 side (from the right side to the left side in FIG. 4 (b)), the attachment member L30 is along the gripping convex portion 15, and the attachment member R35 is along the gripping concave portion 10, so that the operator Shows a state of bending given to the optical fiber core wire 1 when the grip 20 is gripped and the trigger 25 is pulled toward the front (grip side). Therefore, the optical fiber core wire 1 is pressed and held between the holding concave portion 10 and the attachment member L30, between the holding concave portion 10 and the holding convex portion 15, and between the holding convex portion 15 and the attachment member R35. It is curved asymmetrically.
[0054]
As a result, in the curved state of FIG. 4A, the curved shape of the optical fiber core wire 1 is asymmetrical even when viewed from the light receiving element 40, and thus reaches the light receiving element 40 including the curvature of the convex portion 15 a. The curve on the attachment member L30 side is a portion that can receive the reference light emitted to the outside of the optical fiber core wire 1 by the light receiving element 40 and contributes to the core line contrast, and has a small curvature radius and passes the light receiving element 40. The curvature on the attachment member R35 side is a portion where the light receiving element 40 does not receive light even if the reference light is radiated out of the optical fiber core 1 and does not contribute to the core wire contrast, and is a gentle curve having a sufficiently large radius of curvature. It has become.
[0055]
In the bent state of FIG. 4B, the curved shape of the optical fiber core 1 is asymmetrical even when viewed from the light receiving element 40, but conversely, the light receiving element 40 includes the curved portion of the convex portion 15a. The curve on the attachment member R35 side up to is a portion that can receive the reference light emitted to the outside of the optical fiber core wire 1 with the light receiving element 40 and contributes to the core line contrast, and has a small curvature radius. The curve on the attachment member L30 side past 40 is a portion where the light receiving element 40 does not receive light even if the reference light radiates out of the optical fiber core 1 and does not contribute to the core wire contrast, and has a moderately large curvature radius. It has a curved shape.
[0056]
As described above, the operator adjusts the positions of the attachment member L30 and the attachment member R35 to obtain the curved state shown in FIG. 4A and FIG. It is possible to alleviate the curvature of the portion that does not contribute to light reception for core line contrast even when radiating to the light receiving device 4, and to reduce the total amount of curvature in the light receiving device 4, while suppressing the loss of communication light, The control light can be reliably detected.
[0057]
Here, the convex portion 15a, the side concave portion L15b, the side concave portion R15c, the holding convex portion side convexity are configured to radiate the control light to the outside of the optical fiber core wire 1 and contribute to the light reception for the core wire contrast. The respective curvature radii (second curvature radius, third curvature radius) of the portion 30b and the holding convex portion side convex portion 35b are such that even if the optical fiber core wire 1 is held, the optical fiber core wire 1 is not damaged or lost. Needless to say, the reference light can be radiated out of the optical fiber core 1 so that the control light can be reliably detected, and the loss of communication light is suppressed to a predetermined level, for example, 3 mm to 10 mm. Select from the range and set. The side concave portion L15b and the side concave portion R15c serve to smoothly guide the optical fiber core wire 1 to which the sharp curve is given by the convex portion 15a to the outside of the light receiving device 4, so that the third curvature radius is the second curvature. It can be larger than the radius.
[0058]
Further, the concave portion 10a, the holding concave portion-side convex portion 30a, and the holding concave portion-side convex portion 35a, which constitute the curvature of the portion that does not contribute to the reception of the optical fiber even when the reference light radiates out of the optical fiber core wire 1, are provided. Each radius of curvature (first radius of curvature) indicates that the optical fiber core wire 1 is not damaged or lost even when the optical fiber core wire 1 is held, and the control light is emitted to the outside of the optical fiber core wire 1. Also, a value that does not cause loss of communication light, for example, a range from 30 mm to infinity (straight) is selected and set.
[0059]
For example, when the location where the core wire contrast operation is performed is close to the light source device 2 and the intensity of the control light is sufficiently strong, the amount of radiation of the control light to the outside of the optical fiber core wire 1 is reduced even with a gentle curve. Because it can earn a lot, the control light radiates out of the optical fiber core 1 to increase the radius of curvature of the portion that contributes to the light reception for the core control, and as a result, further suppresses the loss of communication light Is possible. In addition, if there is a sufficient margin with respect to a predetermined required value in the loss of communication light caused by bending, the reference light is further radiated out of the optical fiber 1 within the margin, and the core It is possible to reduce the radius of curvature of the portion contributing to light reception for the control, and as a result, increase the amount of the control light emitted to the outside of the optical fiber core 1 and increase the detection sensitivity.
[0060]
Of course, if there is a sufficient margin with respect to a predetermined required value in the loss of communication light caused by bending, the optical fiber core wire 1 is attached in a state where both the attachment member L30 and the attachment member R35 are along the holding recess 10. The core L may be contrasted by holding the member L30, the attachment member R35, and the holding convex portion 15.
[0061]
Further, when the wavelength of communication light is not the L band band but is 1.31 μm or 1.55 μm, which has been conventionally used, both the attachment member L30 and the attachment member R35 are in a state of being along the holding convex portion 15. The optical fiber core wire 1 may be held by the attachment member L30 and the attachment member R35 and the holding recess 10 to perform the core wire contrast.
[0062]
As described above, not only the position adjustment of the attachment member L30 and the attachment member R35, but also the portion of the control light that radiates out of the optical fiber core 1 and contributes to the light reception for the core wire control in accordance with external factors. It is also possible to change the combination of the curvature radii of curvature to form the curvature given to the optical fiber core wire 1 in a predetermined shape.
[0063]
[Third embodiment]
Next, another method of using the light receiving device 4 described in the first embodiment will be described as a second embodiment of the present invention with reference to FIG. FIGS. 5A and 5B show the state of the curve and the direction of travel of the reference light when the light receiving device 4 is used to determine the upper and lower portions of the optical line.
[0064]
5A, the traveling direction of the reference light and the bending state of the optical fiber core wire 1 are the same as those in FIG. 4A. That is, the reference light is incident on the optical fiber core wire 1 from the light source device 2 installed on the upper side of the optical fiber core wire 1 (left side in FIG. 5A) via the incident device 3, and this reference light is attached to the attachment member. The process advances from the L30 side to the attachment member R35 side (from the left side to the right side in FIG. 5A). The attachment member L30 is moved along the holding recess 10 and the attachment member R35 is moved along the holding projection 15 so that the operator Shows a state of bending given to the optical fiber core wire 1 when the grip 20 is gripped and the trigger 25 is pulled forward (grip side). Therefore, the optical fiber core wire 1 is held between the attachment member L30 and the holding convex portion 15, between the holding concave portion 10 and the holding convex portion 15, and between the holding concave portion 10 and the attachment member R35, and is bent. is doing.
[0065]
In FIG. 5B, the upper side of the optical fiber core 1 is the right side opposite to FIG. 5A, but the curved state of the optical fiber core 1 is the same as FIG. That is, the reference light is incident on the optical fiber core wire 1 from the light source device 2 installed on the upper side (right side in FIG. 5B) of the optical fiber core wire 1 through the incident device 3, and this reference light is attached to the attachment member. Progressing from the R35 side to the attachment member L30 side (from the right side to the left side in FIG. 5 (b)), the attachment member L30 is moved along the holding recess 10 and the attachment member R35 is moved along the holding projection 15 so that the operator Shows a state of bending given to the optical fiber core wire 1 when the grip 20 is gripped and the trigger 25 is pulled forward (grip side). Therefore, the optical fiber core wire 1 is held between the holding convex portion 15 and the attachment member L30, between the holding concave portion 10 and the holding convex portion 15, and between the holding concave portion 10 and the attachment member R35, and is bent. is doing.
[0066]
5 (a), the reference light is a side concave portion L15b which is a curve of a portion of the reference light that radiates out of the optical fiber core 1 and contributes to light reception for the core control. And the convex portion 15c and the light receiving element 40 are passed through the pressure contact surface between the convex portion and the convex portion side convex portion 30c, and the traveling direction of the contrast light and the emission of the contrast light to the outside of the optical fiber core 1 are promoted. Since the direction of curvature matches, the reference light is radiated to the light receiving element 40 out of the optical fiber core 1, and the reference light can be detected by the light receiving element 40.
[0067]
In FIG. 5B, the reference light passes through the pressure contact surface between the side concave portion L15b and the convex portion side convex portion 30c after passing through the convex portion 15a and the light receiving element 40, and the traveling direction of the reference light is Since the direction of the curve that promotes the emission of the reference light to the outside of the optical fiber core 1 does not match, even if the reference light is emitted to the outside of the optical fiber core 1, it is not emitted to the light receiving element 40. The control light cannot be detected by the element 40.
[0068]
Therefore, even if the traveling direction of the control light is unknown, the result of performing the contrast control in different curved states shown in FIGS. 4 (a) and 4 (b) is shown in FIG. 4 (a). If the control light can be detected in the curved state and the control light cannot be detected in the curved state shown in FIG. 4B, the control light is traveling from the attachment member L30 side to the attachment member R35 side. I understand. That is, the upper part of the optical fiber core wire 1 in this case can be specified to be the attachment member L30 side.
[0069]
The converse is also true. If the reference light cannot be detected in the curved state shown in FIG. 4A and the reference light can be detected in the curved state shown in FIG. 4B, the reference light is attached to the attachment member R35. It turns out that it is progressing from the side to the attachment member L30 side. That is, the upper part of the optical fiber core wire 1 in this case can be specified as being on the attachment member R35 side.
[0070]
In this way, the operator can adjust the positions of the attachment member L30 and the attachment member R35 so that the bending state shown in FIGS. Thus, the traveling direction of the reference light, that is, the upper and lower portions of the optical line can be reliably specified.
[0071]
In addition, as a bending means, as shown in FIG. 4 (a) and FIG.4 (b), if the optical fiber core wire 1 can be held and a predetermined curve can be given, it was shown in FIG. The configuration is not limited.
[0072]
For example, in accordance with the configuration of FIG. 3, an uneven portion in which the attachment member L30 and the holding concave portion 10 are made one solid, and an uneven portion in which the attachment member R35 and the holding convex portion 15 are made one solid are shown in FIG. 3), and a concave-convex portion in which the attachment member R35 and the holding concave portion 10 are made into one solid according to the configuration of FIG. The concave and convex portion having the attachment member L30 and the holding convex portion 15 as one solid constitutes a bending means for giving the bending shown in FIG. 4 (b) to the optical fiber core wire 1, and adopts these two kinds of bending means. The light receiving device 4 is provided. In such a light receiving device, it is possible to perform the contrast control by switching between two kinds of bending means and holding the optical fiber core wire 1 to give the curvature. The specification of the optical fiber core 1 in the core control and the specific principle of the upper and lower portions of the optical line are as described above.
[0073]
In this case, one light receiving element 40 can be provided so as to correspond to both of the two bending means, or two light receiving elements 40 can be provided separately on the two bending means.
[0074]
In addition, according to the configuration of FIG. 3, an uneven portion in which the attachment member L30 and the holding concave portion 10 are one solid, and an uneven portion in which the attachment member R35 and the holding convex portion 15 are one solid are shown in FIG. 3) only the bending means for applying the bending shown in FIG. 3 to the optical fiber core wire 1 is provided in the light receiving device 4, or in accordance with the configuration of FIG. 3, the uneven portion having the attachment member R35 and the holding recess 10 as one solid. And the light-receiving device 4 comprising only the bending means for giving the bending shown in FIG. 4B to the optical fiber core wire 1 with the uneven portion in which the attachment member L30 and the holding protrusion 15 are made into one solid. By changing the light receiving device 4 itself provided with only this one type of bending means, for example, by holding the optical fiber core wire 1 with the light receiving device 4 from below or with the light receiving device 4 from above, You can do a core contrast Kill. Alternatively, the optical fiber core wire 1 can be held by the light receiving device 4 from the right side or the light receiving device 4 itself can be held by the operator so that the optical fiber core wire 1 is held by the light receiving device 4 from the left side. The specification of the optical fiber core wire 1 in the core wire contrast and the specific principle of the upper and lower portions of the optical line are as described above.
[0075]
【The invention's effect】
As can be seen from the above description, according to the present invention, means for changing the intensity of the communication light and the intensity of the reference light emitted outside the optical fiber core, for example, the shape of the curve applied to the optical fiber core can be obtained. With the light receiving device equipped with a bending means to change, even if a long wavelength such as a wavelength in the L band (1.565 μm to 1.625 μm) band is used as communication light, the loss of communication light is suppressed to a predetermined level. Needless to say, the conventional communication light with the wavelengths of 1.31 μm and 1.55 μm can detect the control light efficiently while reducing the loss compared to the conventional one. Therefore, it is possible to prevent the communication quality from being deteriorated.
[0076]
In addition, according to the present invention, since the bending means can impart a left-right asymmetric curved shape to the optical fiber core wire, the directivity of the reference light can be reliably determined, and the corresponding optical fiber core wire can be specified. In addition, since the upper and lower portions of the optical line can be reliably specified in order to determine the cutting position of the optical fiber in detail, it is possible to prevent erroneous cutting and erroneous connection of the optical fiber.
[0077]
As described above, the present invention greatly contributes to the reduction of the construction operation and the improvement of the reliability of the future optical communication service.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a conventional method for contrasting core wires.
FIG. 2 is a diagram showing a curved shape given to an optical fiber core wire by a conventional optical fiber light receiving device for contrasting core wires.
FIG. 3 is a diagram showing a configuration of an optical signal receiving device for contrast control according to a first embodiment of the present invention.
FIG. 4 is a diagram showing a curved state when performing a core line contrast as a method of using the optical signal receiving apparatus for core line contrast according to the second embodiment of the present invention.
FIG. 5 shows a method of using an optical signal receiving device for optical fiber reference according to a third embodiment of the present invention, and the state of bending and the progress of an optical signal for optical fiber comparison when determining the upper and lower portions of an optical line. The figure which shows a direction.
[Explanation of symbols]
1 Optical fiber core wire
2 Light source device (Optical signal light source device for contrast control)
3 Injector (Optical signal injector for contrast control)
4 Light receiver (Optical signal receiver for contrast control)
10 Holding recess (part of light intensity changing means, part of bending means)
10a recess
10b Slide mechanism C
10c Slide mechanism L
10d slide mechanism R
10e Groove
15 Gripping convex part (part of light intensity changing means, part of bending means)
15a Convex part
15b side recess L
15c side recess R
15d groove
20 grips
25 trigger
30 holding attachment member (part of light intensity changing means, part of bending means)
30a Gripping concave side convex part
30b Gripping convex part side convex part
30c Holding recess side groove
30d Grip convex side groove
35 Holding attachment member (part of light intensity changing means, part of bending means)
35a Convex concave part convex part
35b Gripping convex part side convex part
35c Holding recess side groove
35d holding convex side groove
40 Light-receiving element

Claims (7)

光ファイバ通信網の建設や保守にあたって、光ファイバ心線の誤切断や誤接続を回避するために心線対照を行うシステムで使用され、光ファイバ心線の下部側で前記光ファイバ心線に湾曲を与えることにより、前記光ファイバ心線に光ファイバ心線の上部側で入射された心線対照用光信号を光ファイバ心線外へ放射させ、前記放射された心線対照用光信号を検出する心線対照用光信号受光装置であって、
光ファイバ心線外へ放射させる前記心線対照用光信号の強度、及び、前記光ファイバ心線を伝搬する通信用光信号の強度を変化させることが可能な光強度変化手段を具備した心線対照用光信号受光装置において、
前記光強度変化手段は、前記光ファイバ心線に与える湾曲の形状を変えることで、光ファイバ心線外へ放射させる前記心線対照用光信号の強度、及び、前記光ファイバ心線を伝搬する通信用光信号の強度を変化させることが可能な湾曲手段を具備し、
前記湾曲手段は、前記光ファイバ心線を挾持して所定の異なる湾曲を与えるため、第1の曲率半径の凹部が形成された部分(以下「挾持凹部」という)と、この挾持凹部に対向する前記第1の曲率半径より小さい第2の曲率半径の凸部とこの凸部の両翼にあり湾曲面を一にする第3の曲率半径の第一の側凹部および第2の側凹部とが形成された部分(以下「挾持凸部」という)と、前記挾持凹部と前記挾持凸部の両翼との間に配置され、前記挾持凹部及び前記挾持凸部と共に前記光ファイバ心線を圧接し挾持することが可能な第1のアタッチメント部材および第2のアタッチメント部材とによって構成され、
前記第1側凹部と前記第1アタッチメント部材との間及び前記挾持凹部と前記第2アタッチメント部材との間、又は、前記挾持凹部と前記第 1 アタッチメント部材との間及び前記第2側凹部と前記第2アタッチメント部材との間に前記光ファイバ心線を挾持させることで、前記光ファイバ心線に与える湾曲の曲率半径が、前記第1側凹部側又は前記第2側凹部側の一方が小さく、他方が大きくなる心線対照用光信号受光装置を使用する方法であって、
前記アタッチメント部材の位置を調節して、前記通信用光信号の損失を所定のレベルに抑制しつつ、光ファイバ心線外へ放出させた前記心線対照用光信号を検出できるような湾曲を前記光ファイバ心線に与え、心線対照を行うことを特徴とする心線対照用光信号受光装置の使用方法。
Used in a system that performs optical fiber core control to avoid erroneous disconnection or misconnection of optical fiber cores during the construction and maintenance of optical fiber communication networks, and bends into the optical fiber core at the lower side of the optical fiber core By irradiating the optical fiber core, the optical fiber for optical fiber core incident on the upper side of the optical fiber core is emitted to the outside of the optical fiber, and the emitted optical fiber for optical fiber core detection is detected. An optical signal receiving device for contrasting a core wire,
An optical fiber comprising optical intensity changing means capable of changing the intensity of the optical fiber for contrasting optical fiber radiated outside the optical fiber and the intensity of the optical signal for communication propagating through the optical fiber. In the control optical signal receiver,
The light intensity changing means changes the shape of the curve applied to the optical fiber core, thereby propagating the intensity of the optical fiber for optical fiber reference to be radiated out of the optical fiber and the optical fiber core. Comprising bending means capable of changing the intensity of the optical signal for communication;
The bending means holds the optical fiber core wire to give a predetermined different curvature, and thus faces a portion where a concave portion having a first curvature radius is formed (hereinafter referred to as a “holding concave portion”) and the holding concave portion. A convex portion having a second radius of curvature smaller than the first radius of curvature and a first side concave portion and a second side concave portion having a third radius of curvature that are on both wings of the convex portion and have a curved surface are formed. Between the clamped portion (hereinafter referred to as “holding convex portion”) and both the holding concave portion and the blades of the holding convex portion, and presses and holds the optical fiber core wire together with the holding concave portion and the holding convex portion. A first attachment member and a second attachment member capable of
Between the first side recess and the first attachment member and between the holding recess and the second attachment member, or between the holding recess and the first attachment member, and between the second side recess and the By holding the optical fiber core wire between the second attachment member, the curvature radius of the curvature given to the optical fiber core wire is small on the first concave side or the second concave side, The other is a method of using an optical signal receiving device for contrasting the core wire,
Adjusting the position of the attachment member to suppress the loss of the optical signal for communication to a predetermined level, and to bend the curve for detecting the optical fiber for controlling the optical fiber emitted outside the optical fiber. A method of using an optical signal receiving device for optical fiber contrast, which is provided to an optical fiber optical fiber and performs optical fiber contrast.
光ファイバ通信網の建設や保守にあたって、光ファイバ心線の誤切断や誤接続を回避するために心線対照を行うシステムで使用され、光ファイバ心線の下部側で前記光ファイバ心線に湾曲を与えることにより、前記光ファイバ心線に光ファイバ心線の上部側で入射された心線対照用光信号を光ファイバ心線外へ放射させ、前記放射された心線対照用光信号を検出する心線対照用光信号受光装置であって、
光ファイバ心線外へ放射させる前記心線対照用光信号の強度、及び、前記光ファイバ心線を伝搬する通信用光信号の強度を変化させることが可能な光強度変化手段を具備した心線対照用光信号受光装置において、
前記光強度変化手段は、前記光ファイバ心線に与える湾曲の形状を変えることで、光ファイバ心線外へ放射させる前記心線対照用光信号の強度、及び、前記光ファイバ心線を伝搬する通信用光信号の強度を変化させることが可能な湾曲手段を具備し、
前記湾曲手段は、前記光ファイバ心線を挾持して所定の異なる湾曲を与えるため、第1の曲率半径の凹部が形成された部分(以下「挾持凹部」という)と、この挾持凹部に対向する前記第1の曲率半径より小さい第2の曲率半径の凸部とこの凸部の両翼にあり湾曲面を一にする第3の曲率半径の第一の側凹部および第2の側凹部とが形成された部分(以下「挾持凸部」という)と、前記挾持凹部と前記挾持凸部の両翼との間に配置され、前記挾持凹部及び前記挾持凸部と共に前記光ファイバ心線を圧接し挾持することが可能な第1のアタッチメント部材および第2のアタッチメント部材とによって構成され、
前記第1側凹部と前記第1アタッチメント部材との間及び前記挾持凹部と前記第2アタ ッチメント部材との間、又は、前記挾持凹部と前記第 1 アタッチメント部材との間及び前記第2側凹部と前記第2アタッチメント部材との間に前記光ファイバ心線を挾持させることで、前記光ファイバ心線に与える湾曲の曲率半径が、前記第1側凹部側又は前記第2側凹部側の一方が小さく、他方が大きくなる心線対照用光信号受光装置を使用する方法であって、
前記アタッチメント部材の位置を調節して、前記心線対照用光信号の進行方向、つまり、光線路の上部下部を判定できるような湾曲を前記光ファイバ心線に与え、心線対照を行うことを特徴とする心線対照用光信号受光装置の使用方法。
Used in a system that performs optical fiber core control to avoid erroneous disconnection or misconnection of optical fiber cores during the construction and maintenance of optical fiber communication networks, and bends into the optical fiber core at the lower side of the optical fiber core By irradiating the optical fiber core, the optical fiber for optical fiber core incident on the upper side of the optical fiber core is emitted to the outside of the optical fiber, and the emitted optical fiber for optical fiber core detection is detected. An optical signal receiving device for contrasting a core wire,
An optical fiber comprising optical intensity changing means capable of changing the intensity of the optical fiber for contrasting optical fiber radiated outside the optical fiber and the intensity of the optical signal for communication propagating through the optical fiber. In the control optical signal receiver,
The light intensity changing means changes the shape of the curve applied to the optical fiber core, thereby propagating the intensity of the optical fiber for optical fiber reference to be radiated out of the optical fiber and the optical fiber core. Comprising bending means capable of changing the intensity of the optical signal for communication;
The bending means holds the optical fiber core wire to give a predetermined different curvature, and thus faces a portion where a concave portion having a first curvature radius is formed (hereinafter referred to as a “holding concave portion”) and the holding concave portion. A convex portion having a second radius of curvature smaller than the first radius of curvature and a first side concave portion and a second side concave portion having a third radius of curvature that are on both wings of the convex portion and have a curved surface are formed. Between the clamped portion (hereinafter referred to as “holding convex portion”) and both the holding concave portion and the blades of the holding convex portion, and presses and holds the optical fiber core wire together with the holding concave portion and the holding convex portion. A first attachment member and a second attachment member capable of
And wherein the first side recess the and between the clamping recess of the first attachment member second between Atta Tchimento member, or between the first attachment member and the pinching recess and the second side recess By holding the optical fiber core between the second attachment member, the radius of curvature of the curvature applied to the optical fiber core is smaller on the first concave side or the second concave side. A method of using an optical signal receiving device for contrasting a core wire, the other of which is larger,
Adjusting the position of the attachment member to give the optical fiber core a curve capable of determining the traveling direction of the optical signal for optical fiber control, that is, the upper and lower portions of the optical line, and performing optical fiber contrast A method of using a featured optical signal receiver for contrasting core wires.
光ファイバ通信網の建設や保守にあたって、光ファイバ心線の誤切断や誤接続を回避するために心線対照を行うシステムで使用され、光ファイバ心線の下部側で前記光ファイバ心線に湾曲を与えることにより、前記光ファイバ心線に光ファイバ心線の上部側で入射された心線対照用光信号を光ファイバ心線外へ放射させ、前記放射された心線対照用光信号を検出する心線対照用光信号受光装置であって、
光ファイバ心線外へ放射させる前記心線対照用光信号の強度、及び、前記光ファイバ心線を伝搬する通信用光信号の強度を変化させることが可能な光強度変化手段を具備した心線対照用光信号受光装置において、
前記光強度変化手段は、前記光ファイバ心線に与える湾曲の形状を変えることで、光ファイバ心線外へ放射させる前記心線対照用光信号の強度、及び、前記光ファイバ心線を伝搬する通信用光信号の強度を変化させることが可能な湾曲手段を具備し、
前記湾曲手段は第1湾曲手段と第2湾曲手段で構成され、
前記第1湾曲手段は、前記光ファイバ心線を挾持して所定の湾曲を与えるため、第1の曲率半径の凹部が形成された部分(以下「挾持凹部」という)と、この挾持凹部に対向する前記第1の曲率半径より小さい第2の曲率半径の凸部とこの凸部の片方の翼にあり湾曲面を一にする第3の曲率半径の側凹部と前記凸部のもう片方の翼にあり湾曲面を一にする前記第1の曲率半径の側凸部とが形成された部分(以下「挾持凸部」という)と、前記挾持凹部と前記挾持凸部の前記片方の翼との間に配置され、前記挾持凹部及び前記挾持凸部と共に前記光ファイバ心線を圧接し挾持することが可能なアタッチメント部材とによって構成されたこと、
前記第2湾曲手段は、前記光ファイバ心線を挾持して所定の湾曲を与えるため、前記第1の曲率半径の凹部が形成された部分(以下「挾持凹部」という)と、この挾持凹部に対向する前記第2の曲率半径の凸部とこの凸部の、前記第1湾曲手段における前記側凹部とは逆の片方の翼にあり湾曲面を一にする前記第3の曲率半径の側凹部と前記凸部のもう片方の翼にあり湾曲面を一にする前記第1の曲率半径の側凸部とが形成された部分(以下「挾持凸部」という)と、前記挾持凹部と前記挾持凸部の前記片方の翼との間に配置され、前記挾持凹部及び前記挾持凸部と共に前記光ファイバ心線を圧接し挾持することが可能なアタッチメント部材とによって構成されたこと
を特徴とする心線対照用光信号受光装置。
Used in a system that performs optical fiber core control to avoid erroneous disconnection or misconnection of optical fiber cores during the construction and maintenance of optical fiber communication networks, and bends into the optical fiber core at the lower side of the optical fiber core By irradiating the optical fiber core, the optical fiber for optical fiber core incident on the upper side of the optical fiber core is emitted to the outside of the optical fiber, and the emitted optical fiber for optical fiber core detection is detected. An optical signal receiving device for contrasting a core wire,
An optical fiber comprising optical intensity changing means capable of changing the intensity of the optical fiber for contrasting optical fiber radiated outside the optical fiber and the intensity of the optical signal for communication propagating through the optical fiber. In the control optical signal receiver,
The light intensity changing means changes the shape of the curve applied to the optical fiber core, thereby propagating the intensity of the optical fiber for optical fiber reference to be radiated out of the optical fiber and the optical fiber core. Comprising bending means capable of changing the intensity of the optical signal for communication;
The bending means comprises a first bending means and a second bending means,
The first bending means holds the optical fiber core wire to give a predetermined curve, so that a portion having a concave portion having a first radius of curvature (hereinafter referred to as a “holding concave portion”) is opposed to the holding concave portion. A convex portion having a second radius of curvature smaller than the first radius of curvature and a side concave portion having a third radius of curvature which is on one wing of the convex portion and has a curved surface, and the other wing of the convex portion. And a portion formed with a side convex portion of the first radius of curvature that has a curved surface as one (hereinafter referred to as a “gripping convex portion”), and the gripping concave portion and the one wing of the gripping convex portion. An attachment member disposed between and capable of pressing and holding the optical fiber core wire together with the holding concave portion and the holding convex portion;
The second bending means, for applying a predetermined curvature by sandwiching the optical fiber, and said first radius of curvature of recesses formed part (hereinafter referred to as "pinching recess"), in the clamping recess of the convex portion and the second radius of curvature of the convex portions facing the side recess of the third radius of curvature and the concave portion of the first bending means to one of the located curved surface to the opposite side of the wing And a portion of the other wing of the convex portion that is formed with a side convex portion of the first radius of curvature that makes the curved surface the same (hereinafter referred to as “grip convex portion”), the grip concave portion and the grip A core that is disposed between the one wing of a convex portion and an attachment member that can press and hold the optical fiber core wire together with the holding concave portion and the holding convex portion. Optical signal receiver for line contrast.
光ファイバ通信網の建設や保守にあたって、光ファイバ心線の誤切断や誤接続を回避するために心線対照を行うシステムで使用され、光ファイバ心線の下部側で前記光ファイバ心線に湾曲を与えることにより、前記光ファイバ心線に光ファイバ心線の上部側で入射された心線対照用光信号を光ファイバ心線外へ放射させ、前記放射された心線対照用光信号を検出する心線対照用光信号受光装置であって、
光ファイバ心線外へ放射させる前記心線対照用光信号の強度、及び、前記光ファイバ心線を伝搬する通信用光信号の強度を変化させることが可能な光強度変化手段を具備した心線対照用光信号受光装置において、
前記光強度変化手段は、前記光ファイバ心線に与える湾曲の形状を変えることで、光ファイバ心線外へ放射させる前記心線対照用光信号の強度、及び、前記光ファイバ心線を伝搬する通信用光信号の強度を変化させることが可能な湾曲手段を具備し、
前記湾曲手段は、前記光ファイバ心線を挾持して所定の湾曲を与えるため、第1の曲率半径の凹部が形成された部分(以下「挾持凹部」という)と、この挾持凹部に対向する前記第1の曲率半径より小さい第2の曲率半径の凸部とこの凸部の片方の翼にあり湾曲面を一にする第3の曲率半径の側凹部と前記凸部のもう片方の翼にあり湾曲面を一にする前記第1の曲率半径の側凸部とが形成された部分(以下「挾持凸部」という)と、前記挾持凹部と前記挾持凸部の前記片方の翼との間に配置され、前記挾持凹部及び前記挾持凸部と共に前記光ファイバ心線を圧接し挾持することが可能なアタッチメント部材とによって構成されたことを特徴とする心線対照用光信号受光装置。
Used in a system that performs optical fiber core control to avoid erroneous disconnection or misconnection of optical fiber cores during the construction and maintenance of optical fiber communication networks, and bends into the optical fiber core at the lower side of the optical fiber core By irradiating the optical fiber core, the optical fiber for optical fiber core incident on the upper side of the optical fiber core is emitted to the outside of the optical fiber, and the emitted optical fiber for optical fiber core detection is detected. An optical signal receiving device for contrasting a core wire,
An optical fiber comprising optical intensity changing means capable of changing the intensity of the optical fiber for contrasting optical fiber radiated outside the optical fiber and the intensity of the optical signal for communication propagating through the optical fiber. In the control optical signal receiver,
The light intensity changing means changes the shape of the curve applied to the optical fiber core, thereby propagating the intensity of the optical fiber for optical fiber reference to be radiated out of the optical fiber and the optical fiber core. Comprising bending means capable of changing the intensity of the optical signal for communication;
The bending means, for applying a predetermined curvature by sandwiching the optical fiber, a portion where the concave portion of the first radius of curvature is formed (hereinafter referred to as "pinching recess"), opposite the clamping recess the A convex portion having a second radius of curvature smaller than the first radius of curvature and one wing of the convex portion, and a concave portion on the other side of the third radius of curvature with the same curved surface and the other wing of the convex portion. Between the portion formed with the side convex portion of the first curvature radius that makes the curved surface one (hereinafter referred to as “gripping convex portion”), and the one wing of the clamping convex portion An optical signal light receiving device for contrasting a core wire, comprising: an attachment member that is disposed and capable of pressing and holding the optical fiber core wire together with the gripping concave portion and the gripping convex portion.
請求項3に記載の心線対照用光信号受光装置を使用する方法であって、第1の湾曲手段と第2の湾曲手段を切り換えて前記光ファイバ心線に湾曲を与え、光線路の上部下部の特定を行うことを特徴とする心線対照用光信号受光装置の使用方法。A method of using the optical signal receiving device for optical fiber reference according to claim 3 , wherein the optical fiber optical fiber is bent by switching between the first bending means and the second bending means, and an upper portion of the optical line. A method of using an optical signal receiving device for contrast control, characterized in that the lower part is specified. 請求項4に記載の心線対照用光信号受光装置自体を持ち替えて、光線路の上部下部の特定を行うことを特徴とする心線対照用光信号受光装置の使用方法。5. A method for using an optical signal receiving device for contrasting a core, characterized in that the optical signal receiving device for contrasting optical fiber itself according to claim 4 is changed to identify the upper and lower portions of the optical line. 光ファイバ通信網の建設や保守にあたって、光ファイバ心線の誤切断や誤接続を回避するために心線対照を行うシステムで使用され、光ファイバ心線の下部側で前記光ファイバ心線に湾曲を与えることにより、前記光ファイバ心線に光ファイバ心線の上部側で入射された心線対照用光信号を光ファイバ心線外へ放射させ、前記放射された心線対照用光信号を検出する心線対照用光信号受光装置であって、Used in a system that performs optical fiber core control to avoid erroneous disconnection or misconnection of optical fiber cores in the construction and maintenance of optical fiber communication networks. By irradiating the optical fiber core, the optical fiber for optical fiber core incident on the upper side of the optical fiber core is emitted to the outside of the optical fiber, and the emitted optical fiber for optical fiber core detection is detected. An optical signal receiving device for contrasting a core wire,
光ファイバ心線外へ放射させる前記心線対照用光信号の強度、及び、前記光ファイバ心線を伝搬する通信用光信号の強度を変化させることが可能な光強度変化手段を具備した心線対照用光信号受光装置において、An optical fiber comprising optical intensity changing means capable of changing the intensity of the optical fiber for optical fiber reference to be radiated out of the optical fiber and the intensity of the optical signal for communication propagating through the optical fiber. In the control optical signal receiver,
前記光強度変化手段は、前記光ファイバ心線に与える湾曲の形状を変えることで、光ファイバ心線外へ放射させる前記心線対照用光信号の強度、及び、前記光ファイバ心線を伝搬する通信用光信号の強度を変化させることが可能な湾曲手段を具備し、The light intensity changing means changes the shape of the curve applied to the optical fiber core, thereby propagating the intensity of the optical fiber for optical fiber reference to be radiated out of the optical fiber and the optical fiber core. Comprising bending means capable of changing the intensity of the optical signal for communication;
前記湾曲手段は、前記光ファイバ心線を挾持して所定の異なる湾曲を与えるため、第1の曲率半径の凹部が形成された部分(以下「挾持凹部」という)と、この挾持凹部に対向する前記第1の曲率半径より小さい第2の曲率半径の凸部とこの凸部の両翼にあり湾曲面を一にする第3の曲率半径の第一の側凹部および第2の側凹部とが形成された部分(以下「挾持凸部」という)と、前記挾持凹部と前記挾持凸部の両翼との間に配置され、前記挾持凹部及び前記挾持凸部と共に前記光ファイバ心線を圧接し挾持することが可能な第1のアタッチメント部材および第2のアタッチメント部材とによって構成され、Since the bending means holds the optical fiber core wire to give a predetermined different curvature, the bending means faces a portion where a concave portion having a first curvature radius is formed (hereinafter referred to as a “holding concave portion”) and the holding concave portion. A convex portion having a second radius of curvature smaller than the first radius of curvature and a first side concave portion and a second side concave portion having a third radius of curvature that are on both wings of the convex portion and have a curved surface are formed. Between the clamped portion (hereinafter referred to as “holding convex portion”) and both the holding concave portion and the blades of the holding convex portion, and presses and holds the optical fiber core wire together with the holding concave portion and the holding convex portion. A first attachment member and a second attachment member capable of
前記第1側凹部と前記第1アタッチメント部材との間及び前記挾持凹部と前記第2アタッチメント部材との間、又は、前記挾持凹部と前記第Between the first side recess and the first attachment member and between the holding recess and the second attachment member, or between the holding recess and the first 11 アタッチメント部材との間及び前記第2側凹部と前記第2アタッチメント部材との間に前記光ファイバ心線を挾持させることで、前記光ファイバ心線に与える湾曲の曲率半径が、前記第1側凹部側又は前記第2側凹部側の一方が小さく、他方が大きくなることを特徴とする心線対照用光信号受光装置。By bending the optical fiber core wire between the attachment member and between the second side concave portion and the second attachment member, the curvature radius of the curve applied to the optical fiber core wire is set to the first side concave portion. One of the side or the second side recess side is small and the other is large, the optical signal light receiving device for contrasting the core wire.
JP2002032237A 2002-02-08 2002-02-08 Optical signal receiving device for contrasting cord and method of using the same Expired - Lifetime JP3778433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002032237A JP3778433B2 (en) 2002-02-08 2002-02-08 Optical signal receiving device for contrasting cord and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002032237A JP3778433B2 (en) 2002-02-08 2002-02-08 Optical signal receiving device for contrasting cord and method of using the same

Publications (2)

Publication Number Publication Date
JP2003232701A JP2003232701A (en) 2003-08-22
JP3778433B2 true JP3778433B2 (en) 2006-05-24

Family

ID=27775419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002032237A Expired - Lifetime JP3778433B2 (en) 2002-02-08 2002-02-08 Optical signal receiving device for contrasting cord and method of using the same

Country Status (1)

Country Link
JP (1) JP3778433B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4964712B2 (en) * 2007-09-04 2012-07-04 日本電信電話株式会社 Method and apparatus for controlling core of hole-assisted fiber
JP5581271B2 (en) * 2011-06-01 2014-08-27 日本電信電話株式会社 Optical branching coupler and manufacturing method thereof
JP6277116B2 (en) * 2014-12-10 2018-02-07 日本電信電話株式会社 Side light input / output device
US10523317B2 (en) * 2018-06-05 2019-12-31 Sumitomo Electric Industries, Ltd. Measurement system and measurement method

Also Published As

Publication number Publication date
JP2003232701A (en) 2003-08-22

Similar Documents

Publication Publication Date Title
JP4769120B2 (en) Optical communication system and access network provided with the same
US20170207585A1 (en) Traceable cable system, traceable cable assembly and connector
CN104035167B (en) The manufacture method of the cable of Belt connector and the cable of Belt connector
US9279947B2 (en) Methods and apparatus for high speed short distance optical communications using micro light emitting diodes
CN104995538A (en) Optical fiber connectors and methods of forming optical fiber connectors
CN106104367A (en) Photomodulator
US6792185B1 (en) Method and apparatus for automatic tracking of an optical signal in a wireless optical communication system
JP3778433B2 (en) Optical signal receiving device for contrasting cord and method of using the same
US8335430B2 (en) Optical data transmission apparatus
JP2009025210A (en) Optical fiber lateral incidence method and its device
JP4247959B2 (en) System and method for detecting an optical signal in a longitudinal plane of an optical fiber
JP4087282B2 (en) Optical fiber contrast method and light receiving device
US20200073057A1 (en) Optical fiber array and optical measurement device
JP2008051735A (en) Optical detection device for cable core referencing
JP3162641B2 (en) Optical signal receiving device, optical communication device, optical communication method, and optical fiber identification method
JP4527629B2 (en) Bending tool for cord control
JP2005250221A (en) Optical coupler
JP5778008B2 (en) Optical transmission discriminator and optical transmission body to which the same is applied
JP3711121B2 (en) Optical fiber contrast method and light receiving device
JP5483738B2 (en) Light incident / exit device and light incident / exit method
JPH11304644A (en) Optical fiber continuity testing device
JP2004061398A (en) Light receiver for optical signal for collating coated optical fiber ribbon and using method
JPS63305304A (en) Method for fiber identification of optical fiber communication line
JP6891823B2 (en) Optical fiber side input / output device and optical fiber bending forming method
JP2001228370A (en) Optical transmitter-receiver

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20060223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060223

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060223

R150 Certificate of patent or registration of utility model

Ref document number: 3778433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term