JP2004325286A - Picture signal synchronous mechanism in optical interference tomographic imaging device - Google Patents

Picture signal synchronous mechanism in optical interference tomographic imaging device Download PDF

Info

Publication number
JP2004325286A
JP2004325286A JP2003121135A JP2003121135A JP2004325286A JP 2004325286 A JP2004325286 A JP 2004325286A JP 2003121135 A JP2003121135 A JP 2003121135A JP 2003121135 A JP2003121135 A JP 2003121135A JP 2004325286 A JP2004325286 A JP 2004325286A
Authority
JP
Japan
Prior art keywords
light
measured
tomographic imaging
signal
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003121135A
Other languages
Japanese (ja)
Other versions
JP3720335B2 (en
Inventor
Naohiro Tanno
直弘 丹野
Michiro Hasegawa
倫郎 長谷川
Toru Nakagawa
亨 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTEX Matsumura Corp
Original Assignee
MTEX Matsumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTEX Matsumura Corp filed Critical MTEX Matsumura Corp
Priority to JP2003121135A priority Critical patent/JP3720335B2/en
Publication of JP2004325286A publication Critical patent/JP2004325286A/en
Application granted granted Critical
Publication of JP3720335B2 publication Critical patent/JP3720335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a picture signal synchronous mechanism in an optical interference tomographic imaging device for preventing fluctuation of scanning accuracy in a depth direction in scanning in the depth direction by a plurality of mirrors. <P>SOLUTION: In an incorporation mechanism for a signal in the depth direction of the scanning optical interference tomographic imaging device, which applies a Michelson interferometer and has a plurality of the mirrors in a reference optical path, a transparent translucent body 17 is arranged partway along an optical axis of an object to be measured for observing the object 21 to be measured so that its plane becomes perpendicular to the optical axis of the object 21 to be measured, and the signal by reflected light from a surface of the translucent body 17 is generated and made a reference signal in incorporating scattered and reflected light from the interior of the object 21 to be measured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光干渉断層画像化装置における画像信号同期機構に関するものである。
【0002】
【従来の技術】
従来、マイケルソン干渉計を応用した参照光路に複数個のミラーを有する光干渉断層画像化装置の深さ方向信号取り込み機構としては、内部に基準パルス発生装置を備え、深さ方向の走査位置との相互関係を予め設定し走査位置を決定していた。
【0003】
なお、本願発明者による複数個のミラーを有する光干渉断層画像化装置としては、既に下記のようなものが開示されている。
【0004】
【特許文献1】
特開2002−310898 第3−4頁 図1
【特許文献2】
特開2002−310899 第3−4頁 図2
【0005】
【発明が解決しようとする課題】
しかしながら、従来の光干渉断層画像化装置においては、単一のミラーによる深さ方向走査の場合は特に問題は無いが、上記特許文献1、2に示すような複数個のミラーによる深さ方向走査の場合は、ミラーの取り付け位置精度のばらつきがそのまま深さ方向走査精度のばらつきとなってしまうという不具合があった。
【0006】
本発明は、上記状況に鑑みて、複数個のミラーによる深さ方向走査の場合において、深さ方向走査精度のばらつきを防止することができる光干渉断層画像化装置における画像信号同期機構を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〔1〕マイケルソン干渉計を応用した参照光路に複数個のミラーを有する走査光干渉断層画像化装置の深さ方向信号取り込み機構において、被計測物体を観測する被計測物体光軸の途中に、透明な透光体を被計測物体光軸に対しその平面が垂直になるように配置し、前記透光体表面からの反射光による信号を発生させ、被計測物体内部からの散乱反射光を取り込む際の基準信号とすることを特徴とする。
【0008】
〔2〕マイケルソン干渉計を応用した参照光路に複数個のミラーを有する光干渉断層画像化装置の深さ方向信号取り込み機構において、被計測物体を観測する被計測物体光軸の途中に、透明な透光体を被計測物体光軸に対しその平面が垂直になるように、且つ光軸方向に前後に調整可能に配置し、前記透光体表面からの反射光による信号を発生させ、被計測物体内部からの散乱反射光を取り込む際の基準信号とすることを特徴とする。
【0009】
〔3〕マイケルソン干渉計を応用した参照光路に複数個のミラーを有する光干渉断層画像化装置の深さ方向信号取り込み機構において、参照光の光軸途中に参照光を分波するハーフミラーを設け、参照光を分割し、前後調整機構付きトリガーミラーで反射させ、同一復路を戻り再び合波させ、任意のZ方向深さに基準信号を発生させ、被計測物体内部からの散乱反射光を取り込む際の基準信号とすることを特徴とする。
【0010】
〔4〕マイケルソン干渉計を応用した参照光路に複数個のミラーを有する光干渉断層画像化装置の深さ方向信号取り込み機構において、被計測物体光の光軸途中に被計測物体光を分波するハーフミラーを設け、被計測物体光を分割し、前後調整機構付きトリガーミラーで反射させ、同一復路を戻り再び合波させ、任意のZ方向深さに基準信号を発生させ、被計測物体内部からの散乱反射光を取り込む際の基準信号とすることを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0012】
まず、本発明の原理について説明する。
【0013】
光干渉断層画像化法は、可干渉周波数帯域の狭い低コヒーレンス光源、例えばSLD(スーパールミネッセンスダイオード)などからの光ビームをハーフミラーで分割し、分割された一方の光ビームは、光遅延機構で周波数シフトが与えられ、参照光Eとなり同一光路を戻る。
【0014】
一方、ハーフミラーで分割された他方の光ビームは被測定物体に照射して、その被測定物体の深層よりの散乱反射信号光(物体光)Eとして同一光路を戻りハーフミラーにて参照光Erと合波されヘテロダイン干渉ビート信号となり光検出器にて検出するものである。
【0015】
実際の被測定物体内部からの散乱反射光波は、多重散乱を含む乱雑な位相を持った拡散波面であるが、参照光波と合波されたとき、光路長差が光源のコヒーレント長以内で参照光波と位相相関のある成分すなわちコヒーレント成分のみが干渉しあう。
【0016】
その結果、光検出器からの光電変換出力信号Iは次式と計算される。
【0017】
=E(x)√(π/ln2)×cos(2πft)×exp{−(π/ln2)〔δf(τ−z/c)〕}…(1)
ここで、J(x)は第1次ベッセル関数である。
【0018】
xは振動の変換パラメータ、fはヘテロダインビート周波数である。
【0019】
zは基準位置からの物体深層の光反射位置、すなわち光散乱ポテンシャルまでの距離量を与える。
【0020】
(1)式より、ヘテロダインビート周波数fの波形がgauss関数によって振幅変調を受け、そのピーク(z−τc=0のとき)が測距位置を示すことがわかる。
【0021】
すなわち、参照光路長τcと物体光路長zが一致したときのみ、最大のビート信号が得られることを示している。それにより参照光路長を厳密に測定し横軸とし、ビート信号の放洛線をプロットすることにより光反射分布像が得られることになる。
【0022】
本発明は、この特性を利用して被測定物深層の反射像情報を抽出して、光ビームをxy方向に高速走査することによって、三次元断層画像をコンピュータ上で構成するものである。
【0023】
図1は本発明の第1実施例を示す小型光干渉断層画像化装置の構成を示す構成概略図、図2は本発明による小型光干渉断層画像化装置の高速光遅延機構部の模式図である。
【0024】
図1において、Aは小型光干渉断層画像化装置本体、19はPC(パーソナルコンピュータ)、20はそのPC19に接続される断層画像を表示する表示装置である。
【0025】
回転円板1上にコーナーキューブプリズムやリトロリフレクター、直角プリズム等の回転プリズム2が複数個、ここでは、リトロリフレクターが4個、回転軸に対称に取り付けられる。4は参照光の反射ミラーである。
【0026】
ここで、回転円板1はモーター3の動力により回転する構成となっており、SLD(スーパールミネッセンスダイオード)11は低コヒーレンス光源である。
【0027】
ハーフミラー13はSLD11からレンズ12を介して照射された低コヒーレンス光を略半分は反射させ、ガルバノミラーX、Y14、対物レンズ16、透光体17(詳細は後述)を介して被測定物体21に照射し、残り半分は、透過させ回転プリズム2の光路へと導くとともに、被測定物21からの散乱反射光をハーフミラー13で透過しつつ、回転プリズム2からの反射光(参照光)をハーフミラー13で反射させ、光検出器18に導くものである。
【0028】
光検出器18は、被測定物体21からの散乱反射光(物体光)と回転プリズム2からの反射光(参照光)が合波干渉された光を受光検出し、電気信号に変換するものである。
【0029】
2つのガルバノミラーX、Y走査ユニット15は被測定物体21への照射光をガルバノミラーX、Y14によりX軸、Y軸に高速走査するためのものである。
【0030】
各要素は筐体外部に設置された制御部によって制御され、検査情報はPC19にて処理、表示装置20にて表示される。
【0031】
上記したように、SLD11から照射された低コヒーレンス光は、ハーフミラー13により分割され、その一方はハーフミラー13で反射され、さらにガルバノミラーX,Y14で反射され、対物レンズ16、透光体17を介し被測定物体21内部にX−Y高速走査照射され、他方はハーフミラー13を透過し、回転プリズム2に導かれる。
【0032】
回転プリズム2は高速回転しており、照射された低コヒーレンス光を反射しつつ周波数シフトを与え参照光とする。
【0033】
参照光は同じ光路を戻りハーフミラー13で反射し光検出器18に導かれる。
【0034】
被測定物体21内部に走査照射され散乱反射された散乱反射光は、対物レンズ16で集光されつつ同じ光路を戻り、ハーフミラー13を透過し光検出器18に導かれる。
【0035】
また、被計測物体21を観測する被計測物体光軸の途中に透明な透光体17を被計測物体光軸に対しその平面が垂直になるように、かつ、調整装置22により矢印23で示すように、光軸方向に前後に調整可能に配置することができる。
【0036】
光検出器18に導かれた2つの光、参照光と被測定物体21(例えば、眼球)内部からの反射光(物体光)はハーフミラー13により合波され干渉光となっている。
【0037】
ハーフミラー13から回転プリズム2までの光路長とハーフミラー13から被測定物体21までの光路長は一致しているので、合波された干渉光はヘテロダイン干渉ビート信号を含んでいる。
【0038】
このヘテロダイン干渉ビート信号は光検出器18にて電気信号に変換されPC(パーソナルコンピュータ)19へ送られる。
【0039】
PC19においてはヘテロダイン干渉ビート信号による断層画像化処理を行い、表示装置20に被測定物体21内部の断面画像を表示する。
【0040】
光検出器18からの信号は連続的に電気信号に変換されるために、図3に示す波形のように4つの回転プリズム(ミラー)からの反射光に対応した波形が断続的に得られる。
【0041】
これら断続的に得られる4つの信号の波の各々を縦軸に並べ、かつ強度に応じた濃淡を付し、連続的に横軸方向に並べて表示すれば2組のガルバノミラーで走査したX−Y座標に相当する位置の断層画像として描画されるが、この実施例においては、説明を簡略化するためX−Y走査の片方のX走査のみを用いた場合についてX−Z断層画像を得るべく説明を行う。
【0042】
ここで、回転円板1の回転(1周期)には、4つの波イコール4本の断層情報(Aスキャン)が含まれるので、何らかの方法で連続する4つの波を分割しなければならない。
【0043】
そこで、従来の方法においては、図3に示すように回転角度を単純に等分し、各セクション毎に画像信号として取り込むようにしていたが、回転角度を4等分して仮に0°、90°、180°、270°を基準とした場合、各基準点から断層信号が始まる点までの移動量L1〜L4は回転円板1上の4つの回転プリズム(ミラー)2の取り付け位置のばらつき等により4つの波の相互の間隔もばらつきL1≠L2≠L3≠L4となってしまう。
【0044】
したがって、このまま連続的に横軸方向に並べて表示すれば、図4に示すように、そのばらつき分だけ断層画像Bも上下に振れてしまい鮮明な断層画像を得ることが出来ない。
【0045】
そこで、本発明においては、4本の断層情報(Aスキャン)のそれぞれに対して基準信号を発生させる機構を提案するものであり、被測定物体21を観測する被測定物体光軸の途中に透明な硝子板等の透光体17を被測定物体光軸に対しその平面が垂直になるように配置し、その透光体17表面からの反射光によるビート信号を被測定物体深さ方向(Z方向)の基準信号とし、被測定物体21内部からの反射散乱光を取り込む際の基準信号とするものである。
【0046】
図5は本発明の第2実施例を示す小型光干渉断層画像化装置の構成を示す構成概略図である。
【0047】
この実施例においては、第1のハーフミラー33に加えて参照光の光軸途中に参照光を分波する第2のハーフミラー38と前後調整機構付きトリガーミラー39を設け、第1実施例における透光体17に代替させるようにしている。なお、図5において、31はSLD、32,36はレンズ、34はガルバノミラーX、Y、35は2つのガルバノミラーX、Y走査ユニット、37は光検出器であり、、参照光路には、第1及び第2実施例と同様に、モーター3により回転する回転円板1、回転プリズム(リトロリフレクター)2、反射ミラー4が配置されている。
【0048】
図6は本発明の第3実施例を示す小型光干渉断層画像化装置の構成を示す構成概略図である。
【0049】
この実施例においては、第1のハーフミラー43に加えて物体光の光軸途中に物体光を分波する第2のハーフミラー44と前後調整機構付きトリガーミラー45を設け、第1実施例における透光体17又は第2実施例における第2のハーフミラー38と前後調整機構付きトリガミラー39に代替させるようにしている。なお、図6において、41はSLD、42,48はレンズ、46はガルバノミラーX、Y、47は2つのガルバノミラーX、Y走査ユニット、49は光検出器であり、参照光路には、第1及び第2実施例と同様、モーター3により回転する回転円板1、回転プリズム(リトロリフレクター)2、反射ミラー4が配置されている。
【0050】
このように、図5や図6に示すように、参照光または物体光の光軸途中に参照光または物体光を分波する第2のハーフミラー38,44を設け、参照光または物体光を分割し、前後調整機構付きトリガーミラー39,45で反射させ、同一復路を戻り再び合波させ、任意のZ方向深さに基準信号を発生させるものである。
【0051】
その結果、図7に示すような波形が得られ、4つの断層信号の前方に基準信号(トリガー)を発生させることができる。
【0052】
各々の基準信号から各断層波形まで距離(時間)はM1=M2=M3=M4になるので基準信号を基準に縦軸を構成し、さらに横軸方向に連続的に並べて表示すれば、仮に4つのミラーの取り付け位置がばらつき、断層信号の周期がばらついたとしても、図8に示すような水平方向にズレの無い揃った断層画像Bを得ることができる。
【0053】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0054】
【発明の効果】
以上、詳細に説明したように、本発明によれば、以下のような効果を奏することができる。
【0055】
(A)エンコーダーや外部センサーなどの高価な専用ハードを用いることなく、被測定物体の深さ方向の基準信号を容易に生成させることができる。
【0056】
(B)複数個のミラー毎に基準信号を相互に同一の条件で発生させることができ、仮に個々のミラーの取り付け位置がばらついても、取り込み信号のばらつきは無くなり、よって、より精細な画像を結像することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す小型光干渉断層画像化装置の構成を示す構成概略図である。
【図2】本発明による小型光干渉断層画像化装置の高速光遅延機構部の模式図である。
【図3】従来の4つの回転プリズム(ミラー)からの反射光に対応した波形を示す図である。
【図4】従来の4つの回転プリズム(ミラー)により得られる断層画像を示す図である。
【図5】本発明の第2実施例を示す小型光干渉断層画像化装置の構成を示す構成概略図である。
【図6】本発明の第3実施例を示す小型光干渉断層画像化装置の構成を示す構成概略図である。
【図7】本発明の実施例を示す4つの回転プリズム(ミラー)からの反射光に対応した波形を示す図である。
【図8】本発明の実施例を示す4つの回転プリズム(ミラー)により得られる断層画像を示す図である。
【符号の説明】
A 小型光干渉断層画像化装置本体
B 断層画像
1 回転円板
2 回転プリズム(リトロリフレクター)
3 モーター
4 反射ミラー
11,31,41 SLD
12,16,32,36,42,48 レンズ
13 ハーフミラー
14,34,46 ガルバノミラーX、Y
15,35,47 2つのガルバノミラーX、Y走査ユニット
17 透光体
18,37,49 光検出器
19 PC
20 表示装置
21 被測定物体
22 調整装置
23 矢印
33,43 第1のハーフミラー
38,44 第2のハーフミラー
39,45 前後調整機構付きトリガーミラー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an image signal synchronization mechanism in an optical coherence tomographic imaging apparatus.
[0002]
[Prior art]
Conventionally, as a depth direction signal capturing mechanism of an optical coherence tomographic imaging apparatus having a plurality of mirrors in a reference optical path to which a Michelson interferometer is applied, a reference pulse generator is provided inside, and a scanning position in a depth direction is provided. Are set in advance to determine the scanning position.
[0003]
As an optical coherence tomographic imaging apparatus having a plurality of mirrors by the present inventor, the following has already been disclosed.
[0004]
[Patent Document 1]
JP-A-2002-310898, page 3-4 FIG.
[Patent Document 2]
JP-A-2002-310899, page 3-4, FIG.
[0005]
[Problems to be solved by the invention]
However, in the conventional optical coherence tomographic imaging apparatus, there is no particular problem in the case of scanning in the depth direction using a single mirror. In the case of (2), there is a problem that the variation in the mirror mounting position accuracy directly results in the variation in the depth direction scanning accuracy.
[0006]
The present invention has been made in view of the above circumstances, and provides an image signal synchronization mechanism in an optical coherence tomographic imaging apparatus capable of preventing variations in depth direction scanning accuracy in the case of depth direction scanning by a plurality of mirrors. The purpose is to:
[0007]
[Means for Solving the Problems]
The present invention, in order to achieve the above object,
[1] In a depth direction signal capturing mechanism of a scanning light coherence tomographic imaging apparatus having a plurality of mirrors in a reference optical path to which a Michelson interferometer is applied, in the middle of the optical axis of a measured object for observing the measured object, A transparent translucent body is arranged so that its plane is perpendicular to the optical axis of the object to be measured, generates a signal by light reflected from the surface of the translucent body, and captures scattered and reflected light from inside the object to be measured. In this case, the reference signal is used.
[0008]
[2] In a depth direction signal capturing mechanism of an optical coherence tomographic imaging apparatus having a plurality of mirrors in a reference optical path to which a Michelson interferometer is applied, a transparent part is provided along the optical axis of the measured object for observing the measured object. A transparent body is disposed such that its plane is perpendicular to the optical axis of the object to be measured and is adjustable back and forth in the optical axis direction, and a signal is generated by light reflected from the surface of the transparent body. It is characterized in that it is used as a reference signal when taking in scattered reflected light from inside the measurement object.
[0009]
[3] In a depth direction signal capturing mechanism of an optical coherence tomographic imaging apparatus having a plurality of mirrors in a reference optical path to which a Michelson interferometer is applied, a half mirror for splitting the reference light is provided in the optical axis of the reference light. The reference light is divided, reflected by a trigger mirror with a front-rear adjustment mechanism, returned to the same return path, combined again, and a reference signal is generated at an arbitrary depth in the Z direction, and scattered reflected light from the inside of the measured object is generated. It is characterized in that it is used as a reference signal when taking in.
[0010]
[4] In a depth direction signal capturing mechanism of an optical coherence tomographic imaging apparatus having a plurality of mirrors in a reference optical path to which a Michelson interferometer is applied, the object light to be measured is demultiplexed along the optical axis of the object light to be measured. Provide a half mirror to split the object light to be measured, reflect it with a trigger mirror with a front-rear adjustment mechanism, return the same return path, combine again, generate a reference signal at an arbitrary Z-direction depth, and It is used as a reference signal when taking in the scattered reflected light from.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0012]
First, the principle of the present invention will be described.
[0013]
In the optical coherence tomographic imaging method, a light beam from a low coherence light source having a narrow coherent frequency band, for example, an SLD (super luminescence diode) is split by a half mirror, and one of the split light beams is split by an optical delay mechanism. The frequency shift is given, and the reference light Er returns to the same optical path.
[0014]
On the other hand, the other light beam divided by the half mirror to irradiate the object to be measured, the reference light by the half mirror returning the same optical path as the scattered reflected signal light from the deep layers of the object to be measured (object light) E S The signal is multiplexed with Er and becomes a heterodyne interference beat signal, which is detected by a photodetector.
[0015]
The actual scattered reflected light wave from the inside of the measured object is a diffuse wavefront having a random phase including multiple scattering, but when combined with the reference light wave, the optical path length difference is within the coherent length of the light source. Only components having a phase correlation with each other, that is, coherent components, interfere with each other.
[0016]
As a result, the photoelectric conversion output signal Ip from the photodetector is calculated by the following equation.
[0017]
I p = E r E s J 1 (x) √ (π / ln2) × cos (2πf a t) × exp {- (π 2 / ln2) [δf t (τ-z / c ) ] 2} ( 1)
Here, J 1 (x) is a first-order Bessel function.
[0018]
x is a transformation parameter, f a heterodyne beat frequency of the vibration.
[0019]
z gives the amount of distance from the reference position to the light reflection position in the deep layer of the object, that is, the light scattering potential.
[0020]
(1) from equation undergo amplitude modulation waveform of the heterodyne beat frequency f a is the gauss function (when the z-τc = 0) its peak it can be seen that the distance measurement position.
[0021]
That is, the maximum beat signal is obtained only when the reference optical path length τc matches the object optical path length z. Thereby, the reference light path length is strictly measured, the horizontal axis is set, and the radiation curve of the beat signal is plotted, whereby a light reflection distribution image can be obtained.
[0022]
According to the present invention, a three-dimensional tomographic image is formed on a computer by extracting reflected image information of a deep layer of an object to be measured by utilizing this characteristic and scanning a light beam at high speed in the xy directions.
[0023]
FIG. 1 is a schematic diagram showing a configuration of a small optical coherence tomographic imaging apparatus according to a first embodiment of the present invention, and FIG. 2 is a schematic diagram of a high-speed optical delay mechanism of the small optical coherence tomographic imaging apparatus according to the present invention. is there.
[0024]
In FIG. 1, A is the main body of the small optical coherence tomographic imaging apparatus, 19 is a PC (personal computer), and 20 is a display device connected to the PC 19 for displaying a tomographic image.
[0025]
A plurality of rotating prisms 2 such as a corner cube prism, a retroreflector, and a right-angle prism, and four retroreflectors, here, are symmetrically mounted on a rotating axis. Reference numeral 4 denotes a reference light reflecting mirror.
[0026]
Here, the rotating disk 1 is configured to rotate by the power of the motor 3, and the SLD (super luminescence diode) 11 is a low coherence light source.
[0027]
The half mirror 13 reflects approximately half of the low coherence light emitted from the SLD 11 via the lens 12, and reflects the measured object 21 via the galvanomirrors X and Y 14, the objective lens 16, and the light transmitting body 17 (details will be described later). And the other half is transmitted and guided to the optical path of the rotating prism 2, and the reflected light (reference light) from the rotating prism 2 is transmitted while the scattered reflected light from the DUT 21 is transmitted through the half mirror 13. The light is reflected by the half mirror 13 and guided to the photodetector 18.
[0028]
The photodetector 18 receives and detects light in which scattered reflected light (object light) from the measured object 21 and reflected light (reference light) from the rotating prism 2 are combined and interfered, and converts the light into an electric signal. is there.
[0029]
The two galvanometer mirrors X and Y scanning unit 15 are for scanning the irradiation light to the measured object 21 at high speed in the X axis and the Y axis by the galvanometer mirrors X and Y14.
[0030]
Each element is controlled by a control unit installed outside the housing, and the inspection information is processed by the PC 19 and displayed on the display device 20.
[0031]
As described above, the low coherence light emitted from the SLD 11 is split by the half mirror 13, one of which is reflected by the half mirror 13, further reflected by the galvanometer mirrors X and Y 14, and the objective lens 16 and the translucent member 17. XY high-speed scanning is applied to the inside of the measured object 21 through the half mirror 13, and the other is transmitted through the half mirror 13 and guided to the rotating prism 2.
[0032]
The rotating prism 2 is rotating at a high speed and reflects the irradiated low coherence light while giving a frequency shift to serve as reference light.
[0033]
The reference light returns along the same optical path, is reflected by the half mirror 13, and is guided to the photodetector 18.
[0034]
The scattered reflected light that has been scanned and irradiated inside the measured object 21 and scattered and reflected returns along the same optical path while being collected by the objective lens 16, passes through the half mirror 13, and is guided to the photodetector 18.
[0035]
Further, a transparent transparent body 17 is provided in the middle of the optical axis of the object to be measured for observing the object to be measured 21 so that its plane is perpendicular to the optical axis of the object to be measured, and is indicated by an arrow 23 by the adjusting device 22. As described above, it can be arranged to be adjustable back and forth in the optical axis direction.
[0036]
The two lights guided to the photodetector 18, the reference light, and the reflected light (object light) from inside the measured object 21 (for example, the eyeball) are multiplexed by the half mirror 13 to become interference light.
[0037]
Since the optical path length from the half mirror 13 to the rotating prism 2 and the optical path length from the half mirror 13 to the measured object 21 match, the combined interference light includes a heterodyne interference beat signal.
[0038]
This heterodyne interference beat signal is converted into an electric signal by a photodetector 18 and sent to a PC (personal computer) 19.
[0039]
The PC 19 performs a tomographic imaging process using the heterodyne interference beat signal, and displays a cross-sectional image of the inside of the measured object 21 on the display device 20.
[0040]
Since the signal from the photodetector 18 is continuously converted into an electric signal, a waveform corresponding to the reflected light from the four rotating prisms (mirrors) is intermittently obtained as shown in FIG.
[0041]
Each of these four intermittently obtained signal waves is arranged on the vertical axis, is given a shading corresponding to the intensity, and is continuously arranged in the horizontal axis direction. Although it is drawn as a tomographic image at a position corresponding to the Y coordinate, in this embodiment, in order to simplify the description, in order to obtain an XZ tomographic image in a case where only one of the X and Y scans is used. Give an explanation.
[0042]
Here, since the rotation (one cycle) of the rotating disk 1 includes four waves equal to four pieces of tomographic information (A scan), it is necessary to divide four continuous waves by some method.
[0043]
Therefore, in the conventional method, as shown in FIG. 3, the rotation angle is simply divided into equal parts, and each section is taken in as an image signal. With reference to °, 180 °, and 270 °, the movement amounts L1 to L4 from each reference point to the point where the tomographic signal starts are determined by variations in the mounting positions of the four rotating prisms (mirrors) 2 on the rotating disk 1. As a result, the mutual interval between the four waves also varies as L1 ≠ L2 ≠ L3 ≠ L4.
[0044]
Therefore, if the images are continuously displayed in the horizontal axis direction as they are, as shown in FIG. 4, the tomographic image B also fluctuates up and down by the variation, so that a clear tomographic image cannot be obtained.
[0045]
Therefore, in the present invention, a mechanism for generating a reference signal for each of four pieces of tomographic information (A scan) is proposed, and a transparent part is provided along the optical axis of the measured object for observing the measured object 21. A transparent body 17 such as a transparent glass plate is arranged so that its plane is perpendicular to the optical axis of the measured object, and a beat signal due to light reflected from the surface of the transparent body 17 is transmitted in the depth direction (Z Direction), and is used as a reference signal when capturing the reflected and scattered light from inside the measured object 21.
[0046]
FIG. 5 is a schematic configuration diagram showing a configuration of a small optical coherence tomographic imaging apparatus according to a second embodiment of the present invention.
[0047]
In this embodiment, in addition to the first half mirror 33, a second half mirror 38 for splitting the reference light and a trigger mirror 39 with a longitudinal adjustment mechanism are provided in the optical axis of the reference light. The translucent body 17 is substituted. In FIG. 5, 31 is an SLD, 32 and 36 are lenses, 34 is a galvanometer mirror X and Y, 35 is two galvanometer mirrors X and Y scanning unit, 37 is a photodetector, and a reference optical path includes: As in the first and second embodiments, a rotating disk 1 rotated by a motor 3, a rotating prism (retro reflector) 2, and a reflection mirror 4 are arranged.
[0048]
FIG. 6 is a schematic configuration diagram showing a configuration of a small optical coherence tomographic imaging apparatus according to a third embodiment of the present invention.
[0049]
In this embodiment, in addition to the first half mirror 43, a second half mirror 44 for splitting the object light in the optical axis of the object light and a trigger mirror 45 with a front-rear adjustment mechanism are provided in the middle of the optical axis of the object light. The translucent body 17 or the second half mirror 38 and the trigger mirror 39 with the front-rear adjustment mechanism in the second embodiment are substituted. In FIG. 6, reference numeral 41 denotes an SLD, reference numerals 42 and 48 denote lenses, reference numeral 46 denotes galvanometer mirrors X and Y, reference numeral 47 denotes two galvanometer mirrors X and Y scanning units, and reference numeral 49 denotes a photodetector. As in the first and second embodiments, a rotating disk 1 rotated by a motor 3, a rotating prism (retroreflector) 2, and a reflection mirror 4 are arranged.
[0050]
Thus, as shown in FIGS. 5 and 6, the second half mirrors 38 and 44 for splitting the reference light or the object light are provided in the optical axis of the reference light or the object light, and the reference light or the object light is provided. The beam is divided, reflected by the trigger mirrors 39 and 45 with the front-rear adjustment mechanism, returned on the same return path and combined again to generate a reference signal at an arbitrary depth in the Z direction.
[0051]
As a result, a waveform as shown in FIG. 7 is obtained, and a reference signal (trigger) can be generated in front of the four tomographic signals.
[0052]
Since the distance (time) from each reference signal to each tomographic waveform is M1 = M2 = M3 = M4, if the vertical axis is formed based on the reference signal and further displayed continuously in the horizontal axis direction, 4 Even if the mounting positions of the two mirrors vary and the period of the tomographic signal varies, it is possible to obtain a uniform tomographic image B without any deviation in the horizontal direction as shown in FIG.
[0053]
It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
[0054]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
[0055]
(A) A reference signal in the depth direction of the measured object can be easily generated without using expensive dedicated hardware such as an encoder and an external sensor.
[0056]
(B) A reference signal can be generated for each of a plurality of mirrors under the same conditions, and even if the mounting positions of the individual mirrors vary, there is no variation in the captured signal, and therefore, a finer image can be obtained. An image can be formed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram illustrating a configuration of a small optical coherence tomographic imaging apparatus according to a first embodiment of the present invention.
FIG. 2 is a schematic diagram of a high-speed optical delay mechanism of the small optical coherence tomographic imaging apparatus according to the present invention.
FIG. 3 is a diagram showing waveforms corresponding to light reflected from four conventional rotating prisms (mirrors).
FIG. 4 is a diagram showing tomographic images obtained by four conventional rotating prisms (mirrors).
FIG. 5 is a schematic configuration diagram illustrating a configuration of a small optical coherence tomographic imaging apparatus according to a second embodiment of the present invention.
FIG. 6 is a schematic diagram illustrating a configuration of a small optical coherence tomographic imaging apparatus according to a third embodiment of the present invention.
FIG. 7 is a diagram showing waveforms corresponding to light reflected from four rotating prisms (mirrors) according to the embodiment of the present invention.
FIG. 8 is a diagram showing a tomographic image obtained by four rotating prisms (mirrors) according to the embodiment of the present invention.
[Explanation of symbols]
A Small optical coherence tomographic imaging system main body B Tomographic image 1 Rotating disk 2 Rotating prism (Retro reflector)
3 Motor 4 Reflecting mirror 11, 31, 41 SLD
12, 16, 32, 36, 42, 48 Lens 13 Half mirror 14, 34, 46 Galvano mirror X, Y
15, 35, 47 Two galvanometer mirrors X, Y scanning unit 17 Translucent body 18, 37, 49 Photodetector 19 PC
Reference Signs 20 display device 21 measured object 22 adjusting device 23 arrows 33, 43 first half mirrors 38, 44 second half mirrors 39, 45 trigger mirror with front-rear adjustment mechanism

Claims (4)

マイケルソン干渉計を応用した参照光路に複数個のミラーを有する光干渉断層画像化装置の深さ方向信号取り込み機構において、被計測物体を観測する被計測物体光軸の途中に、透明な透光体を被計測物体光軸に対しその平面が垂直になるように配置し、前記透光体表面からの反射光による信号を発生させ、被計測物体内部からの散乱反射光を取り込む際の基準信号とすることを特徴とする光干渉断層画像化装置における画像信号同期機構。In a depth direction signal acquisition mechanism of an optical coherence tomographic imaging apparatus having a plurality of mirrors in a reference optical path using a Michelson interferometer, a transparent light transmission is provided in the optical axis of the measured object for observing the measured object. The body is arranged so that its plane is perpendicular to the optical axis of the object to be measured, a signal is generated by light reflected from the surface of the transparent body, and a reference signal for capturing scattered and reflected light from inside the object to be measured. An image signal synchronization mechanism in an optical coherence tomographic imaging apparatus. マイケルソン干渉計を応用した参照光路に複数個のミラーを有する光干渉断層画像化装置の深さ方向信号取り込み機構において、被計測物体を観測する被計測物体光軸の途中に、透明な透光体を被計測物体光軸に対しその平面が垂直になるように、且つ光軸方向に前後に調整可能に配置し、前記透光体表面からの反射光による信号を発生させ、被計測物体内部からの散乱反射光を取り込む際の基準信号とすることを特徴とする光干渉断層画像化装置における画像信号同期機構。In a depth direction signal acquisition mechanism of an optical coherence tomographic imaging apparatus having a plurality of mirrors in a reference optical path using a Michelson interferometer, a transparent light transmission is provided in the optical axis of the measured object for observing the measured object. The body is arranged so that its plane is perpendicular to the optical axis of the object to be measured, and is adjustable so as to be forward and backward in the direction of the optical axis. An image signal synchronizing mechanism in an optical coherence tomographic imaging apparatus, wherein the image signal is used as a reference signal when taking in scattered reflected light from an object. マイケルソン干渉計を応用した参照光路に複数個のミラーを有する光干渉断層画像化装置の深さ方向信号取り込み機構において、参照光の光軸途中に参照光を分波するハーフミラーを設け、参照光を分割し、前後調整機構付きトリガーミラーで反射させ、同一復路を戻り再び合波させ、任意のZ方向深さに基準信号を発生させ、被計測物体内部からの散乱反射光を取り込む際の基準信号とすることを特徴とする光干渉断層画像化装置における画像信号同期機構。In a depth direction signal capturing mechanism of an optical coherence tomographic imaging apparatus having a plurality of mirrors in a reference optical path to which a Michelson interferometer is applied, a half mirror for splitting the reference light is provided in the optical axis of the reference light. The light is split, reflected by a trigger mirror with a front-rear adjustment mechanism, returned to the same return path, multiplexed again, a reference signal is generated at an arbitrary depth in the Z direction, and the scattered reflected light from inside the measured object is taken in. An image signal synchronizing mechanism in an optical coherence tomographic imaging apparatus, which is used as a reference signal. マイケルソン干渉計を応用した参照光路に複数個のミラーを有する光干渉断層画像化装置の深さ方向信号取り込み機構において、被計測物体光の光軸途中に被計測物体光を分波するハーフミラーを設け、被計測物体光を分割し、前後調整機構付きトリガーミラーで反射させ、同一復路を戻り再び合波させ、任意のZ方向深さに基準信号を発生させ、被計測物体内部からの散乱反射光を取り込む際の基準信号とすることを特徴とする光干渉断層画像化装置における画像信号同期機構。A half mirror that splits the measured object light along the optical axis of the measured object light in the depth direction signal acquisition mechanism of the optical coherence tomographic imaging apparatus having a plurality of mirrors in the reference optical path using a Michelson interferometer And divides the object light to be measured, reflects it with a trigger mirror with a front-rear adjustment mechanism, returns the same return path, combines again, generates a reference signal at an arbitrary depth in the Z direction, and scatters from the inside of the object to be measured. An image signal synchronizing mechanism in an optical coherence tomographic imaging apparatus, which is used as a reference signal when capturing reflected light.
JP2003121135A 2003-04-25 2003-04-25 Image signal synchronization mechanism in optical coherence tomography system Expired - Fee Related JP3720335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121135A JP3720335B2 (en) 2003-04-25 2003-04-25 Image signal synchronization mechanism in optical coherence tomography system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121135A JP3720335B2 (en) 2003-04-25 2003-04-25 Image signal synchronization mechanism in optical coherence tomography system

Publications (2)

Publication Number Publication Date
JP2004325286A true JP2004325286A (en) 2004-11-18
JP3720335B2 JP3720335B2 (en) 2005-11-24

Family

ID=33499791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121135A Expired - Fee Related JP3720335B2 (en) 2003-04-25 2003-04-25 Image signal synchronization mechanism in optical coherence tomography system

Country Status (1)

Country Link
JP (1) JP3720335B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250848A (en) * 2005-03-14 2006-09-21 Naohiro Tanno High speed light delay producing method in light coherence tomography and phase modulated light coherence tomography apparatus
JP2009222705A (en) * 2008-02-20 2009-10-01 Osaka Univ Dimension measuring device
WO2011062288A1 (en) * 2009-11-23 2011-05-26 国立大学法人千葉大学 Tomographic measurement device
JP2013044592A (en) * 2011-08-23 2013-03-04 Chiba Univ Tomographic measuring device
JP2013044726A (en) * 2011-08-26 2013-03-04 Chiba Univ Tomographic measuring device and tomographic measuring method
JP2013047614A (en) * 2011-08-29 2013-03-07 Chiba Univ Tomographic measuring device
JP2013221811A (en) * 2012-04-16 2013-10-28 Pulstec Industrial Co Ltd Surface profile measuring apparatus and light-transmissive object thickness measuring apparatus
JP2015105885A (en) * 2013-11-29 2015-06-08 セイコーエプソン株式会社 Raman spectrometer, electronic device, and raman spectrometry
JP2018173301A (en) * 2017-03-31 2018-11-08 株式会社ニデック OCT device
JP2021028269A (en) * 2019-08-09 2021-02-25 富士ゼロックス株式会社 Detection sensor, detection device, conveyance device and image forming device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250848A (en) * 2005-03-14 2006-09-21 Naohiro Tanno High speed light delay producing method in light coherence tomography and phase modulated light coherence tomography apparatus
JP2009222705A (en) * 2008-02-20 2009-10-01 Osaka Univ Dimension measuring device
JP5713319B2 (en) * 2009-11-23 2015-05-07 国立大学法人 千葉大学 Tomographic measuring device
WO2011062288A1 (en) * 2009-11-23 2011-05-26 国立大学法人千葉大学 Tomographic measurement device
JP2013044592A (en) * 2011-08-23 2013-03-04 Chiba Univ Tomographic measuring device
JP2013044726A (en) * 2011-08-26 2013-03-04 Chiba Univ Tomographic measuring device and tomographic measuring method
JP2013047614A (en) * 2011-08-29 2013-03-07 Chiba Univ Tomographic measuring device
JP2013221811A (en) * 2012-04-16 2013-10-28 Pulstec Industrial Co Ltd Surface profile measuring apparatus and light-transmissive object thickness measuring apparatus
JP2015105885A (en) * 2013-11-29 2015-06-08 セイコーエプソン株式会社 Raman spectrometer, electronic device, and raman spectrometry
JP2018173301A (en) * 2017-03-31 2018-11-08 株式会社ニデック OCT device
JP7119286B2 (en) 2017-03-31 2022-08-17 株式会社ニデック OCT device
JP2021028269A (en) * 2019-08-09 2021-02-25 富士ゼロックス株式会社 Detection sensor, detection device, conveyance device and image forming device
JP7326981B2 (en) 2019-08-09 2023-08-16 富士フイルムビジネスイノベーション株式会社 Detecting device, conveying device and image forming device

Also Published As

Publication number Publication date
JP3720335B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP4020434B2 (en) Apparatus and method for selective optical measurement
CN104121851B (en) Equipment for the 3D structures of detection object
EP1273903B9 (en) Optical interference tomographic image observing apparatus
US7548320B2 (en) Optical image measuring apparatus
US7847950B2 (en) Method and a system for generating three- or two-dimensional images
US20050219545A1 (en) Optical image measuring apparatus
JP2001330558A (en) Light image measuring device using two-dimensional heterodyne detecting method
JP3720335B2 (en) Image signal synchronization mechanism in optical coherence tomography system
US20180263482A1 (en) Structured light generation for intraoral 3d camera using 1d mems scanning
CN104483291A (en) Rapid full-field detecting method of OCT (optical coherence tomography)
US9696211B2 (en) Time-multiplexed spectrally controlled interferometry
JP4024390B2 (en) Methods and arrangements for horizontal optical coherence tomography
US10386171B1 (en) Apparatus for a dynamic multi-axis heterodyne interferometric vibrometer
JP2016209529A (en) Imaging apparatus
US20190343377A1 (en) 3d intraoral camera using frequency modulation
JP2002310899A (en) High speed optical retardation generating method and optical coherence tomography device by rotating reflector in optical coherence tomography
JP2009139117A (en) Optical coherence tomography device
CN110199171B (en) Dynamic mode switching for multi-mode ophthalmic optical coherence tomography
CN112731345B (en) Vibration-resistant type area array sweep frequency distance measurement/thickness measurement device and method with active optical anti-shake function
JPH10274623A (en) Optical measuring apparatus for living body without invasion
TWI258704B (en) Method and system for optically tracking a target using an interferometric technique
EP0235941B1 (en) Surface measurement
RU2184347C2 (en) Process generating images of internal structure of objects
US20220078341A1 (en) Signal control module and low coherence interferometry
Bail et al. Optical range sensing with spatially modulated coherence

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050907

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees