JP2004325030A - Control method of air conditioner - Google Patents

Control method of air conditioner Download PDF

Info

Publication number
JP2004325030A
JP2004325030A JP2003123795A JP2003123795A JP2004325030A JP 2004325030 A JP2004325030 A JP 2004325030A JP 2003123795 A JP2003123795 A JP 2003123795A JP 2003123795 A JP2003123795 A JP 2003123795A JP 2004325030 A JP2004325030 A JP 2004325030A
Authority
JP
Japan
Prior art keywords
expansion valve
valve opening
discharge temperature
deviation
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003123795A
Other languages
Japanese (ja)
Inventor
Kenichi Takano
賢一 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2003123795A priority Critical patent/JP2004325030A/en
Publication of JP2004325030A publication Critical patent/JP2004325030A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of an air conditioner for controlling an opening of an expansion valve to achieve the optimum refrigeration cycle state in a short time by preventing the deterioration of following capability caused by a control interval in low rotating speed of a compressor, to perform the operation of high efficiency. <P>SOLUTION: This control method of the air conditioner comprises a discharge temperature sensor mounted at a discharge side of the compressor for detecting a discharge temperature of a refrigerant, a discharge temperature deviation calculating means calculating the deviation of a predetermined target discharge temperature and the present discharge temperature, a calculated expansion valve opening means for storing the optimum calculated expansion valve opening of the expansion valve in accordance with the rotating speed of the compressor determined by an experiment in advance while applying the rotating speed of the compressor, and an evaporation temperature and a condensation temperature of the refrigerant as parameters, and a valve opening deviation calculating means for calculating the deviation between the calculated expansion valve opening and the present expansion valve opening. In a case when the deviation between the target discharge temperature and the present discharge temperature detected by the discharge temperature sensor is more than a specific value, the deviation of the calculated expansion valve opening and the present expansion valve opening is determined, and the opening of the expansion valve is tentatively reduced until the deviation becomes equal to the calculated expansion valve opening. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和機の冷凍サイクルを構成する冷媒流量調節手段の膨張弁(電子膨張弁)の制御技術に係り、特に詳しくは、最適な冷凍サイクル状態にするための膨張弁開度の制御方法に関するものである。
【0002】
【従来の技術】
従来のこの種の空気調和機の制御技術は、例えば図5および図6に示すようなものが知られている(例えば、許文献1参照)。
膨張弁開度が所定値以下且つ、圧縮機の運転周波数が所定値以下且つ、圧縮機の冷媒吐出温度の目標値と現在の吐出温度との偏差が所定値以上の場合に、膨張弁開度の制御時間間隔を上記以外の場合での制御時間間隔と比べて長く設定するものである。
【0003】
図5において、目標吐出温度テーブル81の決定する目標吐出温度と吐出温度検出センサ7で計測した吐出温度との偏差を吐出温度偏差算出手段82により算出し、この偏差と圧縮機の運転周波数と膨張弁4の現在の操作量であるパルス計数信号値に応じて膨張弁4の制御タイミングを決定する制御タイミング設定手段86を設け、前記制御タイミング設定手段86が時々刻々と変化する冷凍サイクルの運転状況に合わせて制御タイミングを変更することにより、膨張弁開度が小さい場合での流量特性の変化を防止し、また圧縮機の周波数値が小さい場合でもハンチングを防止することにより、安定した効率的な運転を可能にする。
【0004】
図6は制御タイミング設定手段86の動作例を説明したフローチャートである。図6において、パルス算出手段84から出力された新たなパルス計数信号Pが150以下であるか否かを判定する(S30)。150以下でなければ、制御タイミングを90秒に設定し、終了する(S34)。パルス計数信号Pが150以下であれば次に、指示周波数値Hzが24以下であるか否かを判定する(S31)。24より大きければ、制御タイミングを90秒に設定し、終了する(S34)。指示周波数Hzが24以下であれば次に、吐出温度偏差e が2より大きいか否かを判定する(S32)。2以下であれば、制御タイミングを90秒に設定して終了する(S34)。2より大きければ、制御タイミングを270 秒に設定し、終了する(S33)。制御タイミング設定手段86は、設定した制御タイミング(90秒または270秒)毎にパルス出力命令信号Hpを出力する。
【0005】
上記従来の制御技術は、膨張弁開度が所定値以下、圧縮機の回転数が所定値以下、目標吐出温度と現在の吐出温度との偏差が所定値以上の場合、膨張弁開度の制御時間間隔を長くするものである。
しかし、方法は安定性がよくなる反面、安定するまでに時間が掛かりすぎ、且つ圧縮機が低回転数のとき、膨張弁制御間隔が長くなり、追従性が悪く、最適な冷凍サイクル状態になるまでの時間がかかり非効率と思われる。
そこで、圧縮機の低回転数時の制御間隔が長くなることなく、短時間にて最適な冷凍サイクル状態にすることが望まれている。
【0006】
【特許文献1】
特開2001−12808号公報(要約、第7頁、第2、3図)
【0007】
【発明が解決しようとする課題】
本発明は上記問題点に鑑みなされたもので、膨張弁の弁開度制御を、圧縮機の低回転数時の制御間隔が長くなることによる追従性の悪化を防止し、より短時間にて最適な冷凍サイクル状態にすることにより、高効率な運転ができる空気調和機の制御方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明は上記課題を解決するためなされたもので、圧縮機の吐出側に冷媒の吐出温度を検出する吐出温度センサと、予め設定した目標吐出温度と現在の吐出温度との偏差を算出する吐出温度偏差算出手段と、前記圧縮機の回転数と、前記冷凍サイクルの冷媒の蒸発温度および凝縮温度をパラメータとして、予め実験により求めた前記圧縮機の回転数に応じた前記膨張弁の最適な算出膨張弁開度を記憶する算出膨張弁開度手段と、前記算出膨張弁開度と現在の膨張弁開度との偏差を算出する弁開度偏差算出手段とを設け、前記目標吐出温度と前記吐出温度センサが検出した現在の吐出温度との偏差が所定値以上の場合、前記算出膨張弁開度と現在の膨張弁開度との偏差を求め、この偏差が前記算出膨張弁開度になるまで前記膨張弁の弁開度を暫時減少させてなる構成となっている。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面を参照して詳細に説明する。
図1は、本発明における空気調和機の冷凍サイクルの概略構成図、図2は、本発明における膨張弁制御装置のブロック図である。
図1と図2において、1 はインバータ駆動される圧縮機、2は冷媒の流れを切り換える四方弁、3は室内熱交換器、4は膨張弁(電子膨張弁)、5は室外熱交換器でありこれらにより冷凍サイクルが構成される。6は後述する前記膨張弁を制御するための膨張弁制御装置である。
【0010】
7は前記圧縮機1から吐出される冷媒の温度を検出する吐出温度センサで、前記膨張弁制御装置6は、まず、前記吐出温度センサ7から出力される現在の冷媒の吐出温度Tdをデジタル信号に変換して検出する吐出温度検出部8と、予め設定した冷媒の目標吐出温度Tmを記憶する目標吐出温度設定部9と、前記目標吐出温度Tmと前記現在の吐出温度Tdを比較し、その偏差|Tm−Td|を算出する手段としての吐出温度偏差算出部10とから構成されている。
【0011】
次に、図3に示すように、前記圧縮機1の回転数Rと、前記冷凍サイクルの冷媒の凝縮温度C(例えば、冷房運転時の室外熱交換器温度)および蒸発温度E(例えば、冷房運転時の室内熱交換器温度)をパラメータとして、前記圧縮機1の回転数Rに応じた前記膨張弁4の最適な算出膨張弁開度Pを予め実験データより求めておく。
【0012】
そして、前記膨張弁制御装置6は、更に、前記算出膨張弁開度Pを予め記憶する手段としての算出膨張弁開度記憶部11と、現在の膨張弁開度Pnを検出する膨張弁開度検出部12と、前記算出膨張弁開度Pと前記現在の膨張弁開度Pnを比較し、その偏差|P−Pn|を算出する手段としての膨張弁開度偏差算出部13と、同膨張弁開度偏差算出部13からの信号のマスクタイムをカウントするタイマ14と、前記吐出温度偏差算出部10および前記膨張弁開度偏差算出部13からの出力信号に基づき、前記膨張弁4の弁開度を制御する膨張弁開度制御部15と、前記膨張弁4の弁開度を調節するための動作パルス数(例えば、60〜500 パルス)を出力するパルス計数出力部とから構成されている。
【0013】
次に、上記構成の制御方法の動作を図4のフローチャートを参照して説明する。冷房あるいは暖房運転がスタートすると、まず、ステップST1で予め設定された目標吐出温度Tmと現在の吐出温度Tdを比較し、その偏差|Tm−Td|が10℃以上かどうか判断される。もし、10℃以上であれば、ステップST2で予め設定された算出膨張弁開度P(ステップST6より導入)と現在の膨張弁開度Pnを比較し、その偏差|P−Pn|が20パルス以上かどうか判断される。
【0014】
もし、偏差が20パルス以上であれば、ステップST3で冷媒音の発生を抑えるため30秒間マスクした後、ステップST4でパルス計数を所定数(例えば、20パルス)減少させ、ステップST1に戻り、このルーチンを膨張弁開度偏差|P−Pn|が20パルス以下になるまで繰返す。
【0015】
ステップST2で膨張弁開度偏差が20パルス以下になった時、算出膨張弁開度Pを膨張弁4に指示する(ステップST7)。そして300秒間のマスク後(ステップST8)、ステップST1に戻り、吐出温度偏差が10℃以上であればルーチンを繰返し、10℃以下の場合は、通常の吐出温度制御に復帰する(ステップST5)。
【0016】
以上に説明したように、前記目標吐出温度Tmと前記吐出温度センサ7が検出した現在の吐出温度Tdとの偏差が所定値以上の場合、前記算出膨張弁開度Pと現在の膨張弁開度Pnとの偏差を求め、この偏差が前記算出膨張弁開度Pになるまで前記膨張弁4の弁開度を暫時減少させてなる構成とすることによって、圧縮機の低回転数時の制御間隔が長くなることによる追従性の悪化を防止し、より短時間にて最適な冷凍サイクル状態にすることにより、高効率な運転ができる空気調和機の制御方法となる。
【0017】
【発明の効果】
以上説明したように、本発明によれば、圧縮機の低回転数時の制御間隔が長くなることによる追従性の悪化を防止し、より短時間にて最適な冷凍サイクル状態にすることにより、高効率な運転ができる空気調和機の制御方法となる。
【図面の簡単な説明】
【図1】本発明における空気調和機の冷凍サイクルの概略構成図である。
【図2】本発明における膨張弁制御装置のブロック図である。
【図3】本発明における算出膨張弁開度のマトリクスを説明するための概略的模式図である。
【図4】本発明における制御方法の動作を示すフローチャートである。
【図5】従来の空気調和機の制御方法を説明するための概略的ブロック図である。
【図6】従来の制御方法の動作を示すフローチャートである。
【符号の説明】
1 圧縮機
2 四方弁
3 室内熱交換器
4 膨張弁(電子膨張弁)
5 室外熱交換器
6 膨張弁制御装置
7 吐出温度センサ
8 吐出温度検出部
9 目標吐出温度設定部
10 吐出温度偏差算出部
11 算出膨張弁開度記憶部
12 膨張弁開度検出部
13 膨張弁開度偏差算出部
14 タイマ
15 膨張弁開度制御部
16 パルス計数出力部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technique for controlling an expansion valve (electronic expansion valve) of a refrigerant flow rate adjusting means constituting a refrigeration cycle of an air conditioner, and more particularly, to controlling an opening degree of an expansion valve for achieving an optimal refrigeration cycle state. It is about the method.
[0002]
[Prior art]
As a conventional control technique for this type of air conditioner, for example, one shown in FIGS. 5 and 6 is known (for example, see Patent Document 1).
When the opening degree of the expansion valve is equal to or less than a predetermined value, the operating frequency of the compressor is equal to or less than a predetermined value, and the deviation between the target value of the refrigerant discharge temperature of the compressor and the current discharge temperature is equal to or more than a predetermined value, the opening degree of the expansion valve is determined. Is set to be longer than the control time intervals in other cases.
[0003]
In FIG. 5, a deviation between the target discharge temperature determined by the target discharge temperature table 81 and the discharge temperature measured by the discharge temperature detection sensor 7 is calculated by the discharge temperature deviation calculating means 82, and the deviation, the operating frequency of the compressor and the expansion are calculated. Control timing setting means 86 for determining the control timing of the expansion valve 4 according to the pulse count signal value which is the current operation amount of the valve 4 is provided, and the control timing setting means 86 changes from moment to moment. By changing the control timing in accordance with the above, it is possible to prevent a change in the flow rate characteristic when the opening degree of the expansion valve is small, and to prevent hunting even when the frequency value of the compressor is small, thereby achieving a stable and efficient operation. Enable driving.
[0004]
FIG. 6 is a flowchart illustrating an operation example of the control timing setting means 86. In FIG. 6, it is determined whether the new pulse count signal P output from the pulse calculation means 84 is 150 or less (S30). If it is not less than 150, the control timing is set to 90 seconds, and the processing ends (S34). If the pulse count signal P is 150 or less, it is next determined whether or not the indicated frequency value Hz is 24 or less (S31). If it is larger than 24, the control timing is set to 90 seconds, and the process ends (S34). If the instruction frequency Hz is equal to or less than 24, it is next determined whether or not the ejection temperature deviation e 2 is greater than 2 (S32). If it is 2 or less, the control timing is set to 90 seconds and the process ends (S34). If it is larger than 2, the control timing is set to 270 seconds, and the process ends (S33). The control timing setting means 86 outputs a pulse output command signal Hp at each set control timing (90 seconds or 270 seconds).
[0005]
The conventional control technique described above controls the expansion valve opening when the opening of the expansion valve is less than a predetermined value, the rotation speed of the compressor is less than a predetermined value, and the deviation between the target discharge temperature and the current discharge temperature is more than a predetermined value. This is to lengthen the time interval.
However, while the method improves stability, it takes too much time to stabilize, and when the compressor is at a low rotational speed, the expansion valve control interval becomes longer, the followability is poor, and until the optimal refrigeration cycle state is reached. It seems time-consuming and inefficient.
Therefore, it is desired that an optimum refrigeration cycle be established in a short time without increasing the control interval at a low rotational speed of the compressor.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-12808 (abstract, page 7, FIG. 2, FIG. 3)
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and controls the degree of valve opening of an expansion valve to prevent deterioration of followability due to a longer control interval at a low rotation speed of a compressor, and in a shorter time. It is an object of the present invention to provide a control method of an air conditioner capable of operating with high efficiency by setting an optimal refrigeration cycle state.
[0008]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has a discharge temperature sensor for detecting a discharge temperature of a refrigerant at a discharge side of a compressor, and a discharge for calculating a deviation between a preset target discharge temperature and a current discharge temperature. Temperature deviation calculating means, and optimal calculation of the expansion valve according to the rotational speed of the compressor, which is obtained in advance through experiments, using the rotational speed of the compressor, the evaporation temperature and the condensing temperature of the refrigerant in the refrigeration cycle as parameters. A calculated expansion valve opening means for storing an expansion valve opening degree, and a valve opening degree deviation calculating means for calculating a deviation between the calculated expansion valve opening degree and a current expansion valve opening degree are provided, and the target discharge temperature and the When the deviation from the current discharge temperature detected by the discharge temperature sensor is equal to or greater than a predetermined value, a deviation between the calculated expansion valve opening and the current expansion valve opening is obtained, and this deviation becomes the calculated expansion valve opening. Until the opening of the expansion valve It has become a made to reduce configuration.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram of a refrigeration cycle of an air conditioner according to the present invention, and FIG. 2 is a block diagram of an expansion valve control device according to the present invention.
1 and 2, 1 is an inverter-driven compressor, 2 is a four-way valve for switching the flow of refrigerant, 3 is an indoor heat exchanger, 4 is an expansion valve (electronic expansion valve), and 5 is an outdoor heat exchanger. A refrigeration cycle is constituted by these. Reference numeral 6 denotes an expansion valve control device for controlling the expansion valve described later.
[0010]
Reference numeral 7 denotes a discharge temperature sensor for detecting the temperature of the refrigerant discharged from the compressor 1. The expansion valve control device 6 firstly outputs a digital signal of the current refrigerant discharge temperature Td output from the discharge temperature sensor 7 to a digital signal. A discharge temperature detection unit 8 that converts and detects the target discharge temperature, a target discharge temperature setting unit 9 that stores a preset target discharge temperature Tm of the refrigerant, and compares the target discharge temperature Tm with the current discharge temperature Td. And a discharge temperature deviation calculator 10 as a means for calculating the deviation | Tm-Td |.
[0011]
Next, as shown in FIG. 3, the rotation speed R of the compressor 1, the condensation temperature C of the refrigerant in the refrigeration cycle (for example, the outdoor heat exchanger temperature during cooling operation), and the evaporation temperature E (for example, cooling) Using the indoor heat exchanger temperature during operation as a parameter, the optimum calculated expansion valve opening P of the expansion valve 4 according to the rotation speed R of the compressor 1 is obtained in advance from experimental data.
[0012]
The expansion valve control device 6 further includes a calculated expansion valve opening storage unit 11 serving as a means for previously storing the calculated expansion valve opening P, and an expansion valve opening for detecting the current expansion valve opening Pn. A detection unit 12, an expansion valve opening deviation calculating unit 13 as means for comparing the calculated expansion valve opening P with the current expansion valve opening Pn, and calculating a deviation | P-Pn | The timer 14 counts the mask time of the signal from the valve opening deviation calculator 13 and the valve of the expansion valve 4 based on the output signals from the discharge temperature deviation calculator 10 and the expansion valve opening deviation calculator 13. An expansion valve opening control section 15 for controlling the opening degree and a pulse counting output section for outputting the number of operating pulses (for example, 60 to 500 pulses) for adjusting the valve opening degree of the expansion valve 4 are provided. I have.
[0013]
Next, the operation of the control method having the above configuration will be described with reference to the flowchart of FIG. When the cooling or heating operation is started, first, in step ST1, a preset target discharge temperature Tm is compared with a current discharge temperature Td, and it is determined whether the deviation | Tm−Td | is 10 ° C. or more. If the temperature is equal to or higher than 10 ° C., the calculated expansion valve opening P set in advance in step ST2 (introduced from step ST6) is compared with the current expansion valve opening Pn, and the difference | P−Pn | It is determined whether or not this is the case.
[0014]
If the deviation is 20 pulses or more, after masking for 30 seconds in step ST3 to suppress the generation of refrigerant noise, the pulse count is reduced by a predetermined number (for example, 20 pulses) in step ST4, and the process returns to step ST1. The routine is repeated until the expansion valve opening deviation | P-Pn | becomes 20 pulses or less.
[0015]
When the deviation of the expansion valve opening becomes equal to or less than 20 pulses in step ST2, the calculated expansion valve opening P is instructed to the expansion valve 4 (step ST7). After masking for 300 seconds (step ST8), the process returns to step ST1, and if the discharge temperature deviation is equal to or higher than 10 ° C., the routine is repeated.
[0016]
As described above, when the deviation between the target discharge temperature Tm and the current discharge temperature Td detected by the discharge temperature sensor 7 is equal to or more than a predetermined value, the calculated expansion valve opening P and the current expansion valve opening Pn is determined, and the valve opening of the expansion valve 4 is temporarily reduced until the difference reaches the calculated expansion valve opening P, whereby the control interval at a low rotational speed of the compressor is obtained. The control method of the air conditioner can be operated with high efficiency by preventing deterioration of the followability due to the increase of the length of the refrigeration cycle and by setting the optimum refrigeration cycle state in a shorter time.
[0017]
【The invention's effect】
As described above, according to the present invention, it is possible to prevent the followability from being deteriorated due to an increase in the control interval at a low rotation speed of the compressor, and to achieve an optimal refrigeration cycle state in a shorter time, It becomes a control method of the air conditioner that can operate with high efficiency.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a refrigeration cycle of an air conditioner according to the present invention.
FIG. 2 is a block diagram of an expansion valve control device according to the present invention.
FIG. 3 is a schematic diagram illustrating a matrix of calculated expansion valve openings according to the present invention.
FIG. 4 is a flowchart showing an operation of a control method according to the present invention.
FIG. 5 is a schematic block diagram for explaining a conventional method for controlling an air conditioner.
FIG. 6 is a flowchart showing an operation of a conventional control method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Indoor heat exchanger 4 Expansion valve (electronic expansion valve)
5 Outdoor heat exchanger 6 Expansion valve controller 7 Discharge temperature sensor 8 Discharge temperature detector 9 Target discharge temperature setting unit 10 Discharge temperature deviation calculator 11 Calculated expansion valve opening storage unit 12 Expansion valve opening detector 13 Expansion valve open Degree deviation calculation unit 14 Timer 15 Expansion valve opening control unit 16 Pulse count output unit

Claims (1)

圧縮機の吐出側に冷媒の吐出温度を検出する吐出温度センサと、予め設定した目標吐出温度と現在の吐出温度との偏差を算出する吐出温度偏差算出手段と、前記圧縮機の回転数と、前記冷凍サイクルの冷媒の蒸発温度および凝縮温度をパラメータとして、予め実験により求めた前記圧縮機の回転数に応じた前記膨張弁の最適な算出膨張弁開度を記憶する算出膨張弁開度手段と、前記算出膨張弁開度と現在の膨張弁開度との偏差を算出する弁開度偏差算出手段とを設け、前記目標吐出温度と前記吐出温度センサが検出した現在の吐出温度との偏差が所定値以上の場合、前記算出膨張弁開度と現在の膨張弁開度との偏差を求め、この偏差が前記算出膨張弁開度になるまで前記膨張弁の弁開度を暫時減少させてなることを特徴とする空気調和機の制御方法。A discharge temperature sensor that detects the discharge temperature of the refrigerant on the discharge side of the compressor, a discharge temperature deviation calculating unit that calculates a deviation between a preset target discharge temperature and a current discharge temperature, and a rotation speed of the compressor, A calculated expansion valve opening means for storing an optimum calculated expansion valve opening of the expansion valve in accordance with a rotational speed of the compressor, which is obtained in advance by an experiment, using the evaporation temperature and the condensation temperature of the refrigerant of the refrigeration cycle as parameters. A valve opening degree deviation calculating means for calculating a deviation between the calculated expansion valve opening degree and the current expansion valve opening degree, wherein a deviation between the target discharge temperature and the current discharge temperature detected by the discharge temperature sensor is calculated. If it is equal to or greater than a predetermined value, a deviation between the calculated expansion valve opening and the current expansion valve opening is obtained, and the valve opening of the expansion valve is temporarily reduced until the deviation reaches the calculated expansion valve opening. Air conditioner control characterized by the following: Method.
JP2003123795A 2003-04-28 2003-04-28 Control method of air conditioner Pending JP2004325030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003123795A JP2004325030A (en) 2003-04-28 2003-04-28 Control method of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123795A JP2004325030A (en) 2003-04-28 2003-04-28 Control method of air conditioner

Publications (1)

Publication Number Publication Date
JP2004325030A true JP2004325030A (en) 2004-11-18

Family

ID=33501584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123795A Pending JP2004325030A (en) 2003-04-28 2003-04-28 Control method of air conditioner

Country Status (1)

Country Link
JP (1) JP2004325030A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104930773A (en) * 2015-07-06 2015-09-23 珠海格力电器股份有限公司 Control method and device of electronic expansion valve and air conditioner
CN109114757A (en) * 2018-10-08 2019-01-01 广东美的暖通设备有限公司 Air conditioner system control method
CN109114758A (en) * 2018-10-08 2019-01-01 广东美的暖通设备有限公司 Air conditioner system control method and air conditioner
CN109737572A (en) * 2019-01-16 2019-05-10 奥克斯空调股份有限公司 A kind of expansion valve control method and air conditioner
CN113074452A (en) * 2021-03-19 2021-07-06 海信(山东)空调有限公司 Defrosting control method of air conditioner, air conditioner and storage medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104930773A (en) * 2015-07-06 2015-09-23 珠海格力电器股份有限公司 Control method and device of electronic expansion valve and air conditioner
CN109114757A (en) * 2018-10-08 2019-01-01 广东美的暖通设备有限公司 Air conditioner system control method
CN109114758A (en) * 2018-10-08 2019-01-01 广东美的暖通设备有限公司 Air conditioner system control method and air conditioner
CN109737572A (en) * 2019-01-16 2019-05-10 奥克斯空调股份有限公司 A kind of expansion valve control method and air conditioner
CN113074452A (en) * 2021-03-19 2021-07-06 海信(山东)空调有限公司 Defrosting control method of air conditioner, air conditioner and storage medium

Similar Documents

Publication Publication Date Title
RU2551708C1 (en) Method to control speed of variable-speed compressor
EP2047180A1 (en) Method for controlling start-up operation of air conditioner
CN110542237B (en) Air conditioner, operation control method and device thereof and computer readable storage medium
JP2005024152A (en) Method of controlling expansion valve of multi-air conditioner
JP2017044447A (en) Air conditioner
JP2000205630A (en) Control method for air conditioner
JP6338762B2 (en) Air conditioner
JP2004325030A (en) Control method of air conditioner
CN110873415B (en) Air conditioner and self-cleaning control method thereof
JP5071063B2 (en) Air conditioner
US11181308B2 (en) Air-conditioner that prevents degradation in heating capability during defrosting operation
JP3716593B2 (en) refrigerator
JP2011064412A (en) Refrigerator
JP2001147038A (en) Air conditioner
JP2000297970A (en) Controller for heat pump
JP2004225929A (en) Air conditioner and control method of air conditioner
CN111306732A (en) Control method of drainage water pump of water receiving disc of air conditioner and air conditioner
JP2004156844A (en) Air conditioner and its control method
JP2008116155A (en) Operation control method for air conditioner
JP2003050066A (en) Controller for air conditioner
JPH11257718A (en) Method of controlling air conditioner
JPH09138045A (en) Operation control device for refrigerator
JP2011106745A (en) Outdoor unit of air conditioner
JPH11132605A (en) Air conditioner
JP2000074504A (en) Method and device for controlling air conditioner