JP2004324890A - Sliding device and faucet valve - Google Patents

Sliding device and faucet valve Download PDF

Info

Publication number
JP2004324890A
JP2004324890A JP2004140456A JP2004140456A JP2004324890A JP 2004324890 A JP2004324890 A JP 2004324890A JP 2004140456 A JP2004140456 A JP 2004140456A JP 2004140456 A JP2004140456 A JP 2004140456A JP 2004324890 A JP2004324890 A JP 2004324890A
Authority
JP
Japan
Prior art keywords
sliding
peak
carbon film
hard carbon
amorphous hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004140456A
Other languages
Japanese (ja)
Other versions
JP3764742B2 (en
Inventor
Koichi Nagasaki
浩一 長崎
Jun Mihara
順 三原
Michihiko Koshida
充彦 越田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004140456A priority Critical patent/JP3764742B2/en
Publication of JP2004324890A publication Critical patent/JP2004324890A/en
Application granted granted Critical
Publication of JP3764742B2 publication Critical patent/JP3764742B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sliding device having stable sliding property with no irregular operating force by maintaining superior sliding property and wear resistance for a long period and using laser Raman spectroscopy for managing the crystal structure of an amorphous hard carbon film. <P>SOLUTION: The sliding device has a sliding member provided with the amorphous hard carbon film on the slide contact surface of at least one of two disc valve elements siding with each other. The amorphous hard carbon film has a Raman spectrum peak in a range of at least one of 1200-1400cm<SP>-1</SP>and 1500-1600cm<SP>-1</SP>in the laser Raman spectroscopy. The peak has a strength ratio to a flat portion being twice or more and the width of a 90% or more top portion of the peak having the maximum strength is 10cm<SP>-1</SP>or more. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はバルブ、メカニカルシール、スライダーなどに用いられる摺動装置、特に、水栓や湯水混合栓として使用されているフォーセットバルブに関するものである。   The present invention relates to a sliding device used for a valve, a mechanical seal, a slider, and the like, and more particularly, to a forced valve used as a faucet or a hot and cold water mixing faucet.

水栓や湯水混合栓等に用いられるディスクバルブは、2枚の円盤状の弁体を互いに摺接した状態で相対摺動させることによって、各弁体に形成された流体通路の開閉がなされる。例えば、水栓や湯水混合栓として使用されているフォーセットバルブは図2に示されるように、固定弁体30と可動弁体20を互いの摺接面21、31で接した状態にしておき、レバー40の操作で、可動弁体20を動かすことによって互いの弁体20、30に形成した流体通路22、32の開閉を行い、供給流体の流量調整をするようになっていた。   2. Description of the Related Art In a disk valve used for a water faucet, a hot water mixing faucet, or the like, a fluid passage formed in each valve body is opened and closed by sliding two disk-shaped valve bodies in a state of slidingly contacting each other. . For example, as shown in FIG. 2, a forced valve used as a faucet or a hot and cold water mixing faucet has a fixed valve body 30 and a movable valve body 20 which are in contact with each other at sliding contact surfaces 21 and 31. By operating the lever 40, the movable valve body 20 is moved to open and close the fluid passages 22, 32 formed in the valve bodies 20, 30 to adjust the flow rate of the supply fluid.

そして、上記可動弁体20及び固定弁体30は、摺動性やシール性を保つために高い寸法精度が要求される上、互いに絶えず摺り合わされるために、摩耗が激しく、また、常に流体にさらされるために腐食も激しいことから、近年、高精度に加工されることが可能であり、耐摩耗性や耐触性に優れたセラミックスにより形成されるようになってきた。   The movable valve body 20 and the fixed valve body 30 are required to have high dimensional accuracy in order to maintain slidability and sealability, and are constantly rubbed with each other. Because of the exposure, the corrosion is severe. Therefore, in recent years, it has been possible to process the workpiece with high precision, and it has come to be formed of ceramics excellent in wear resistance and touch resistance.

ところで、摺動性とシール性は相反するものであり、シール性を高めるために、摺接面を極めて平滑な面とし、これらの摺接面を持った一対の弁体同士を摺り合わせると、引っかかりや異音が発生し、さらには互いの弁体が張り付いて動かなくなるというリンキング(凝着)が生じることがあった。また、リンキングまでに至らなくても、操作回数を重ねるにつれ、次第にレバー操作力が上昇して行くことも知られていた。   By the way, the sliding property and the sealing property are contradictory, and in order to enhance the sealing property, the sliding surface is made extremely smooth, and when a pair of valve bodies having these sliding surfaces are rubbed together, Linking (adhesion) occurs in which catching or abnormal noise occurs, and furthermore, the valve bodies stick to each other and do not move. Also, it has been known that the lever operation force gradually increases as the number of operations increases, even without reaching linking.

そこで、このリンキングを防ぐために、様々な解決策が提案されている。例えば、弁体を三次元網目構造の多孔質セラミックスとし、この開気孔中に潤滑材として樹脂やオイル等を含浸させたものがある(特許文献1〜6参照)。   Therefore, various solutions have been proposed to prevent this linking. For example, there is a valve body made of a porous ceramic having a three-dimensional network structure, in which resin or oil or the like is impregnated as a lubricant in the open pores (see Patent Documents 1 to 6).

また、この様な液体潤滑材を用いたもの以外にも、固体潤滑材を使ったものとして、特許文献7に「摺動面にダイヤモンド状カーボン薄膜を形成したメカニカルシール」に係わる発明が、特許文献8に「アモルファスダイヤモンド薄膜を形成したセラミック製摺動部構造」に係る発明がそれぞれ開示されている。
特開昭61−206875号公報 特開昭61−244980号公報 特開昭62−4949号公報 特開昭62−37517号公報 特開昭62−37517号公報 特公平5−50475号公報 特開平1−261570号公報 特開平3−223190号公報
In addition to those using such a liquid lubricant, Patent Document 7 discloses an invention relating to a “mechanical seal in which a diamond-like carbon thin film is formed on a sliding surface” as a device using a solid lubricant. Reference 8 discloses an invention relating to "a ceramic sliding portion structure having an amorphous diamond thin film formed thereon".
JP-A-61-206875 JP-A-61-244980 JP-A-62-4949 JP-A-62-37517 JP-A-62-37517 Japanese Patent Publication No. 5-50475 JP-A-1-261570 JP-A-3-223190

特許文献1〜6に記載した三次元網目構造の多孔質セラミックスに液体潤滑材を含浸させた摺動部材では、その液体潤滑材としてエンジン油、スピンドル油、ダイナモ油、タービン油、フッ素系オイル、シリコーン系オイル等が採用されている。しかし、この摺動部材を水栓、湯水混合栓等に適用すると、上記の潤滑材が人体に取り込まれる可能性が高く、人体に対して害となる恐れがあるという問題点があった。また、このような摺動部材は製造が困難で、摺動面の硬度が低いという不都合もあった。 In the sliding member described in Patent Documents 1 to 6, in which a liquid lubricant is impregnated in porous ceramics having a three-dimensional network structure, engine oil, spindle oil, dynamo oil, turbine oil, fluorine-based oil, Silicone oil or the like is used. However, when this sliding member is applied to a faucet, a hot and cold water mixing faucet, etc., there is a high possibility that the above-mentioned lubricant is taken into a human body, and there is a problem that it may be harmful to the human body. Further, such a sliding member is difficult to manufacture, and has a disadvantage that the hardness of the sliding surface is low.

一方、特許文献8等にて開示されているアモルファスダイヤモンドや合成疑似ダイヤモンドなど、いわゆる非晶質硬質炭素膜をコーティングした摺動部材では、確かに操作力の改善が図られ、軽快な操作力を得ることができる場合もあるが、その操作力にはバラツキがあり、長期使用中にしだいに操作力が上昇していくなど安定性に欠けるものであった。   On the other hand, sliding members coated with a so-called amorphous hard carbon film, such as amorphous diamond and synthetic pseudo-diamond disclosed in Patent Document 8 and the like, certainly improve the operating force and provide a light operating force. In some cases, it could be obtained, but the operating force varied, and the stability was lacking such that the operating force gradually increased during long-term use.

これは、上記非晶質硬質炭素膜が主として非晶質な構造から構成されていることは明らかでも、それ以上の詳細な内部構造についての管理がされていなかったためである。すなわち、摺動性に最も影響を及ぼす非晶質硬質炭素膜の内部構造の評価が未確立であったために、様々な構造の非晶質硬質炭素膜を持つ摺動部材が混在したまま製品として使われ、この結果が当然ながら摺動性のバラツキとなって表れていたのである。   This is because although it is clear that the amorphous hard carbon film is mainly composed of an amorphous structure, no more detailed internal structure is managed. In other words, since the evaluation of the internal structure of the amorphous hard carbon film, which has the greatest effect on the slidability, has not been established, a sliding member with an amorphous hard carbon film of various structures has been mixed with the product. Used, and this result naturally appeared as a variation in the slidability.

以上のような問題に鑑みて、本発明は互いに摺動する2つの摺動部材の少なくとも一方の摺接面に非晶質硬質炭素膜を備えてなる摺動装置において、上記非晶質硬質炭素膜は、レーザーラマン分光法によるラマンスペクトルのピークが1200〜1400cm−1と1500〜1600cm−1の少なくとも一方の範囲にあり、上記ピークは平坦部分に対する強度比が2倍以上であり、かつ上記ピークにおける最大強度の90%以上の頂部の幅が10cm−1以上であることを特徴とする摺動装置を提供する。 In view of the above problems, the present invention relates to a sliding device comprising an amorphous hard carbon film on at least one of the sliding surfaces of two sliding members that slide with each other. film has at least one of the range of the peak of the Raman spectrum 1200~1400Cm -1 and 1500~1600Cm -1 by laser Raman spectroscopy, the intensity ratio the peak for the flat portion is at least twice, and the peak A width of a top portion of 90% or more of the maximum strength of the sliding device is 10 cm -1 or more.

この場合、上記摺動部材を弁体で形成するとともに、該弁体の表面の平坦度を3μm以下とするか、上記弁体表面の中心線平均粗さ(Ra)が0.5μm以下とするか、上記非晶質硬質炭素膜の膜厚が0.1〜2.0μmとする摺動装置が好ましい。特に、上記弁体はアルミナ、ジルコニア、窒化珪素、炭化珪素、窒化アルミニウムを主成分とするセラミックスが用いられる摺動装置が好ましい。   In this case, the sliding member is formed of a valve body, and the flatness of the surface of the valve body is 3 μm or less, or the center line average roughness (Ra) of the valve body surface is 0.5 μm or less. Alternatively, a sliding device in which the thickness of the amorphous hard carbon film is 0.1 to 2.0 μm is preferable. In particular, a sliding device in which the valve body is made of a ceramic mainly containing alumina, zirconia, silicon nitride, silicon carbide, and aluminum nitride is preferable.

また、互いに摺動する2枚の円板状の弁体の少なくとも一方の摺接面に非晶質硬質炭素膜を備えてなるフォーセットバルブにおいて、上記非晶質硬質炭素膜は、レーザーラマン分光法によるラマンスペクトルのピークが1200〜1400cm−1と1500〜1600cm−1の少なくとも一方の範囲にあり、上記ピークは平坦部分に対する強度比が2倍以上であり、かつ上記ピークにおける最大強度の90%以上の頂部の幅が10cm−1以上であることを特徴とするフォーセットバルブを提供する。 Further, in the forset valve having at least one sliding contact surface of two disc-shaped valve bodies sliding with each other, the amorphous hard carbon film is formed by laser Raman spectroscopy. located at least one of the range of the peak of the Raman spectrum 1200~1400Cm -1 and 1500~1600Cm -1 by law, the peak is at intensity ratio of 2 times or more with respect to the flat portion, and 90% of the maximum intensity in the peak A forset valve is provided, wherein the width of the top is 10 cm -1 or more.

以上のように、本発明によれば、長期間にわたって優れた摺動性と耐摩耗性を維持することの可能な摺動装置を得ることができる。   As described above, according to the present invention, a sliding device capable of maintaining excellent slidability and wear resistance over a long period of time can be obtained.

また、本発明によれば、レーザーラマン分光法によって非晶質硬質炭素膜の結晶構造を管理することで、長期に使用しても優れた摺動特性を維持することができるので操作力のバラツキがなく安定した摺動装置を得ることができる。   Further, according to the present invention, by controlling the crystal structure of the amorphous hard carbon film by laser Raman spectroscopy, it is possible to maintain excellent sliding characteristics even when used for a long period of time. And a stable sliding device can be obtained.

以下本発明の実施例を図によって説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の摺動部材の一例であるフォーセットバルブを構成する弁体のみを示している。可動弁体20はセラミックスからなる円盤状体で流体通路22を有し、一方の面を摺接面21としてある。また、固定弁体30はセラミックスからなる円盤状体で、流体通路32を有し、一方の面に非晶質硬質炭素膜34を形成して摺接面31としてある。   FIG. 1 shows only a valve element that constitutes a fawcet valve which is an example of the sliding member of the present invention. The movable valve body 20 is a disk-shaped body made of ceramics and has a fluid passage 22, and one surface is a sliding contact surface 21. The fixed valve body 30 is a disc-shaped body made of ceramics, has a fluid passage 32, and has an amorphous hard carbon film 34 formed on one surface as a sliding contact surface 31.

そして、これら固定弁体30と可動弁体20が互いの摺接面21、31で接した状態としておいて、可動弁体20を動かすことによって、互いの弁体に備えた流体通路22、32の開閉を行い、供給流体の開閉、調整などの制御をするようになっている。   With the fixed valve element 30 and the movable valve element 20 in contact with each other at the sliding surfaces 21 and 31, by moving the movable valve element 20, the fluid passages 22 and 32 provided in the respective valve elements are moved. And controls the opening and closing and adjustment of the supply fluid.

この時、固定弁体30の摺接面31が非晶質硬質炭素膜34から成るため、摺動性、耐摩耗性が高く、レバーによる可動弁体20の操作力を低くすることができる。   At this time, since the sliding contact surface 31 of the fixed valve body 30 is made of the amorphous hard carbon film 34, the slidability and wear resistance are high, and the operating force of the movable valve body 20 by the lever can be reduced.

また、上記固定弁体30や可動弁体20を形成する材質としては、ヤング率が21000〜45000kg/mm、ビッカース硬度(Hv)が1000kg/mm以上であるような極めて硬く変形しにくいセラミックスを用い、具体的にはアルミナ、ジルコニア、窒化珪素、炭化珪素、窒化アルミニウムを主成分とするセラミックスが最適である。 The material forming the fixed valve body 30 and the movable valve body 20 is a ceramic that is extremely hard and hard to deform, such as having a Young's modulus of 21000 to 45000 kg / mm 2 and a Vickers hardness (Hv) of 1000 kg / mm 2 or more. Specifically, ceramics mainly composed of alumina, zirconia, silicon nitride, silicon carbide, and aluminum nitride are most suitable.

これらの原料に対しアルミナであればSiO、MgO等、窒化珪素に対しては周期律表2a、3a族元素の酸化物又は窒化物、炭化珪素に対してはC、B、Al等、ジルコニアに対してはY、CaO、MgO、CeO等を添加して焼成すればよく、実質的に3%以上の収縮を伴うことによって強固で堅牢かつ靱性および耐摩耗性に優れたセラミックスを得ることができる。そして、固定弁体30側は、得られたセラミックスに対して摺接面を研磨したのち、非晶質硬質炭素膜34をコーティングすれば良い。 For these raw materials, alumina or SiO 2 or MgO for silicon nitride, oxides or nitrides of elements of the periodic table 2a or 3a for silicon nitride, and C, B, Al 2 O 3 for silicon carbide. For zirconia, Y 2 O 3 , CaO, MgO, CeO 2, etc. may be added and fired, and with substantial shrinkage of 3% or more, it becomes strong, robust, tough and wear-resistant. Excellent ceramics can be obtained. Then, the fixed valve body 30 may be polished on the sliding surface with the obtained ceramic, and then coated with the amorphous hard carbon film 34.

ここで、上記非晶質硬質炭素膜(別名:合成疑似ダイヤモンド薄膜、ダイヤモンドライクカーボン、DLC、I−カーボン)とは、PVD法やCVD法などの薄膜形成手段によって得られる炭素膜のことをいい、その極めて低い摩擦係数により良好な摺動性が得られるものである。また、この非晶質硬質炭素膜はビッカース硬度(Hv)が3000〜5000kg/mm であるなど、非常に高い硬度もあわせ持っている。 Here, the amorphous hard carbon film (alias: synthetic pseudo diamond thin film, diamond-like carbon, DLC, I-carbon) refers to a carbon film obtained by a thin film forming means such as a PVD method or a CVD method. Good sliding properties can be obtained due to its extremely low coefficient of friction. The amorphous hard carbon film also has a very high hardness such as a Vickers hardness (Hv) of 3000 to 5000 kg / mm 2 .

ところで、この非晶質硬質炭素膜は元素で言えばダイヤモンド等と共に炭素(C)として包括され、比重で言えば黒鉛や無定形炭素に近く、硬度など物性的にはダイヤモンドに近似しているという特徴を持つ。ゆえに、元素分析や比重、硬度、絶縁性、屈折率などの測定による分類は困難とされている。   By the way, this amorphous hard carbon film is included as carbon (C) together with diamond and the like in terms of element, is close to graphite and amorphous carbon in terms of specific gravity, and is close to diamond in physical properties such as hardness. Has features. Therefore, classification by elemental analysis or measurement of specific gravity, hardness, insulating property, refractive index, and the like is considered to be difficult.

そして、CVD法やPVD法などの気相合成法によれば、上記非晶質硬質炭素膜はもちろんのこと、無定形炭素やグラファイトなどの各種結晶質カーボン、さらにはダイヤモンドさえまでもが形成可能なために、得られた膜の特定が困難で、品質管理をしにくいといった欠点があった。   According to the vapor phase synthesis method such as the CVD method and the PVD method, not only the amorphous hard carbon film, but also various crystalline carbons such as amorphous carbon and graphite, and even diamond can be formed. For this reason, there are drawbacks in that it is difficult to specify the obtained film and quality control is difficult.

したがって、このような炭素膜の識別を行うためには、炭素膜の内部構造に敏感に反応するような分析方法が必要であり、本発明ではレーザー分光分析法を用いることにした。つまり、レーザーラマン分光分析法とはラマンスペクトルを測定することによって、材料の構造や結晶性等を詳細に分析できる手法であり、そのため好ましい特性を持った非晶質硬質炭素膜を特定することができるのである。   Therefore, in order to identify such a carbon film, an analysis method that is sensitive to the internal structure of the carbon film is required. In the present invention, laser spectroscopy is used. In other words, laser Raman spectroscopy is a method that can analyze the structure, crystallinity, etc. of a material in detail by measuring the Raman spectrum, and therefore, it is necessary to identify an amorphous hard carbon film having favorable characteristics. You can.

なお、上記ラマンスペクトルとは次に示すようなラマン散乱光を観測したものである。即ち、試料にレーザー光を照射すると、光の電場のために原子や電子の電子分布がひずみ、原子や分子の分極が生じる。この分極が試料中に存在する格子振動等によって変調されると、電子分極はレーザー光と同じ振動数の光(レーリー光)の他に、異なる振動数をもつ非弾性散乱光を持つようになり、これをラマン散乱光というのである。   The Raman spectrum is obtained by observing the following Raman scattered light. That is, when a sample is irradiated with laser light, the electron distribution of atoms and electrons is distorted due to the electric field of light, and the atoms and molecules are polarized. When this polarization is modulated by lattice vibrations and the like existing in the sample, the electron polarization has inelastic scattered light having a different frequency in addition to light having the same frequency as laser light (Rayleigh light). This is called Raman scattered light.

そして、本発明者等が種々実験を行った結果、上記非晶質硬質炭素膜をレーザーラマン分光法により分析した時のラマンスペクトルのピークが、以下に示す条件を満たすようにすれば良いことを見出したのである。   As a result of various experiments performed by the present inventors, it was found that the peak of the Raman spectrum when the amorphous hard carbon film was analyzed by laser Raman spectroscopy should satisfy the following conditions. I found it.

即ち、本発明の非晶質硬質炭素膜のラマンスペクトルの好適な例のチャート図を図3に示すように、ピークは1200〜1400cm−1と1500〜1600cm−1の少なくとも一方の範囲に存在し、最も高い強度のピークにおいて、ピーク強度IA はピーク以外の平坦部の強度IB に対する強度比IA /IB が2倍以上となっており、かつ上記ピークにおける最大強度IA の90%以上の範囲を頂部とした時、この頂部の幅dが10cm−1となるようなブロードなピークとなっていれば良いのである。そして、このようなブロードなピーク形状を有する非晶質硬質炭素膜は、摺動時に膜が剥離することなく、しかも極めて滑らかな摺動性を得られるのである。 That is, the chart of a preferred embodiment of a Raman spectrum of the amorphous hard carbon film of the present invention as shown in FIG. 3, the peak is present in at least one of the range of 1200~1400Cm -1 and 1500~1600Cm -1 In the peak having the highest intensity, the peak intensity IA has an intensity ratio IA / IB with respect to the intensity IB of the flat portion other than the peak that is twice or more, and the peak intensity IA is 90% or more of the maximum intensity IA at the peak. It is sufficient that the peak d has a broad peak such that the width d of the top is 10 cm -1 . The amorphous hard carbon film having such a broad peak shape can obtain extremely smooth slidability without peeling of the film during sliding.

ちなみに、各種炭素材料にレーザーラマン分光分析を行った時のラマンスペクトルを図4に示す。図4(a)に示すようにダイヤモンドでは1331cm−1に極めてシャープなピークが観測され、また完全なグラファイト構造(無限の平面リング構造)をしているHOPG(Highly Oriented Pyrolytic Graphite)では図4(b)のように1581cm−1付近に単一のシャープなピークを示し、グラファイト構造が乱れて結晶子の大きさが200Å程度となった熱分解炭素(PG:Pyrolytic Graphite)では図4(c)のように1355cm−1にもピークがあらわれる。 FIG. 4 shows Raman spectra obtained by performing laser Raman spectroscopy on various carbon materials. As shown in FIG. 4 (a), an extremely sharp peak is observed at 1331 cm −1 in diamond, and FIG. 4 () is obtained in HOPG (Highly Oriented Pyrolytic Graphite) having a complete graphite structure (infinite planar ring structure). As shown in FIG. 4B, pyrolytic carbon (PG: Pyrolytic Graphite) having a single sharp peak near 1581 cm -1 and having a crystallite size of about 200 ° due to disordered graphite structure is shown in FIG. , A peak also appears at 1355 cm −1 .

これらの図4に示すピークは、いずれも最大強度の90%以上である頂部の幅が10cm−1よりも小さいような極めてシャープなピークである点で、上記本発明の条件を満たしていない。そのため、これらのHOPGやPGなどのグラファイト、あるいはダイヤモンドのラマンスペクトルを示す炭素膜をセラミックス製の固定弁体30に形成し、セラミックス製の可動弁体20と組み合わせて摺動させると、膜が剥離したり、短期間で操作力がアップしたりしやすく、必要な摺動性を得ることが困難となる。 Each of the peaks shown in FIG. 4 does not satisfy the conditions of the present invention in that they are extremely sharp peaks whose peak width, which is 90% or more of the maximum intensity, is smaller than 10 cm −1 . Therefore, when a carbon film exhibiting the Raman spectrum of graphite such as HOPG or PG or diamond is formed on the fixed valve body 30 made of ceramics and combined with the movable valve body 20 made of ceramics, the film is peeled off. Or the operating force is easily increased in a short period of time, and it becomes difficult to obtain the required slidability.

なお、本発明の摺動部材において、非晶質硬質炭素膜を形成する母材表面の平坦度は3μm以下、好ましくは1μm以下とし、また表面粗さ(中心栓平均粗さ:Ra)は0.5μm以下が望ましい。これは、平坦度が3μmを超えるか又は表面粗さ(Ra)が0.5μmを超えるとリークの恐れが生じるためである。また、非晶質硬質炭素膜の膜厚Tは0.1〜2.0μmの範囲が望ましい。これは、膜厚Tが0.1μmより小さいと長期的な摺動によって膜が摩滅してなくなってしまう恐れがあり、一方膜厚Tが2.0μmより大きいと膨大な成膜時間を要し、実用的でなくなるためである。   In the sliding member of the present invention, the flatness of the surface of the base material on which the amorphous hard carbon film is formed is 3 μm or less, preferably 1 μm or less, and the surface roughness (center plug average roughness: Ra) is 0 μm. 0.5 μm or less is desirable. This is because when the flatness exceeds 3 μm or when the surface roughness (Ra) exceeds 0.5 μm, there is a risk of leakage. The thickness T of the amorphous hard carbon film is preferably in the range of 0.1 to 2.0 μm. This is because if the film thickness T is smaller than 0.1 μm, the film may be worn away due to long-term sliding, and if the film thickness T is larger than 2.0 μm, an enormous film formation time is required. This is because it is not practical.

実際に、非晶質硬質炭素膜の膜厚Tを種々に変化させた時の、製作性と10万回摺動試験を行った後の耐久性について評価したところ、表1に示すように膜厚Tが0.1〜2.0μmの範囲内であれば、製作性、耐久性の両方を満足できることがわかる。

Figure 2004324890
Actually, when the film thickness T of the amorphous hard carbon film was variously changed, the manufacturability and the durability after the 100,000 times sliding test were evaluated. It can be seen that when the thickness T is in the range of 0.1 to 2.0 μm, both the manufacturability and the durability can be satisfied.
Figure 2004324890

以上の実施例では、ディスクバルブを構成する固定弁体30に非晶質硬質炭素膜34を形成した摺動部材を説明してきたが、可動弁体20側に非晶質硬質炭素膜を形成して、固定弁体30側はセラミックス単体で形成しても良い。あるいは可動弁体20と固定弁体30の両方に非晶質硬質炭素膜を形成すればさらに好適である。   In the above embodiment, the sliding member in which the amorphous hard carbon film 34 is formed on the fixed valve body 30 constituting the disk valve has been described, but the amorphous hard carbon film is formed on the movable valve body 20 side. Thus, the fixed valve body 30 side may be formed of ceramic alone. Alternatively, it is more preferable to form an amorphous hard carbon film on both the movable valve body 20 and the fixed valve body 30.

また、非晶質硬質炭素膜34と摺動する相手材としては、上記実施例ではセラミックスと摺動する例を示したが、金属材や樹脂材等を相手材としても好適な摺動性を示すことができる。   Further, as the mating material that slides with the amorphous hard carbon film 34, the example in which sliding is performed with ceramics is described in the above embodiment, but a metal material, a resin material, or the like has a suitable sliding property as a mating material. Can be shown.

さらに、上記実施例では平面同士を摺動させるディスクバルブの例を示したが、この他に摺動面が円筒状や球面状等となったものでも本発明の摺動装置を適用することもできる。   Further, in the above embodiment, the example of the disk valve that slides between the flat surfaces is shown. However, the sliding device of the present invention may be applied to a sliding valve having a cylindrical or spherical sliding surface. it can.

したがって、本発明の摺動装置は、ディスクバルブに限らず、ボールバルブやその他の各種弁部材、あるいはメカニカルシール、軸受、スライダーなど様々な用途に用いることができる。   Therefore, the sliding device of the present invention can be used not only for disk valves but also for various applications such as ball valves and other various valve members, mechanical seals, bearings and sliders.

次に、本発明に係る摺動装置を図1のフォーセットバルブに例をとり、実験した結果を説明する。   Next, the result of an experiment will be described using the sliding device according to the present invention as an example of the forset valve shown in FIG.

フォーセットバルブを構成する固定弁体30は、純度96%のアルミナ粉末を出発原料とし、これに0.5重量%のSiOと0.2重量%のMgOとCaOを添加し、さらにバインダーを加え、24時間攪拌後、スプレードライし、まず平均粒子径3.7μmのアルミナ造粒体を得た。この造粒体を金型プレスによって円盤形状に成形した後、酸化雰囲気中で約1600℃の焼成温度にて焼成し、研削加工と研磨加工を施して、表面に非晶質硬質炭素膜34のコーティングを施すことにより、直径5mmの流体通路32を有し、外径32mm、厚み5mm、平坦度1μm以下の固定弁体30を得た。 The fixed valve body 30 constituting the fawset valve is made of alumina powder having a purity of 96% as a starting material, to which 0.5% by weight of SiO 2 , 0.2% by weight of MgO and CaO are added, and a binder is further added. After stirring for 24 hours, the mixture was spray-dried to obtain an alumina granule having an average particle diameter of 3.7 μm. After the granules are formed into a disk shape by a die press, the granules are fired at a firing temperature of about 1600 ° C. in an oxidizing atmosphere, and are subjected to grinding and polishing to form an amorphous hard carbon film 34 on the surface. By coating, a fixed valve body 30 having a fluid passage 32 having a diameter of 5 mm, an outer diameter of 32 mm, a thickness of 5 mm, and a flatness of 1 μm or less was obtained.

なお、固定弁体30側の非晶質硬質炭素膜34の形成については次のような方法で行った。すなわち、まず10Pa程に減圧した真空チャンバー内のタングステンヒータを備えた基板に固定弁体30を取り付け、メタン(CH)ガスと水素(H)ガスを導入しながら、チャンバー内に組まれた電極間にマイクロ波(周波数2.45GHz)を印加する。すると、メタンガスはプラズマ分解し、固定弁体30がセットされている基板上に堆積し、炭素(C)からなる膜が得られるのである。 The formation of the amorphous hard carbon film 34 on the fixed valve body 30 side was performed by the following method. That is, first, the fixed valve body 30 was attached to a substrate provided with a tungsten heater in a vacuum chamber reduced in pressure to about 10 Pa, and assembled in the chamber while introducing methane (CH 4 ) gas and hydrogen (H 2 ) gas. A microwave (frequency 2.45 GHz) is applied between the electrodes. Then, the methane gas is plasma-decomposed and deposited on the substrate on which the fixed valve body 30 is set, so that a film made of carbon (C) is obtained.

このようなマイクロ波プラズマCVD法によって、固定弁体30の表面には炭素成分の膜を得ることができるが、ここでタングステンヒータによって加熱する基板の温度を常温〜800℃の間で変化させたり、ガスの流量Qを1〜30cc/分の間で変化させたり、あるいは真空度Pを0.01〜6000Paの間で変化させる等、成膜条件を広範囲に変化させることによって、様々な炭素構造をとる膜を形成した。   By such a microwave plasma CVD method, a film of a carbon component can be obtained on the surface of the fixed valve body 30. Here, the temperature of the substrate heated by the tungsten heater is changed between room temperature and 800 ° C. By changing the film forming conditions over a wide range, such as changing the gas flow rate Q between 1 and 30 cc / min, or changing the degree of vacuum P between 0.01 and 6000 Pa, various carbon structures can be obtained. Was formed.

そして、このようにして得られた炭素膜に対してレーザーラマン分光分析を行ったところ、図5〜8に示すように、それぞれ固有のラマンスペクトルを持つNo.1〜11の11種類の膜が得られた。   Then, when the laser Raman spectroscopy analysis was performed on the carbon film thus obtained, as shown in FIGS. Eleven types of films 1 to 11 were obtained.

なお、このときのレーザーラマン分光分析装置の測定条件は、レーザー波長488nm、中心波数1400cm−1、露光時間0.5秒、積算時間100回としたが、この条件以外でも1200〜1600cm−1付近のラマンスペクトルが精度良く測定できればかまわない。 The measurement conditions of the laser Raman spectrometer at this time were a laser wavelength of 488 nm, a center wave number of 1400 cm −1 , an exposure time of 0.5 seconds, and an integration time of 100 times, but other than these conditions, around 1200 to 1600 cm −1 It does not matter if the Raman spectrum can be measured with high accuracy.

一方、これらの炭素膜をその他の方法で分析したところ、X線マイクロアナライザーを使った元素分析ではいずれも炭素(C)しか検出されず、全ての膜が炭素成分で成り立っているという以上何もつかめなかった。また、同様に比重、電気抵抗、硬度の測定装置、さらにはX線回折や透過型電子顕微鏡を用いても、上記のようにラマンスペクトルで分類された11種類の炭素膜を明確に識別することは不可能であった。したがって、レーザーラマン分光法を用いることにより、各種炭素膜をより厳密に分析できることがわかった。   On the other hand, when these carbon films were analyzed by other methods, elemental analysis using an X-ray microanalyzer showed that only carbon (C) was detected in any case, and that all films consisted of carbon components. I couldn't get it. Similarly, even using a specific gravity, electric resistance, hardness measuring device, X-ray diffraction or transmission electron microscope, it is possible to clearly identify the 11 types of carbon films classified by Raman spectrum as described above. Was impossible. Therefore, it was found that various types of carbon films can be more strictly analyzed by using the laser Raman spectroscopy.

なお、図5〜8に示すレーザーラマン分光分析で得られた11種類のラマンスペクトルにおいて、No.1の1331cm−1にシャープなピークが観測されるものはダイヤモンドであり、No.2の1581cm−1付近に単一のシャープなピークを示すものは完全なグラファイト構造(無限の平面リング構造)をしているHOPG(Highly Oriented Pyrolytic Graphite)であり、No.3の1581と1355cm−1にシャープなピークを示すものは熱分解炭素(PG:Pyrolytic Graphite)であることは知られているが、その他の膜構造解析については現在まで明解な見解は得られていない。 In the 11 types of Raman spectra obtained by laser Raman spectroscopy shown in FIGS. No. 1 in which a sharp peak is observed at 1331 cm −1 is diamond. No. 2 shows a single sharp peak near 1581 cm −1, which is HOPG (Highly Oriented Pyrolytic Graphite) having a complete graphite structure (infinite planar ring structure). It is known that those exhibiting sharp peaks at 1581 and 1355 cm -1 of No. 3 are pyrolytic carbon (PG), but a clear view has been obtained to date on other film structure analyses. Absent.

しかし、材質名は特定できないにしても、レーザーラマン分光分析法を用いれば炭素膜を非破壊、非接触で、その場で直ちに測定可能なうえ、高分解能といった特長を持っている。そのため、レーザーラマン分光分析による製品評価は、摺動性など製品特性と相関が得られれば、理想的な品質管理体制を確立でき、品質維持には欠かせない評価方法となり得ることがわかる。   However, even if the material name cannot be specified, the carbon film is non-destructive, non-contact, can be measured immediately on the spot, and has high resolution, if laser Raman spectroscopy is used. Therefore, it can be seen that the product evaluation by laser Raman spectroscopy can be an indispensable evaluation method for quality maintenance if a correlation with the product characteristics such as slidability is obtained and an ideal quality control system can be established.

一方、可動弁体20としては、固定弁体30と同じアルミナセラミックス単体で構成し、直径5mmの流体通路22を有し、外径25mm、厚み7mm、摺接面21の平坦度1μm以下とした。   On the other hand, the movable valve body 20 is composed of the same alumina ceramic alone as the fixed valve body 30, has a fluid passage 22 having a diameter of 5 mm, an outer diameter of 25 mm, a thickness of 7 mm, and a flatness of the sliding contact surface 21 of 1 μm or less. .

そして、図2に示すように、上記可動弁体20およびNo.1〜11の各種炭素膜を備えた固定弁体30を互いの摺接面21、31が摺動するようにケーシングによって軸力30kgfで押さえつけながら給水栓にセットし、80℃の温水を1kg/cmの圧力で注入し、レバー40を操作することにより出湯量を制御可能なフォーセットバルブを製作した。 Then, as shown in FIG. The fixed valve body 30 provided with the various carbon films 1 to 11 is set in the water faucet while being pressed by the casing with an axial force of 30 kgf so that the sliding surfaces 21 and 31 slide with each other. Injection was performed at a pressure of cm 2, and a forset valve capable of controlling the amount of hot water by operating the lever 40 was manufactured.

このようなフォーセットバルブに対し、可動弁体20をレバー40によって摺動させる試験を20万回行い、その後、可動弁体20を摺動させるときに必要なレバー40の押し付け力をプッシュプルゲージで測定し、操作力とした。   A test in which the movable valve body 20 is slid by the lever 40 is performed 200,000 times with respect to such a forset valve, and thereafter, the pressing force of the lever 40 required for sliding the movable valve body 20 is determined by a push-pull gauge. And the operating force.

結果は表2に示す通りである。この結果より、ダイヤモンド、HOPG、PGからなるNo.1〜3の炭素膜を備えたものでは、ピークの最大強度の90%以上の範囲である頂部の幅が10cm−1未満とシャープなピークであるため、滑らかな操作力の基準である0.6kg以下の摺動性を20万回以上の長期にわたって満たすことができなかった。 The results are as shown in Table 2. From this result, it was found that No. 1 consisting of diamond, HOPG and PG In the case of the one provided with 1 to 3 carbon films, the peak width, which is a range of 90% or more of the maximum intensity of the peak, is a sharp peak of less than 10 cm −1, which is a standard of smooth operating force. The slidability of 6 kg or less could not be satisfied for a long time of 200,000 times or more.

またNo.4、5の炭素膜はピークの位置が本発明の範囲内になく、しかもシャープなピークであり、さらにNo.6〜8の炭素膜は平坦部に対するピークの最大強度の比が2倍未満であることから、いずれも0.6kg以下の摺動性を20万回以上の長期にわたって満たすことができなかった。   No. The peak positions of the carbon films of Nos. 4 and 5 were not within the range of the present invention, and were sharp peaks. Since the ratio of the maximum intensity of the peak to the flat portion of the carbon films Nos. 6 to 8 was less than twice, the slidability of 0.6 kg or less could not be satisfied for 200,000 times or more for a long time.

これらに対し、本発明実施例であるNo.9〜11の炭素膜は、ラマンスペクトルのピークが1200〜1400cm−1と1500〜1600cm−1の少なくとも一方の範囲にあり、ピークの平坦部分に対する強度比が2倍以上であり、かつピークの最大強度の90%以上の範囲である頂部の幅が10cm−1以上のブロードなピーク形状を有していることから、0.6kg以下の摺動性を20万回以上の長期にわたって満たすことができた。

Figure 2004324890
On the other hand, No. 1 of the embodiment of the present invention. Carbon film of 9-11, the peak of the Raman spectrum is in at least one of the range of 1200~1400Cm -1 and 1500~1600Cm -1, and the intensity ratio flat portion of the peaks 2 times or more, and the maximum peak Since the peak width, which is a range of 90% or more of the strength, has a broad peak shape of 10 cm -1 or more, the slidability of 0.6 kg or less can be satisfied for 200,000 times or more for a long period of time. Was.
Figure 2004324890

本発明の摺動部材を用いたフォーセットバルブの弁体のみを示しており、(a)は斜視図、(b)は(a)中のX−X線断面図である。3A and 3B show only a valve element of a force-set valve using the sliding member of the present invention, wherein FIG. 4A is a perspective view, and FIG. 4B is a cross-sectional view taken along line XX in FIG. 一般的なフォーセットバルブを示す概略斜視図である。It is a schematic perspective view which shows a general forceet valve. 本発明の摺動部材における非晶質硬質炭素膜のラマンスペクトルを示すチャート図である。FIG. 4 is a chart showing a Raman spectrum of an amorphous hard carbon film in the sliding member of the present invention. 比較例である炭素膜のラマンスペクトルを示すチャート図である。FIG. 4 is a chart showing a Raman spectrum of a carbon film as a comparative example. 各種炭素膜のラマンスペクトルを示すチャート図である。FIG. 3 is a chart showing Raman spectra of various carbon films. 各種炭素膜のラマンスペクトルを示すチャート図である。FIG. 3 is a chart showing Raman spectra of various carbon films. 各種炭素膜のラマンスペクトルを示すチャート図である。FIG. 3 is a chart showing Raman spectra of various carbon films. 各種炭素膜のラマンスペクトルを示すチャート図である。FIG. 3 is a chart showing Raman spectra of various carbon films.

符号の説明Explanation of reference numerals

20:可動弁体
30:固定弁体
21、31:摺接面
22、32:流体通路
34:非晶質硬質炭素膜
20: movable valve element 30: fixed valve element 21, 31: sliding contact surface 22, 32: fluid passage 34: amorphous hard carbon film

Claims (6)

互いに摺動する2つの摺動部材の少なくとも一方の摺接面に非晶質硬質炭素膜を備えてなる摺動装置において、上記非晶質硬質炭素膜は、レーザーラマン分光法によるラマンスペクトルのピークが1200〜1400cm−1と1500〜1600cm−1の少なくとも一方の範囲にあり、上記ピークは平坦部分に対する強度比が2倍以上であり、かつ上記ピークにおける最大強度の90%以上の頂部の幅が10cm−1以上であることを特徴とする摺動装置。 In a sliding device comprising an amorphous hard carbon film on at least one sliding contact surface of two sliding members sliding with each other, the amorphous hard carbon film has a peak of Raman spectrum by laser Raman spectroscopy. There is in at least one of the range of 1200~1400Cm -1 and 1500~1600Cm -1, the peak is at intensity ratio of 2 times or more with respect to the flat portion, and the width of more than 90% of the top of the maximum intensity in the peak A sliding device characterized by being 10 cm -1 or more. 上記摺動部材を弁体で形成するとともに、該弁体の表面の平坦度を3μm以下としたことを特徴とする請求項1に記載の摺動装置。 The sliding device according to claim 1, wherein the sliding member is formed of a valve body, and a flatness of a surface of the valve body is set to 3 µm or less. 上記弁体の表面の中心線平均粗さ(Ra)が0.5μm以下であることを特徴とする請求項2に記載の摺動装置。 The sliding device according to claim 2, wherein the center line average roughness (Ra) of the surface of the valve body is 0.5 m or less. 上記非晶質硬質炭素膜の膜厚が0.1〜2.0μmであることを特徴とする請求項2又は3に記載の摺動装置。 4. The sliding device according to claim 2, wherein the thickness of the amorphous hard carbon film is 0.1 to 2.0 [mu] m. 上記弁体はアルミナ、ジルコニア、窒化珪素、炭化珪素、窒化アルミニウムを主成分とするセラミックスが用いられることを特徴とする請求項1〜4の何れかに記載の摺動装置。 The sliding device according to any one of claims 1 to 4, wherein the valve body is made of a ceramic mainly containing alumina, zirconia, silicon nitride, silicon carbide, and aluminum nitride. 互いに摺動する2枚の円板状の弁体の少なくとも一方の摺接面に非晶質硬質炭素膜を備えてなるフォーセットバルブにおいて、上記非晶質硬質炭素膜は、レーザーラマン分光法によるラマンスペクトルのピークが1200〜1400cm−1と1500〜1600cm−1の少なくとも一方の範囲にあり、上記ピークは平坦部分に対する強度比が2倍以上であり、かつ上記ピークにおける最大強度の90%以上の頂部の幅が10cm−1以上であることを特徴とするフォーセットバルブ。 In a foset valve comprising an amorphous hard carbon film on at least one sliding contact surface of two disc-shaped valve bodies sliding with each other, the amorphous hard carbon film is formed by laser Raman spectroscopy. located at least one of the range of the Raman spectrum of the peak 1200~1400Cm -1 and 1500~1600Cm -1, the peak is at intensity ratio of 2 times or more with respect to the flat portion, and more than 90% of the maximum intensity in the peak A forset valve, wherein the width of the top is 10 cm -1 or more.
JP2004140456A 2004-05-10 2004-05-10 Sliding device and faucet valve Expired - Lifetime JP3764742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004140456A JP3764742B2 (en) 2004-05-10 2004-05-10 Sliding device and faucet valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004140456A JP3764742B2 (en) 2004-05-10 2004-05-10 Sliding device and faucet valve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP32645194A Division JP3612098B2 (en) 1994-12-27 1994-12-27 Disc valve

Publications (2)

Publication Number Publication Date
JP2004324890A true JP2004324890A (en) 2004-11-18
JP3764742B2 JP3764742B2 (en) 2006-04-12

Family

ID=33509249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004140456A Expired - Lifetime JP3764742B2 (en) 2004-05-10 2004-05-10 Sliding device and faucet valve

Country Status (1)

Country Link
JP (1) JP3764742B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226299A (en) * 2005-02-15 2006-08-31 Senju Metal Ind Co Ltd Sliding material and method for manufacturing the same
JP2014507646A (en) * 2011-01-12 2014-03-27 ディオネクス ゾフトロン ゲーエムベーハー High pressure switching valve for high performance liquid chromatography
US9939415B2 (en) 2011-01-12 2018-04-10 Dionex Softron Gmbh High-pressure control valve for high-performance liquid chromatography
US20180209550A1 (en) * 2017-01-26 2018-07-26 Toto Ltd. Faucet valve

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226299A (en) * 2005-02-15 2006-08-31 Senju Metal Ind Co Ltd Sliding material and method for manufacturing the same
JP4687131B2 (en) * 2005-02-15 2011-05-25 千住金属工業株式会社 Sliding material and manufacturing method thereof
JP2014507646A (en) * 2011-01-12 2014-03-27 ディオネクス ゾフトロン ゲーエムベーハー High pressure switching valve for high performance liquid chromatography
US9939415B2 (en) 2011-01-12 2018-04-10 Dionex Softron Gmbh High-pressure control valve for high-performance liquid chromatography
US20180209550A1 (en) * 2017-01-26 2018-07-26 Toto Ltd. Faucet valve
US10697552B2 (en) * 2017-01-26 2020-06-30 Toto Ltd. Faucet valve

Also Published As

Publication number Publication date
JP3764742B2 (en) 2006-04-12

Similar Documents

Publication Publication Date Title
Bhushan Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: recent developments
RU2295084C2 (en) Valving member with multilayer surface
EP0884509B1 (en) Disc valve
JP6472389B2 (en) Piston ring and manufacturing method thereof
WO2010021285A1 (en) Nitrogen-containing amorphous carbon film, amorphous carbon layered film, and sliding member
Polychronopoulou et al. Nanostructure, mechanical and tribological properties of reactive magnetron sputtered TiCx coatings
JP2001192864A (en) Hard film and coated member
Erdemir et al. Durability and tribological performance of smooth diamond films produced by Ar-C60 microwave plasmas and by laser polishing
Kiryukhantsev-Korneev et al. Comparative study of sliding, scratching, and impact-loading behavior of hard CrB 2 and Cr–B–N films
US20100186834A1 (en) Faucet component with improved coating
JP4672650B2 (en) Carbon-based thin film, manufacturing method thereof, and member using the thin film
JP2003336542A (en) High abrasion resistance and high seizure resistance slide member, and method for manufacturing the same
JP7034436B2 (en) Faucet valve
JP3764742B2 (en) Sliding device and faucet valve
Gupta et al. Friction and wear properties of chemomechanically polished diamond films
JP3612098B2 (en) Disc valve
Camargo Jr et al. Silicon-incorporated diamond-like coatings for Si3N4 mechanical seals
Ostrovskaya et al. Friction and wear behaviour of hard and superhard coatings at cryogenic temperatures
Polychronopoulou et al. Deposition and nanotribological characterization of sub-100-nm thick protective Ti-based coatings for miniature applications
JP5150861B2 (en) Hard carbon film and method for forming the same
Ross et al. Tribological Characteristics of Manufactured Carbon Under Extreme Contact Conditions.
JP4091761B2 (en) Disc valve
Hollman et al. CVD-diamond coatings in sliding contact with Al, Al-17Si and steel
JPH0996367A (en) Disk valve
JPH08210521A (en) Sliding device and faucet valve

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

EXPY Cancellation because of completion of term