JP2004324871A - Liquid sealed vibration damper - Google Patents

Liquid sealed vibration damper Download PDF

Info

Publication number
JP2004324871A
JP2004324871A JP2003157354A JP2003157354A JP2004324871A JP 2004324871 A JP2004324871 A JP 2004324871A JP 2003157354 A JP2003157354 A JP 2003157354A JP 2003157354 A JP2003157354 A JP 2003157354A JP 2004324871 A JP2004324871 A JP 2004324871A
Authority
JP
Japan
Prior art keywords
internal pressure
absorbing film
pressure absorbing
film
vibration isolator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003157354A
Other languages
Japanese (ja)
Other versions
JP4420625B2 (en
Inventor
Koji Naruse
浩司 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamashita Rubber Co Ltd
Original Assignee
Yamashita Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamashita Rubber Co Ltd filed Critical Yamashita Rubber Co Ltd
Priority to JP2003157354A priority Critical patent/JP4420625B2/en
Publication of JP2004324871A publication Critical patent/JP2004324871A/en
Application granted granted Critical
Publication of JP4420625B2 publication Critical patent/JP4420625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid sealed vibration damper having a wider-range resonance frequency in a resonance orifice. <P>SOLUTION: A main liquid chamber 5 partially formed by an insulator 4 is communicated with a sub liquid chamber 8 via a damping orifice 7. An inner pressure absorbing film 17 is provided on a wall portion of the main liquid chamber 5 and its film tension is controlled by a film tension varying means 18. The film tension varying means 18 has a press member 20 and a solenoid 22 for moving it forward and backward. The press member 20 has a stepwise press face 25. When the press member 20 is pressed against the inner pressure absorbing film 17 by the solenoid 22, a pressure area is changed with a stroke and film tension is nonlinearly changed. As a result, an expansion spring is greatly changed to produce a great change in resonance frequency accordingly, providing a wider-range resonance frequency. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、共振オリフィスを備えその液柱共振によって防振するようにした、車両のエンジンマウントに使用される液封防振装置に係り、特に共振周波数を広域化できるようにしたものに関する。
【0002】
【従来の技術】
振動源側へ取付けられる第1の取付部材と、振動受側へ取付けられる第2の取付部材と、これらの間に介在して振動を吸収するインシュレータと、このインシュレータが壁の一部をなす液室とを備え、この液室を主液室及び副液室に区画してオリフィス通路を介して連絡するとともに、主液室を囲む壁部の一部に内圧吸収膜を設け、この内圧吸収膜の膜張力を変化させるようにした内圧吸収型液封エンジンマウントは公知である。この形式のエンジンマウントにおいては、内圧吸収膜を柔にすれば、内圧変化を吸収して低動バネとし、剛にすればエンジンマウントの内部圧力変化により発生するバネ定数である拡張バネを高めてオリフィス通路に対する流量を増大させ、これによって共振効率を大きくして振動伝達を少なくするようになっている。
【0003】
【特許文献1】特開平7−305740号公報
【特許文献2】特開平2002−70930号公報
【特許文献3】特開平2002−70931号公報
【特許文献4】特開平2002−168284号公報
【特許文献5】特開平2002−250392号公報
【特許文献6】特開平2003−4090号公報
【0004】
図12は従来の液封エンジンマウントにおける内圧吸収膜制御を原理的に示す図であり、Aに示す内圧吸収膜の自由変形を規制するもの、及びBに示す内圧吸収膜の張力を変化させて拡張バネを変化させるものがある。すなわちAでは、内圧吸収膜aの主液室bと反対側に負圧室cを設け、ここを負圧にすると内圧吸収膜aを負圧室cの内壁に吸引固着して自由変形を規制するようになっている。また、Bでは内圧吸収膜aに直接取付けた駆動部材dを中立位置(0)から主液室b側(+側)又は反対側(−側)へ進退動させることにより、内圧吸収膜aの膜張力を大きくし、その結果、拡張バネを大きくするようになっている。なお、本願においては、主液室b側への移動を進む(+)とし、反対側を後退(−)と表現するものとする。
【0005】
上記ABにおいて、内圧吸収膜aの非制御時には、内圧吸収膜aは主液室bへ入力する振動によって発生する内圧のため、自由に弾性変形して内圧変動を吸収し、拡張バネを低下させることにより低動バネとする。但し、通常走行時の低周波数(約10Hz前後)で小振幅の振動であるサスペンションからの入力に対しては、クリアランス調整により自由振動を規制し、減衰性能を維持させる。
制御時では、Aの場合は負圧印加等により内圧吸収膜aが固定されて自由振動が規制されるため拡張バネが向上し、オリフィス共振が高効率化する。Bの場合は、内圧吸収膜aを0位置(非制御時)から+もしくは−方向へ進退させることにより、内圧吸収膜aの張力を発生させ、Kfを向上させ、オリフィス共振を高効率化させる。
【0006】
【発明が解決しようとする課題】
上記Bにおける内圧吸収膜の張力変化を利用した場合の共振変化を図13に示す。Aに示すように、内圧吸収膜aがx0〜x3へと弾性変形すると、Bに示すように、次第に拡張バネが増大して共振周波数fnはfx1〜fx3へと変化する。すなわち、共振周波数の変化Δfxと拡張バネ変化ΔKfの間には、Δfx∝(ΔKf)1/2
なる関係がある。
なお、Bは横軸に共振周波数、縦軸にその共振周波数における位相を示す。
【0007】
このグラフに明らかなように、膜張力制御を活用した場合の共振周波数の変化は、拡張バネの変化(ΔKf)に対して発生するが、内圧吸収膜は非制御時にダンピング性能を維持する必要性から、ΔKfを極端に変化できず、制御周波数帯Δfxは非常に限られた範囲となってしまう。したがって、仮に、アイドル状態から発進時の領域において、f1〜f3の周波数帯にδ1以上の位相が必要な場合、上図では制御周波数帯Δfxがf1〜f2の間だけとなり、f2〜f3区間では位相がδ1未満になるため、この区間では有効な遮断効果が得られないことになる。したがって制御周波数帯Δfxの広域化が望まれる。
【0008】
このために、内圧吸収膜の膜張力変化を入力振動の大きさに対して非線形的に変化させることが考えられる。図14のAは内圧吸収膜1の弾性変形量が基準位置x0から、xαさらにはxβへ非線形的変化にすることを示す。このとき、Bに示すように、横軸の変形量xに対して、縦軸の膜張力Fはxαから急激に立ち上がって非線形の変化eを示す。x0からxα間における直線をgとするとき、xβ上におけるgと非線形化部分eとの差ΔはΔKfの増加分となる。その結果、制御周波数帯Δfxを拡大することができる。したがって、内圧吸収膜の膜張力を非線形的に変化させることができれば、制御周波数帯Δfxを拡大することができる。そこで本願発明はこの実現を目的とする。
【0009】
【課題を解決するための手段】
請求項1に係る液封防振装置は、振動源側へ取付けられる第1の取付部材と、振動受側へ取付けられる第2の取付部材と、これらの間に介在して振動を吸収するインシュレータと、このインシュレータが壁の一部をなす液室とを備え、この液室を主液室及び副液室に区画して共振オリフィスを介して連絡するとともに、前記主液室を囲む壁部の一部に弾性変形して内圧変化を吸収する弾性膜からなる内圧吸収膜を設けた液封防振装置において、
前記内圧吸収膜に対して押し当てられる押し当て部材を備えるとともに、この押し当て部材の進退ストローク量により前記内圧吸収膜の張力を連続的又は多段階に変化させる膜張力可変手段を設けたことを特徴とする。
【0010】
請求項2は上記請求項1において、前記押し当て部材の押し当て面形状が階段状に変化していることを特徴とする。
【0011】
請求項3は上記請求項1において、前記内圧吸収膜の断面形状が不規則に変化していることを特徴とする。
【0012】
請求項4は上記請求項3において、前記内圧吸収膜に変形規制用ストッパを設けて断面形状を不規則にしたことを特徴とする。
【0013】
請求項5は上記請求項3において、前記内圧吸収膜の中心部に位置決め部を設けて断面形状を不規則にしたことを特徴とする。
【0014】
請求項6は上記請求項1〜4のいずれかにおいて、前記共振オリフィスがアイドルオリフィスであり、その共振周波数の制御に使用することを特徴とする。
【0015】
請求項7は上記請求項1〜4のいずれかにおいて、前記共振オリフィスがダンピングオリフィスであり、その液柱共振の周波数依存性をなくすために使用することを特徴とする。
【0016】
請求項8は上記請求項1〜7のいずれかにおいて、前記押し当て部材の駆動手段がソレノイド又は吸気負圧であることを特徴とする。
【0017】
【発明の効果】
請求項1によれば、内圧吸収膜に対して押し当てられる押し当て部材を備えるとともに、この押し当て部材の進退ストローク量により内圧吸収膜の張力を連続的又は多段階に変化させると、内圧吸収膜の押さえ面積が連続的又は多段階に変化する。その結果、膜張力が非線形的に変化し、拡張バネを変化させるため、共振周波数の変化を広域化でき、かつ高位相を獲得できる。しかも、従来例の能動型液封防振装置に比べて、より簡単な構造でかつ安価にすることができる。
【0018】
請求項2によれば、押し当て部材の押し当て面形状を階段状に変化させたので、ストローク量によって押さえ面積を容易に変化させることができる。
【0019】
請求項3によれば、内圧吸収膜の断面形状を不規則形状にすることにより、押し当て部材のストローク量に対して膜張力を非線形的に変化させることができる。
【0020】
請求項4によれば、内圧吸収膜に変形規制用ストッパを設けたので、内圧吸収膜の弾性変形が大きくなるにつれて変形規制用ストッパの突っ張りが大きくなって内圧吸収膜の弾性変形をしにくくさせ、拡張バネを非線形的に増大させることができる。
【0021】
請求項5によれば、内圧吸収膜の中心部に位置決め部を設けたので、押し当て部材のストローク時における位置ズレを防止できる。
【0022】
請求項6によれば、アイドリング時に内圧吸収膜の膜張力を制御することにより、共振周波数を広域化するととももに、高位相を獲得できるので、防振しにくいベクトル成分の振動を防振するベクトル制御が可能になり、車体側の振動を効果的に抑制できる。
【0023】
請求項7によれば、ダンピングオリフィスによる液柱共振発生時に内圧吸収膜の膜張力を制御することにより共振周波数の変化を制御すると、共振により発生する位相を高位相にすることができるので、本来、液封防振装置の変形量及び変形スピードによって、共振周波数が変化する周波数依存性を有するところを、高位相によって共振周波数を一定に維持することが可能になり、周波数依存性をなくすことができる。
【0024】
請求項8によれば、押し当て部材の駆動手段をソレノイド又は吸気負圧とすることにより、容易に駆動させることができる。
【0025】
【発明の実施の形態】
以下、図面に基づいて実施形態を説明する。図1及び2は各実施例に共通する液封エンジンマウントに係り、図1はその上面図、図2は図1の2−2線相当断面図である。なお、以下の説明において上下とは、図2における状態を基準とする。
【0026】
図1において、液封エンジンマウント1は、第1の取付部材2,第2の取付部材3及びインシュレータ4を備える。第1の取付部材2は図示しないエンジン等の振動源側へ連結され、第2の取付部材3は同じく図示しない車体等の振動受側へ連結される。
【0027】
図2に示すように、インシュレータ4は、ゴムからなる略円錐状をなす公知の防振ゴムである。但し、ゴム及び他のエラストマー等の適宜弾性材料からなる略円錐状をなす公知の弾性防振部材とすることができ、第1の取付部材2と第2の取付部材3の間を連結一体化する。
【0028】
第1の取付部材2,第2の取付部材3及びインシュレータ4に囲まれた内部に主液室5が形成され、ここに公知の非圧縮性の作動液が封入されている。主液室5は仕切部材6の外周部に形成されたダンピングオリフィス7を介して副液室8と連通されている。ダンピングオリフィス7は10Hz前後の低周波数小振幅の乗り心地に影響する通常走行時の振動を高減衰で吸収する。副液室8はダイアフラム9によって覆われている。
【0029】
仕切部材6は樹脂又は金属製の上部材10、ゴム製の中部材11及び樹脂又は金属製の下部材12を上下方向に重ねて一体化したものであり、それぞれはデイスク状の部材であり、その材料も特に限定されない。ダンピングオリフィス7はこれら3部材の各外周部間に形成されている。図中の7bは出口である。
【0030】
上部材10と中部材11の間にはアイドルオリフィス13が形成されている。アイドルオリフィス13は主液室5と副液室8を連通してアイドル時のエンジン振動周波数で液柱共振を発生して低動バネ化することにより、第1の取付部材2側から第2の取付部材3側への振動伝達を遮断する。アイドルオリフィス13は開閉式であるが、その詳細については後述する。
【0031】
主液室5の周壁は第2の取付部材3の一部である上円筒部材14とその内側を被覆する筒状弾性壁15で構成されている。筒状弾性壁15はインシュレータ4と連続一体に形成された延長部である。上円筒部材14の一部に開口16が形成され、筒状弾性壁15のうち、この開口16に重なる部分が内圧吸収膜17になっている。内圧吸収膜17はゴム等の適宜弾性材料からなる弾性膜であり、主液室5の内圧に影響を与えることのできる程度のバネを有する。本実施例では筒状弾性壁15と一体であるが、この部分を別体にしてバネ定数等の異なるものとしてもよい。
【0032】
内圧吸収膜17の外側、すなわち内圧吸収膜17を挟んで主液室5の反対側には、膜張力可変手段18が設けられ、上円筒部材14下端のフランジ19上もしくは別の部材に支持されている。膜張力可変手段18は、内圧吸収膜17へ押し当てられる押し当て部材20と、これに一体化されたアーマチュア21を軸方向へ移動自在にするソレノイド22を備える。アーマチュア21は磁性体からなり、ソレノイド22が発生する磁力線の方向により内圧吸収膜17に対して進退し、そのストローク量はソレノイド22が発生する磁界の強弱に比例する。
【0033】
ソレノイド22に対する駆動電流の制御は制御装置23によって行われ、エンジンの回転数を検出する回転センサ24の検出信号に基づいて制御される。なお、制御の基礎となるセンサ信号は、回転数に限らず、エンジンの運転状況を示す他の適宜のセンサ検知量や、直接入力振動に関するセンサ検知量でもよい。また、駆動手段はソレノイド22に限定されず、エンジンの吸気負圧等公知の種々な手段が可能である。
【0034】
押し当て部材20の内圧吸収膜17へ押し当てられる押し当て面25は階段状に変化している。これについての詳細は後述するが、押し当て部材20のストローク量に応じて内圧吸収膜17における押し当て部材20によって押し当てられる押し当て面積が変化するので、内圧吸収膜17の膜張力が変化する。その結果、内圧吸収膜17の膜張力が大きくなると、防振装置としての内部圧力の変化により発生するバネである拡張バネが大きくなる。内圧吸収膜17の膜張力調節は多段階または連続的のいずれにも制御できる。
【0035】
アイドルオリフィス13の副液室8側の出口26はダイアフラム9の中央部に形成された開閉バルブ27で開閉自在であり、アイドル周波数域でのみ開き、それ以外では閉じている。開閉バルブ27は伸縮部材30の頭部31が押し当てられ、伸縮部材30の伸縮によって開閉される。
【0036】
伸縮部材30の頭部31と底部32との間は中空の負圧室33が形成される。負圧室33は通気ノズル34を介して吸気負圧と大気とを接続切替えするようになっている。吸気負圧が適用されると、リターンバネ35に抗して図の下方へ移動して開閉バルブ27が出口26を開き、吸気負圧を遮断して大気開放すると、リターンバネ35により図の上方に移動して出口26を閉じる。
【0037】
次に、図3〜図5により、膜張力制御における第1実施例を説明する。図3に示すように、押し当て面25は階段状をなし、内圧吸収膜17との間に、先端部(頂上部)25aは初期クリアランスd0をなし、次段25bとはd1、その次の段25cとはd2と変化し、最下段25dとはd3をなす。そこでソレノイド22により押し当て部材20を押し出すと、図4のA〜Cに示すように、d1〜d3の押し込み変位量に伴い、内圧吸収膜17が押さえられる押さえ面積はS1〜S3と変化する。
【0038】
図5は上記押し当て部材20のストローク量変化に伴う内圧吸収膜17に与えられる影響を示すグラフであり、押し当て部材20の押し込み変位量の変化に応じて実線で示すように、押さえ面積は階段状に増大し、その結果、内圧吸収膜17の自由に弾性変形できる面積が減少し、膜張力は点線のように全体として右肩上がりの折れ線状をなして多段階に変化する。このとき、各押し込み変位量に対応する膜張力の折れ線部の傾きはθ1〜θ3と多段階に増大変化し、θ1<θ2<θ3と変化する。
【0039】
このように膜張力が多段階に変化すると、この膜張力に応じて拡張バネが多段階に増大する。したがって、押し込み変位量をd1〜d3と制御すれば、非線形性のKf変化を得ることができる。すなわち膜張力を非線形化することでΔKfを大きくし、Δfxを拡大することができる。
【0040】
図6〜図8は第2実施例であり、図6に示すように、この実施例では押し当て部材20は略砲弾状をなし、押し当て面25は連続する略流線形である。この押し当て部材20を連続的に内圧吸収膜17へ向かって押し出すと、図7のA〜Cに示すように、押し込み量xに応じて押し当て部材20における内圧吸収膜17を押さえ部分の断面積が増大変化する。このため、押し当て部材20の押さえ面積も対応して増大する。
【0041】
図8は、図5に対応して、上記押し当て部材20のストローク量変化に伴う内圧吸収膜17に与えられる影響を示すグラフであり、押し当て部材20の押し込み変位量の変化に応じて実線で示すように、押さえ面積は右上がりの直線状に増大し、その結果、内圧収膜17の自由に弾性変形できる面積が減少し、膜張力は点線のように全体として右肩上がりの連続曲線状をなして変化する。したがって、無段階的かつ連続的に非線形的な変化をすることになる。したがって、このようにすると、より構造を簡素化できる。
【0042】
図9は、第1及び第2実施例における共振周波数の変化と位相の関係を示し、fa、fbは要求される基準位相δ1となる周波数、f1はフリー状態における共振周波数、f2は膜張力のみを変化させる場合における制御可能な最大の共振周波数、f3は押さえ面積を変化させた場合における制御可能な最大の共振周波数である。
【0043】
この図に明らかなように、膜張力だけを変化させる場合のΔf(1−2)と、押さえ面積を変化させる場合のΔf(1−3)は、Δf(1−2)<Δf(1−3)であり、それだけΔfを広域化できることになる。なお、点線は共振周波数が一つだけの従来の一例である。
【0044】
そこで、ダンピング周波数域において、このように拡張バネを増大させて、ダンピングオリフィスによる液柱共振発生時に内圧吸収膜の膜張力を制御することにより、共振周波数の変化を制御すると、共振により発生する位相を高位相にすることができるので、本来、液封防振装置の変形量及び変形スピードによって、共振周波数が変化する周波数依存性を有するところ、高位相によって共振周波数を一定に維持することが可能になり、周波数依存性をなくすことができる。
【0045】
また、アイドリング周波数域においては、車体側の曲げ振動の抑制をするためにベクトル制御が必要になるが、共振周波数が広域化し、共振周波数が高くなるにつれて位相も高くなるから、ベクトル制御が可能になり、車体の曲げ振動を効果的に抑制することができる。
【0046】
図10は第3実施例であり、主液室5側において、上部材10に内圧吸収膜17の変形規制部10aを設け、内圧吸収膜17との間に初期クリアランスC1を設置し、大入力に対する内圧吸収膜17の過大変形(内圧吸収)に対して規制する構造とすることができる。
【0047】
また、押さえ面積を変化させる押し当て部20の先端と内圧吸収膜17に初期クリアランスC2を設置し、自由変形以上の膜の変形に対して規制するする構造とすることもできる。
【0048】
図11は内圧吸収膜17の外部変形規制に関する第4実施例であり、内圧吸収膜17と一体に形成され、外周方向へ斜めに開くリング状の脚部をなすストッパ17aを設け、その先端を押し当て部材20のストローク通路28に押し当てるようにしてある。このようにすると、内圧吸収膜17が押し当て部材20側へ湾曲して弾性変形するとき、弾性変形量が大きくなるほどストッパ17aがストローク通路28へ強く押し当てられて突っ張るので、内圧吸収膜17を変形しにくくして拡張バネを増大させることができ、内圧増大を内圧吸収膜17へ入力を分散化させることもできる。しかもストッパ17aが常時ストローク通路28へ当接するので、押し当て部材20との干渉音を防ぐ構造にできる。
【0049】
なお、内圧吸収膜17側の断面形状を不規則にすることによって、押し当て部材20のストローク量に応じた拡張バネの変化を実現できる。図11のストッパ17aはこの一具体例である。また、内圧吸収膜17の中央部に柱状の位置決め部17bを一体に突出形成してもよい。この位置決め部17bの突出端を押し当て部材20の頂部25aに設けた位置決め凹部25eへ嵌合させる。このようにすると、押し当て部材20のストロークに伴う位置ズレを防止できるとともに、ストローク量の小さい段階で初期変形部をなすから、やはり不規則断面形状部に相当する。
【0050】
なお、本願発明は上記の各実施例に限定されるものではなく、発明の原理内において種々に変形や応用が可能である。例えば、押し当て部材の駆動手段としては種々なものが可能であるが、エンジンの吸気負圧引力を用いることもできる。この場合には負圧供給源となる吸気通路側から瞬時に供給される。また、本願発明はエンジンマウント以外の適当な液封防振装置にも適用できる。
【図面の簡単な説明】
【図1】実施形態に係る液封エンジンマウントの上面視図
【図2】図1の2−2線に沿う断面図
【図3】第1実施例に係る膜張力制御構造を示す図
【図4】上記膜張力制御の説明図
【図5】押さえ面積と膜張力変化を示すグラフ
【図6】第2実施例に係る図3と対応する図
【図7】第2実施例に係る図4に対応する図
【図8】第2実施例に係る図5に対応する図
【図9】共振周波数の広域化を示すグラフ
【図10】第3実施例に係る膜張力制御構造を示す図
【図11】第4実施例に係る膜張力制御構造を示す図
【図12】従来例における内圧吸収膜制御原理を示す図
【図13】従来例における共振周波数変化を示すグラフ
【図14】非線形膜張力制御を説明する図
【符号の説明】1:液封エンジンマウント、2:第1取付金具、3:第2取付金具、4:インシュレータ、5:主液室、6:仕切部材、7:ダンピングオリフィス、8:副液室7、9:ダイアフラム、13:アイドルオリフィス、17:内圧吸収膜、18:膜張力可変手段、20:押し当て部材、22:ソレノイド、25:押し当て面
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid ring vibration isolator used for an engine mount of a vehicle, which has a resonance orifice and performs vibration isolation by resonance of a liquid column, and more particularly to a device capable of broadening a resonance frequency.
[0002]
[Prior art]
A first mounting member mounted on the vibration source side, a second mounting member mounted on the vibration receiving side, an insulator interposed therebetween for absorbing vibration, and a liquid in which the insulator forms part of a wall. And a liquid chamber partitioned into a main liquid chamber and a sub liquid chamber, which are communicated with each other through an orifice passage, and an internal pressure absorbing film is provided on a part of a wall surrounding the main liquid chamber. An internal pressure absorption type liquid ring engine mount in which the membrane tension is changed is known. In this type of engine mount, if the internal pressure absorbing film is softened, the internal pressure change is absorbed to make it a low dynamic spring, and if it is made rigid, the expansion spring, which is the spring constant generated by the internal pressure change of the engine mount, is raised. The flow rate to the orifice passage is increased, thereby increasing resonance efficiency and reducing vibration transmission.
[0003]
[Patent Document 1] JP-A-7-305740 [Patent Document 2] JP-A-2002-70930 [Patent Document 3] JP-A-2002-70931 [Patent Document 4] JP-A-2002-168284 [Patent] Reference 5: Japanese Patent Application Laid-Open No. 2002-250392 Patent Document 6: Japanese Patent Application Laid-Open No. 2003-4090
FIG. 12 is a diagram showing in principle the control of the internal pressure absorbing film in the conventional liquid ring engine mount, which controls the free deformation of the internal pressure absorbing film shown in A and changes the tension of the internal pressure absorbing film shown in B. Some change the expansion spring. That is, in A, a negative pressure chamber c is provided on the side opposite to the main liquid chamber b of the internal pressure absorbing film a, and when the pressure is made negative, the internal pressure absorbing film a is suction-fixed to the inner wall of the negative pressure chamber c to restrict free deformation. It is supposed to. In B, the drive member d directly attached to the internal pressure absorbing film a is moved from the neutral position (0) to the main liquid chamber b side (+ side) or the opposite side (− side) to move back and forth. The membrane tension is increased, and as a result, the expansion spring is increased. In the present application, the movement toward the main liquid chamber b is referred to as (+), and the opposite side is referred to as retreat (-).
[0005]
In the above AB, when the internal pressure absorbing film a is not controlled, the internal pressure absorbing film a is freely elastically deformed to absorb the internal pressure fluctuation and reduce the expansion spring due to the internal pressure generated by the vibration input to the main liquid chamber b. In this way, a low dynamic spring is obtained. However, with respect to the input from the suspension, which is a vibration having a low frequency (about 10 Hz) and a small amplitude during normal running, free vibration is regulated by adjusting the clearance to maintain the damping performance.
At the time of control, in the case of A, the internal pressure absorbing film a is fixed by the application of a negative pressure or the like and free vibration is regulated, so that the expansion spring is improved and the orifice resonance is improved in efficiency. In the case of B, the tension of the internal pressure absorbing film a is generated by moving the internal pressure absorbing film a in the + or − direction from the 0 position (when not controlled), thereby improving Kf and increasing the efficiency of the orifice resonance. .
[0006]
[Problems to be solved by the invention]
FIG. 13 shows a change in resonance when the change in tension of the internal pressure absorbing film in B is used. As shown in A, when the internal pressure absorbing film a is elastically deformed to x0 to x3, as shown in B, the expansion spring gradually increases, and the resonance frequency fn changes to fx1 to fx3. That is, between the resonance frequency change Δfx and the extension spring change ΔKf, Δfx∝ (ΔKf) 1/2
There is a relationship.
B indicates the resonance frequency on the horizontal axis and the phase at the resonance frequency on the vertical axis.
[0007]
As is clear from this graph, the change in the resonance frequency when the membrane tension control is used is caused by the change in the extension spring (ΔKf), but the internal pressure absorbing film needs to maintain the damping performance when not controlled. Therefore, ΔKf cannot be changed extremely, and the control frequency band Δfx is in a very limited range. Therefore, if a phase of δ1 or more is required in the frequency band of f1 to f3 in the region from the idle state to the start, the control frequency band Δfx is only between f1 and f2 in the above figure, and in the section between f2 and f3, Since the phase is less than δ1, an effective cutoff effect cannot be obtained in this section. Therefore, it is desired to widen the control frequency band Δfx.
[0008]
For this purpose, it is conceivable to change the film tension change of the internal pressure absorbing film non-linearly with respect to the magnitude of the input vibration. FIG. 14A shows that the amount of elastic deformation of the internal pressure absorbing film 1 changes nonlinearly from the reference position x0 to xα and further to xβ. At this time, as shown in B, with respect to the deformation amount x on the horizontal axis, the film tension F on the vertical axis sharply rises from xα and shows a nonlinear change e. Assuming that a straight line between x0 and xα is g, the difference Δ between g on xβ and the non-linearized portion e is an increase of ΔKf. As a result, the control frequency band Δfx can be expanded. Therefore, if the film tension of the internal pressure absorbing film can be changed non-linearly, the control frequency band Δfx can be expanded. Therefore, the present invention aims to realize this.
[0009]
[Means for Solving the Problems]
The liquid seal vibration isolator according to claim 1, wherein a first mounting member mounted on the vibration source side, a second mounting member mounted on the vibration receiving side, and an insulator interposed therebetween for absorbing vibration. A liquid chamber forming a part of the wall, the liquid chamber is divided into a main liquid chamber and a sub liquid chamber, and the two liquid chambers communicate with each other via a resonance orifice. In a liquid-sealed vibration isolator provided with an internal pressure absorption film made of an elastic film that partially elastically deforms and absorbs changes in internal pressure,
It is provided with a pressing member that is pressed against the internal pressure absorbing film, and a film tension changing unit that continuously or multi-stagely changes the tension of the internal pressure absorbing film according to the amount of advance / retreat stroke of the pressing member. Features.
[0010]
A second aspect of the present invention is characterized in that, in the first aspect, the pressing surface shape of the pressing member changes stepwise.
[0011]
A third aspect of the present invention is characterized in that, in the first aspect, the cross-sectional shape of the internal pressure absorbing film changes irregularly.
[0012]
A fourth aspect of the present invention is characterized in that, in the third aspect, a deformation regulating stopper is provided on the internal pressure absorbing film to make the sectional shape irregular.
[0013]
A fifth aspect of the present invention is characterized in that, in the third aspect, a positioning portion is provided at a central portion of the internal pressure absorbing film to make the cross-sectional shape irregular.
[0014]
According to a sixth aspect of the present invention, in any one of the first to fourth aspects, the resonance orifice is an idle orifice and is used for controlling the resonance frequency.
[0015]
A seventh aspect of the present invention is characterized in that in any one of the first to fourth aspects, the resonance orifice is a damping orifice, which is used to eliminate the frequency dependence of the liquid column resonance.
[0016]
An eighth aspect of the present invention is characterized in that in any one of the first to seventh aspects, the driving means of the pressing member is a solenoid or an intake negative pressure.
[0017]
【The invention's effect】
According to the first aspect, when the internal pressure absorbing film is provided with a pressing member that is pressed against the internal pressure absorbing film, and the tension of the internal pressure absorbing film is changed continuously or in multiple steps by the amount of advance / retreat stroke of the pressing member, the internal pressure absorbing film is provided. The pressing area of the film changes continuously or in multiple steps. As a result, the film tension changes non-linearly and the expansion spring changes, so that the change in the resonance frequency can be widened and a high phase can be obtained. In addition, compared to the conventional active type liquid ring vibration isolator, the structure can be simplified and the cost can be reduced.
[0018]
According to the second aspect, since the pressing surface shape of the pressing member is changed stepwise, the pressing area can be easily changed depending on the stroke amount.
[0019]
According to the third aspect, by making the cross-sectional shape of the internal pressure absorbing film irregular, the film tension can be changed non-linearly with respect to the stroke amount of the pressing member.
[0020]
According to the fourth aspect, since the internal pressure absorbing film is provided with the deformation restricting stopper, as the elastic deformation of the internal pressure absorbing film increases, the tension of the deformation restricting stopper increases, making it difficult for the internal pressure absorbing film to elastically deform. , The expansion spring can be increased non-linearly.
[0021]
According to the fifth aspect, since the positioning portion is provided at the center portion of the internal pressure absorbing film, it is possible to prevent the displacement of the pressing member during the stroke.
[0022]
According to the sixth aspect, by controlling the film tension of the internal pressure absorbing film at the time of idling, the resonance frequency can be broadened, and a high phase can be obtained. Vector control becomes possible, and vibration on the vehicle body side can be effectively suppressed.
[0023]
According to the seventh aspect, when the change of the resonance frequency is controlled by controlling the film tension of the internal pressure absorbing film when the liquid column resonance occurs due to the damping orifice, the phase generated by the resonance can be made high, and therefore, the original phase can be obtained. Where the resonance frequency changes depending on the deformation amount and deformation speed of the liquid ring vibration isolator, the high frequency makes it possible to maintain the resonance frequency constant and eliminate the frequency dependency. it can.
[0024]
According to the eighth aspect, it is possible to easily drive the pressing member by setting the driving means of the pressing member to a solenoid or an intake negative pressure.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments will be described with reference to the drawings. 1 and 2 relate to a liquid ring engine mount common to the embodiments, FIG. 1 is a top view thereof, and FIG. 2 is a sectional view corresponding to line 2-2 in FIG. In the following description, “up and down” is based on the state in FIG.
[0026]
In FIG. 1, the liquid-tight engine mount 1 includes a first mounting member 2, a second mounting member 3, and an insulator 4. The first mounting member 2 is connected to a vibration source side such as an engine (not shown), and the second mounting member 3 is connected to a vibration receiving side such as a vehicle body (not shown).
[0027]
As shown in FIG. 2, the insulator 4 is a well-known rubber vibration isolator having a substantially conical shape made of rubber. However, a known elastic vibration isolating member having a substantially conical shape made of a suitable elastic material such as rubber and other elastomers can be used, and the first mounting member 2 and the second mounting member 3 are connected and integrated. I do.
[0028]
A main liquid chamber 5 is formed inside the first mounting member 2, the second mounting member 3, and the insulator 4, and a well-known incompressible working fluid is sealed therein. The main liquid chamber 5 communicates with the sub liquid chamber 8 via a damping orifice 7 formed on the outer periphery of the partition member 6. The damping orifice 7 absorbs, with high damping, vibration during normal running which affects the riding comfort of low frequency and small amplitude of about 10 Hz. The sub liquid chamber 8 is covered by a diaphragm 9.
[0029]
The partition member 6 is formed by vertically integrating a resin or metal upper member 10, a rubber middle member 11, and a resin or metal lower member 12, and each is a disk-shaped member. The material is not particularly limited. The damping orifice 7 is formed between the outer peripheral portions of these three members. 7b in the figure is an outlet.
[0030]
An idle orifice 13 is formed between the upper member 10 and the middle member 11. The idle orifice 13 communicates with the main liquid chamber 5 and the sub liquid chamber 8 to generate a liquid column resonance at an engine vibration frequency at the time of idling to reduce the dynamic spring. Vibration transmission to the mounting member 3 is cut off. The idle orifice 13 is openable and closable, the details of which will be described later.
[0031]
The peripheral wall of the main liquid chamber 5 is constituted by an upper cylindrical member 14 which is a part of the second mounting member 3 and a cylindrical elastic wall 15 which covers the inside thereof. The cylindrical elastic wall 15 is an extension formed continuously and integrally with the insulator 4. An opening 16 is formed in a part of the upper cylindrical member 14, and a portion of the cylindrical elastic wall 15 overlapping the opening 16 is an internal pressure absorbing film 17. The internal pressure absorbing film 17 is an elastic film made of an appropriate elastic material such as rubber, and has a spring capable of affecting the internal pressure of the main liquid chamber 5. In this embodiment, it is integral with the cylindrical elastic wall 15, but this part may be formed as a separate member and have different spring constants.
[0032]
Outside the internal pressure absorbing film 17, that is, on the opposite side of the main liquid chamber 5 across the internal pressure absorbing film 17, a film tension varying means 18 is provided, and is supported on the flange 19 at the lower end of the upper cylindrical member 14 or by another member. ing. The film tension varying means 18 includes a pressing member 20 pressed against the internal pressure absorbing film 17 and a solenoid 22 that allows an armature 21 integrated with the pressing member 20 to move in the axial direction. The armature 21 is made of a magnetic material, and advances and retreats with respect to the internal pressure absorbing film 17 depending on the direction of the line of magnetic force generated by the solenoid 22, and the stroke amount is proportional to the strength of the magnetic field generated by the solenoid 22.
[0033]
The control of the drive current for the solenoid 22 is performed by the control device 23, and is controlled based on the detection signal of the rotation sensor 24 that detects the engine speed. The sensor signal serving as the basis of the control is not limited to the rotational speed, but may be another appropriate sensor detection amount indicating the operation state of the engine or a sensor detection amount related to direct input vibration. The driving means is not limited to the solenoid 22, and various known means such as negative pressure of intake air of the engine can be used.
[0034]
The pressing surface 25 of the pressing member 20 pressed against the internal pressure absorbing film 17 changes stepwise. Although the details of this will be described later, since the pressing area of the internal pressure absorbing film 17 pressed by the pressing member 20 changes according to the stroke amount of the pressing member 20, the film tension of the internal pressure absorbing film 17 changes. . As a result, when the film tension of the internal pressure absorbing film 17 increases, the expansion spring, which is a spring generated by a change in the internal pressure as the vibration isolator, increases. The adjustment of the membrane tension of the internal pressure absorbing membrane 17 can be controlled either in multiple stages or continuously.
[0035]
The outlet 26 of the idle orifice 13 on the side of the auxiliary liquid chamber 8 is openable and closable by an opening / closing valve 27 formed at the center of the diaphragm 9, and is open only in an idle frequency range, and is closed in other cases. The opening / closing valve 27 is pressed against the head 31 of the elastic member 30 and is opened and closed by the expansion and contraction of the elastic member 30.
[0036]
A hollow negative pressure chamber 33 is formed between the head 31 and the bottom 32 of the elastic member 30. The negative pressure chamber 33 is configured to switch the connection between the intake negative pressure and the atmosphere via a ventilation nozzle 34. When the intake negative pressure is applied, the valve moves downward in the figure against the return spring 35, and the opening / closing valve 27 opens the outlet 26. When the intake negative pressure is shut off and the atmosphere is released, the return spring 35 And exit 26 is closed.
[0037]
Next, a first embodiment of the film tension control will be described with reference to FIGS. As shown in FIG. 3, the pressing surface 25 has a step-like shape, the tip (top) 25 a forms an initial clearance d0 between the pressing surface 25 and the internal pressure absorbing film 17, the next step 25 b has d1, and the next step 25 b has d1. The stage 25c changes to d2, and the bottom stage 25d forms d3. Then, when the pressing member 20 is pushed out by the solenoid 22, as shown in FIGS. 4A to 4C, the pressing area in which the internal pressure absorbing film 17 is pressed changes from S1 to S3 with the pressing displacement of d1 to d3.
[0038]
FIG. 5 is a graph showing the effect on the internal pressure absorbing film 17 due to the change in the stroke amount of the pressing member 20. As shown by a solid line in accordance with the change in the amount of pressing displacement of the pressing member 20, the holding area is As a result, the area of the internal pressure absorbing film 17 that can be freely elastically deformed decreases, and the film tension changes in a multi-step manner as a whole, as shown by a dotted line, which rises to the right. At this time, the inclination of the broken line portion of the film tension corresponding to each pushing displacement amount increases and changes in multiple stages from θ1 to θ3, and changes to θ1 <θ2 <θ3.
[0039]
When the membrane tension changes in multiple stages, the expansion spring increases in multiple stages in accordance with the membrane tension. Therefore, if the pushing displacement amount is controlled to d1 to d3, a non-linear Kf change can be obtained. That is, by making the film tension non-linear, ΔKf can be increased and Δfx can be increased.
[0040]
6 to 8 show a second embodiment. As shown in FIG. 6, in this embodiment, the pressing member 20 has a substantially shell shape, and the pressing surface 25 is continuous and substantially streamlined. When the pressing member 20 is continuously pushed out toward the internal pressure absorbing film 17, as shown in FIGS. 7A to 7C, the pressing portion 20 presses the internal pressure absorbing film 17 in the pressing member 20 in accordance with the pressing amount x. The area increases and changes. Therefore, the pressing area of the pressing member 20 is correspondingly increased.
[0041]
FIG. 8 is a graph corresponding to FIG. 5 and shows the effect on the internal pressure absorbing film 17 due to the change in the stroke amount of the pressing member 20, and the solid line according to the change in the pushing displacement amount of the pressing member 20. As shown by, the holding area increases in a straight line rising to the right, as a result, the area of the internal pressure collecting membrane 17 that can be freely elastically deformed decreases, and the membrane tension becomes a continuous curve rising as a whole as shown by the dotted line. It changes in shape. Therefore, the non-linear change is performed steplessly and continuously. Therefore, this can further simplify the structure.
[0042]
FIG. 9 shows the relationship between the change of the resonance frequency and the phase in the first and second embodiments, where fa and fb are the required reference phase δ1 frequencies, f1 is the resonance frequency in the free state, and f2 is only the film tension. Is the maximum controllable resonance frequency when f is changed, and f3 is the maximum controllable resonance frequency when the holding area is changed.
[0043]
As is clear from this figure, Δf (1-2) when only the film tension is changed and Δf (1-3) when the holding area is changed are Δf (1-2) <Δf (1- 3), and Δf can be broadened accordingly. The dotted line is an example of the related art having only one resonance frequency.
[0044]
Thus, in the damping frequency range, the expansion spring is increased in this way, and when the liquid column resonance is generated by the damping orifice, the film tension of the internal pressure absorbing film is controlled to control the change in the resonance frequency. Can have a high phase, so that the resonance frequency originally depends on the deformation amount and deformation speed of the liquid ring vibration isolator, but the resonance frequency can be kept constant by the high phase. And the frequency dependency can be eliminated.
[0045]
In the idling frequency range, vector control is required to suppress bending vibration on the vehicle body side.However, since the resonance frequency is widened and the phase becomes higher as the resonance frequency becomes higher, vector control becomes possible. Therefore, bending vibration of the vehicle body can be effectively suppressed.
[0046]
FIG. 10 shows a third embodiment, in which the upper member 10 is provided with a deformation restricting portion 10a of the internal pressure absorbing film 17 on the side of the main liquid chamber 5 and an initial clearance C1 is provided between the upper member 10 and the internal pressure absorbing film 17 to provide a large input. The internal pressure absorbing film 17 can be configured to restrict excessive deformation (absorption of internal pressure).
[0047]
In addition, an initial clearance C2 may be provided between the tip of the pressing portion 20 that changes the pressing area and the internal pressure absorbing film 17 so as to restrict the deformation of the film beyond free deformation.
[0048]
FIG. 11 shows a fourth embodiment relating to the regulation of the external deformation of the internal pressure absorbing film 17, in which a stopper 17a which is formed integrally with the internal pressure absorbing film 17 and forms a ring-shaped leg which opens obliquely in the outer peripheral direction is provided. The pressing member 20 is pressed against the stroke passage 28. With this configuration, when the internal pressure absorbing film 17 is bent toward the pressing member 20 and elastically deforms, the stopper 17a is strongly pressed against the stroke passage 28 and stretches as the amount of elastic deformation increases. The expansion spring can be increased by making it difficult to deform, and the input to the internal pressure absorbing film 17 can be dispersed to increase the internal pressure. In addition, since the stopper 17a is always in contact with the stroke passage 28, a structure for preventing interference noise with the pressing member 20 can be achieved.
[0049]
In addition, by making the cross-sectional shape on the side of the internal pressure absorbing film 17 irregular, a change of the expansion spring according to the stroke amount of the pressing member 20 can be realized. The stopper 17a in FIG. 11 is a specific example of this. Further, a columnar positioning portion 17b may be integrally formed at the center of the internal pressure absorbing film 17 so as to protrude. The projecting end of the positioning portion 17b is fitted into a positioning recess 25e provided on the top 25a of the pressing member 20. In this manner, the displacement of the pressing member 20 due to the stroke can be prevented, and the initial deformation portion is formed at a stage where the stroke amount is small.
[0050]
The present invention is not limited to the above embodiments, and various modifications and applications are possible within the principle of the present invention. For example, various types of driving means for the pressing member are possible, but it is also possible to use the negative suction pressure of the engine. In this case, the air is supplied instantaneously from the intake passage side serving as a negative pressure supply source. Further, the present invention can be applied to an appropriate liquid-sealed vibration isolator other than the engine mount.
[Brief description of the drawings]
FIG. 1 is a top view of a liquid-sealed engine mount according to an embodiment; FIG. 2 is a sectional view taken along line 2-2 of FIG. 1; FIG. 3 is a view showing a membrane tension control structure according to a first embodiment; 4 is an explanatory diagram of the film tension control. FIG. 5 is a graph showing a change in the holding area and the film tension. FIG. 6 is a diagram corresponding to FIG. 3 according to the second embodiment. FIG. 7 is a diagram according to the second embodiment. FIG. 8 is a diagram corresponding to FIG. 5 according to the second embodiment. FIG. 9 is a graph showing a widening of the resonance frequency. FIG. 10 is a diagram showing a film tension control structure according to the third embodiment. FIG. 11 is a diagram showing a membrane tension control structure according to a fourth embodiment. FIG. 12 is a diagram showing the principle of controlling an internal pressure absorbing film in a conventional example. FIG. 13 is a graph showing a change in resonance frequency in a conventional example. Diagram for explaining tension control [Description of symbols] 1: Liquid ring engine mount, 2: First mounting bracket, 3: Second mounting Tools, 4: Insulator, 5: Main liquid chamber, 6: Partition member, 7: Damping orifice, 8: Sub liquid chamber 7, 9: Diaphragm, 13: Idle orifice, 17: Internal pressure absorbing film, 18: Membrane tension variable means , 20: pressing member, 22: solenoid, 25: pressing surface

Claims (8)

振動源側へ取付けられる第1の取付部材と、振動受側へ取付けられる第2の取付部材と、これらの間に介在して振動を吸収するインシュレータと、このインシュレータが壁の一部をなす液室とを備え、この液室を主液室及び副液室に区画して共振オリフィスを介して連絡するとともに、
前記主液室を囲む壁部の一部に弾性変形して内圧変化を吸収する弾性膜からなる内圧吸収膜を設けた液封防振装置において、
前記内圧吸収膜に対して押し当てられる押し当て部材を備えるとともに、この押し当て部材の進退ストローク量により前記内圧吸収膜の張力を連続的又は多段階に変化させる膜張力可変手段を設けたことを特徴とする液封防振装置。
A first mounting member mounted on the vibration source side, a second mounting member mounted on the vibration receiving side, an insulator interposed therebetween for absorbing vibration, and a liquid in which the insulator forms part of a wall. And a liquid chamber is divided into a main liquid chamber and a sub liquid chamber and communicated via a resonance orifice.
In a liquid ring vibration isolator provided with an internal pressure absorbing film made of an elastic film that elastically deforms and absorbs a change in internal pressure on a part of a wall surrounding the main liquid chamber,
It is provided with a pressing member pressed against the internal pressure absorbing film, and provided with a film tension variable means for changing the tension of the internal pressure absorbing film continuously or in multiple stages according to the advance / retreat stroke amount of the pressing member. Characteristic liquid ring vibration isolator.
前記押し当て部材の押し当て面形状が略階段状に変化していることを特徴とする請求項1記載の液封防振装置。2. The liquid ring vibration isolator according to claim 1, wherein the pressing surface shape of the pressing member changes substantially stepwise. 前記内圧吸収膜の断面形状が不規則に変化していることを特徴とする請求項1記載の液封防振装置。2. The liquid ring vibration isolator according to claim 1, wherein the cross-sectional shape of the internal pressure absorbing film changes irregularly. 前記内圧吸収膜に変形規制用ストッパを設けて断面形状を不規則にしたことを特徴とする請求項3記載の液封防振装置。4. The liquid ring vibration isolator according to claim 3, wherein a deformation regulating stopper is provided on the internal pressure absorbing film to make the cross-sectional shape irregular. 前記内圧吸収膜の中心部に位置決め部を設けて断面形状を不規則にしたことを特徴とする請求項3記載の液封防振装置。4. The liquid ring vibration isolator according to claim 3, wherein a positioning portion is provided at a central portion of the internal pressure absorbing film to make the cross-sectional shape irregular. 前記共振オリフィスがアイドルオリフィスであり、その共振周波数の制御に使用することを特徴とする請求項1〜5のいずれかに記載した液封防振装置。The liquid ring vibration isolator according to any one of claims 1 to 5, wherein the resonance orifice is an idle orifice, and is used for controlling a resonance frequency thereof. 前記共振オリフィスがダンピングオリフィスであり、その液柱共振の周波数依存性をなくすために使用することを特徴とする請求項1〜5のいずれかに記載した液封防振装置。The liquid ring vibration isolator according to any one of claims 1 to 5, wherein the resonance orifice is a damping orifice, and is used to eliminate the frequency dependence of the liquid column resonance. 前記押し当て部材の駆動手段がソレノイド又は吸気負圧であることを特徴とする請求項1〜7のいずれかに記載した液封防振装置。The liquid ring vibration isolator according to any one of claims 1 to 7, wherein a driving unit of the pressing member is a solenoid or an intake negative pressure.
JP2003157354A 2003-04-25 2003-04-25 Liquid seal vibration isolator Expired - Fee Related JP4420625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003157354A JP4420625B2 (en) 2003-04-25 2003-04-25 Liquid seal vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003157354A JP4420625B2 (en) 2003-04-25 2003-04-25 Liquid seal vibration isolator

Publications (2)

Publication Number Publication Date
JP2004324871A true JP2004324871A (en) 2004-11-18
JP4420625B2 JP4420625B2 (en) 2010-02-24

Family

ID=33508386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003157354A Expired - Fee Related JP4420625B2 (en) 2003-04-25 2003-04-25 Liquid seal vibration isolator

Country Status (1)

Country Link
JP (1) JP4420625B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520933A (en) 2005-12-21 2009-05-28 アストリウム・エス・エー・エス Elastomeric modular multi-axis vibration / shock absorber
US8727660B2 (en) 2010-04-16 2014-05-20 Ammann Schweiz Ag Arrangement for providing a pulsing compressive force

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520933A (en) 2005-12-21 2009-05-28 アストリウム・エス・エー・エス Elastomeric modular multi-axis vibration / shock absorber
US8727660B2 (en) 2010-04-16 2014-05-20 Ammann Schweiz Ag Arrangement for providing a pulsing compressive force

Also Published As

Publication number Publication date
JP4420625B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP4275791B2 (en) Liquid seal mount
US7210674B2 (en) Fluid-filled vibration damping device
US7648129B2 (en) Fluid filled vibration damping device and method of manufacturing the same
US4712777A (en) Fluid filled vibration isolator having precisely adjustable dynamic operating characteristics
US7857293B2 (en) Fluid filled type vibration damping device
JPH05584Y2 (en)
JP2004324871A (en) Liquid sealed vibration damper
JP4420619B2 (en) Liquid seal vibration isolator
JP4451953B2 (en) Liquid seal vibration isolator
JP2944470B2 (en) Liquid sealing rubber device
JPH10339348A (en) Liquid-sealed mount
JP2006132666A (en) Vibration preventing device
JP4341932B2 (en) Liquid seal vibration isolator
JP4356967B2 (en) Liquid seal vibration isolator
JP4364547B2 (en) Liquid seal vibration isolator and resonance control method thereof
JP4039827B2 (en) Liquid seal mount
JP2001050330A (en) Hydraulic buffering type mount
JP3146193B2 (en) Liquid ring mount
JP4341933B2 (en) Liquid seal vibration isolator
JP2004324823A (en) Vibrationproof device for vehicle
JP4378249B2 (en) Liquid filled anti-vibration mount device
JP2011027158A (en) Vibration control device
JP2002070931A (en) Liquid-sealed vibration control device
JP2005023967A (en) Hydraulic damper
JP2002089614A (en) Liquid-filled vibration control equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A131 Notification of reasons for refusal

Effective date: 20090324

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090525

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20091201

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees