JP2004324518A - Hydraulic power generation device of floating body type - Google Patents

Hydraulic power generation device of floating body type Download PDF

Info

Publication number
JP2004324518A
JP2004324518A JP2003119755A JP2003119755A JP2004324518A JP 2004324518 A JP2004324518 A JP 2004324518A JP 2003119755 A JP2003119755 A JP 2003119755A JP 2003119755 A JP2003119755 A JP 2003119755A JP 2004324518 A JP2004324518 A JP 2004324518A
Authority
JP
Japan
Prior art keywords
floating body
floating
water
flow velocity
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003119755A
Other languages
Japanese (ja)
Other versions
JP4482647B2 (en
Inventor
Yoshio Shimizu
良夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP2003119755A priority Critical patent/JP4482647B2/en
Publication of JP2004324518A publication Critical patent/JP2004324518A/en
Application granted granted Critical
Publication of JP4482647B2 publication Critical patent/JP4482647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Abstract

<P>PROBLEM TO BE SOLVED: To reduce in size, increase an output, and restrain an increase exceeding a rating of a mechanical energy outputted from a water turbine. <P>SOLUTION: When a velocity of a fluid is not more than a predetermined flow velocity, the whole water turbine 20 is immersed in water thereby performing operating, by mounting the water turbine 20 to a lower surface of a floating body rear part 12. When the velocity of the fluid exceeds the predetermined flow velocity, the floating body rear part 12 side floats and a part of the water turbine 20 starts exposing on the water, and thereafter, as the flow velocity increases, the floating body rear part 12 side further floats, whereby an exposure part becomes larger. That is, after exceeding of the predetermined flow velocity, an underwater operating area of the water turbine 20 is decreased as the flow velocity becomes larger, thereby restraining the increase of the output. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、浮体型水力発電装置に係わり、特に、河川の水流或いは潮流の持つ運動エネルギーを電力等の動力に変換する小規模発電装置で、ダムや取り込み水路等の土木構造物による水落差を作るのではなく、水流中に係留した浮体に水車を設置して発電する浮体型水力発電装置に関する。
【0002】
【従来の技術】
古くから双胴型ボートの左右中心面に下かけ式水車を設置した装置が主として東南アジア地域で知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、上述した下かけ式水車は、水車を構成する水かきの一部しか水中に浸されていないため、大型にもかかわらす小出力である。また、下かけ式水車は、流速が大きくなるに従って、出力である機械エネルギーが増大する。このため、流速が所定流速を超えると、発電機の定格を超えた水車の出力である機械エネルギーが発電機に供給され、発電機が破損してしまう恐れがあった。
【0004】
そこで、本発明は、上記のような問題点に着目し、小型大出力化を図ると共に、水車が出力する機械エネルギーの定格を超えた増大を抑制することができる浮体型水力発電装置を提供することを課題とする。
【0005】
【課題を解決するための手段】
上記課題を解決するためになされた請求項1記載の発明は、水面上に係留にされていると共に、流速が大きくなるに従って、流れ方向の一端側が浮揚する浮体と、前記浮体の前記浮揚する部分底面に取り付けられた水車とを備えたことを特徴とする浮体型水力発電装置に存する。
【0006】
請求項1記載の発明によれば、浮体は、水面上に係留されていると共に、流速が大きくなるに従って、流れ方向の一端側が浮揚する。水車は浮体の浮揚する部分下面に取り付けられている。従って、水車を浮体の下面に取り付けることにより、流体が所定流速以下のときは、水車全体を水中に浸して作動させることができる。しかも、水車を浮揚する部分下面に取り付けることにより、所定流速を超えると、浮体の一端側の浮揚によって水車が水上に露出し始め、その後流速の増加に従ってさらに浮体の一端側が浮揚して露出部分が大きくなるようにすることができる。つまり、所定流速を超えた後は、流速が大きくなるに従って、水車の水中部作動面積を減少させることにより出力の増大を抑制することができる。
【0007】
請求項2記載の発明は、請求項1記載の浮体型水力発電装置であって、前記浮体は、浮体姿勢に係わらず、一定位置に浮力中心がある浮体前部と、前記浮体前部に対して流れ方向の下流側に設けられる浮体後部とを有し、前記浮体後部の下面側に前記水車が取り付けられていることを特徴とする浮体型水力発電装置に存する。
【0008】
請求項2記載の発明によれば、浮体が、浮体姿勢に係わらず、一定位置に浮力中心がある浮体前部と、浮体前部に対して流れ方向の下流側に設けられる浮体後部とから構成されている。そして、水車は浮体後部の下面側に取り付けられている。従って、水車設置位置と浮体前部又は後部重量から求められる係留点を適切に選ぶことにより、簡単に、所定流速を超えると、浮体の一端側である浮体後部の浮揚によって水車が水上に露出し始め、その後流速の増加に従ってさらに浮体後部が浮揚して露出部分が大きくなるようにすることができる。
【0009】
請求項3記載の発明は、請求項1又は2記載の浮体型水力発電装置であって、前記水車はサボニウス或いはクロスフロー型タービンであることを特徴とする浮体型水力発電装置に存する。
【0010】
請求項3記載の発明によれば、サボニウス或いはクロスフロー型タービンの水車において、小型大出力化を図ると共に、水車が出力する機械エネルギーの定格を超えた増大を抑制することができる。
【0011】
請求項4記載の発明は、請求項1又は2記載の浮体型水力発電装置であって、前記水車がスクリュー型であって発電機を伝動軸により駆動することを特徴とする浮体型水力発電装置に存する。
【0012】
請求項4記載の発明によれば、スクリュー型であって発電機を伝動軸により駆動する水車において、小型大出力化を図ると共に、水車が出力する機械エネルギーの定格を超えた増大を抑制することができる。
【0013】
請求項5記載の発明は、請求項1〜4何れか1項記載の浮体型水力発電装置であって、前記水車を流れ方向に対して垂直方向に2個配置したことを特徴とする浮体型水力発電装置に存する。
【0014】
請求項5記載の発明によれば、流れ方向に対して垂直方向に2個水車を配置することにより、各水車が持つ垂直方向荷重を相殺することができる。
【0015】
【発明の実施の形態】
以下、この発明の一実施の形態を、図面を参照して説明する。
図1(a)は、本発明の浮体型水力発電装置の側面図であり、(b)は、天面図であり、(c)は、正面図である。これらの図に示すように、浮体型水力発電装置は、水面上に係留されている浮体10と、この浮体10の下面に取り付けられた水車20とから構成されている。
【0016】
上記浮体10は、流体の流れ方向Y1に沿って円弧状の艇体底面形状を持つ双胴型であり、浮体姿勢に係わらず一定位置に浮力中心がある浮体前部11と、この浮体前部11の流れ方向Y1下流側に設けられるおおむね平面状の底面を持つ浮体後部12とから構成されている。水車20は、上述した浮体後部12の底面に取り付けられている。この水車20は、図2に示す図1の簡略A−A線断面図に示すように、回転軸21と、回転軸21回りに設けられた断面略円弧上の翼22とからなるサボニウス型の水車である。
【0017】
また、図中30はサボニウス型水車20の回転軸速度を増速するための増速器とこれに直結した発電機である増速器発電機であり、40はこの浮体10の係留点である。この浮体10は、例えば河川の両岸に築いた保留基点からケーブル等をV字状にして河川の中央の最流速位置に保留されている。
【0018】
次に、上述した構成の浮体型水力発電装置の流速と浮体姿勢との関係について、図3を参照して以下説明する。
図3(a)は流速が所定流速よりも低い時、浮体型水力発電装置に働く力を示し、(b)は流速が所定流速と等しい時、浮体型水力発電装置に働く力を示し、(c)は流速が所定流速を超えた時、浮体型水力発電装置に働く力を示す。
【0019】
この浮体10の浮体姿勢は、水車20に働く水の抵抗力である水車部抵抗Y2が係留点40廻りに作る頭下げモーメントM1と、係留点40より下流側の各部重量(図中下方向矢印で示す力)が係留点40廻りに作る頭上げモーメントM2との関係によって決まる。
【0020】
つまり、同図(a)に示すように、流速が所定流速よりも低いときは、水車部抵抗Y2が小さい。このため、浮体10は、浮体後部12側に傾いた状態で、水車部抵抗Y2が係留点40回りに作る頭下げモーメントM1と、浮体後部重量Y3及び水車・増速器発電機重量Y4が作る頭上げモーメントM2とが平衡状態となる。同図(a)に示す状態では、主として浮体後部12が浮力を発生して全重量を支える。
【0021】
一方、同図(b)に示すように、流速が所定流速と等しくなると、水車部抵抗Y2が大きくなり、これに伴って水車部抵抗Y2が係留点40回りに作る頭下げモーメントM1が大きくなる。このため、浮体10は、同図(a)に示す状態に比べて浮体後部12側が浮揚すると共に、浮体前部11側が沈み、浮体後部12が水面Hと略平行な状態で、水車部抵抗Y2が係留点40回りに作る頭下げモーメントM1と、浮体後部重量Y3及び水車・増速器発電機重量Y4が係留点40回りに作る頭上げモーメントM2とが平衡状態となる。同図(b)に示す状態では、主として浮体前部11が浮力を発生して全重量を支える。
【0022】
さらに、同図(c)に示すように、流速が所定流速を超えると、水車部抵抗Y2がさらに大きくなり、これに伴って水車部抵抗Y2が係留点40回りに作る頭下げモーメントM1がさらに大きくなる。このため、浮体10は、同図(b)に示す状態に比べて浮体後部12側がさらに浮揚すると共に、浮体前部11側がさらに沈み、浮体後部12が水面上に浮揚した状態で、水車部抵抗Y2が係留点40回りに作る頭下げモーメントM1と、浮体後部重量Y3及び水車・増速器発電機重量Y4が係留点40回りに作る頭上げモーメントM2とが平衡状態となる。同図(c)に示す状態では、浮体前部11が全重量を支える。
【0023】
上記浮体前部11は浮体姿勢に係わらず浮力中心が一定位置となるため、浮体後部12側が浮揚しても係留点40回りに浮体前部11の頭下げモーメントM1が発生することがない。このため、わずかな水車部抵抗Y2の増加であっても、大きく浮体後部12を浮揚させることができる。
【0024】
以上、図3についての説明から明らかなように、流速が所定速度よりも低い時には、浮体型水力発電装置は浮体後部12側に傾いているため、水車20全体を水中に浸して作動させることができる。一方、所定流速を超えると、浮体後部12の浮揚によって水車20が水上に露出し始め、その後流速の増加に従って浮体後部12がさらに浮揚して露出部分が大きくなる。つまり、所定流速を超えた後は、流速が大きくなるに従って、水車20の水中部作動面積を減少させることができる。
【0025】
従って、図4に示すように、点線で示す従来では、所定流速(流速比1)を超えても、水車20の出力が増大し続けるのに比べて、実線で示す本発明の浮体型水力発電装置によれば、所定流速を超えた後の水車20の出力増大を抑えることができる。
【0026】
また、上述した浮体前部11の先端は図5に示すように先細りさせ、先端部分の浮力を減じて所定流速を超えると浮体後部12の浮揚がより一層進むようにして、一層の出力増大を抑えることが考えられる。
【0027】
なお、上述した実施形態では、水車20としてサボニウス型を用いて説明していたが、例えば、クロスフロー型のタービンを用いたり、スクリュー型であって発電機を伝動軸により駆動するものを用いることも考えられる。
【0028】
また、上述した実施形態では、水車20の個数は単数であるが、例えば、流れ方向Y1に対して垂直方向に2個水車20を配置することも考えられる。この場合、各水車20が持つ垂直方向荷重を相殺することができる。
【0029】
【発明の効果】
以上説明したように、請求項1記載の発明によれば、水車を浮体の下面に取り付けることにより、流体が所定流速以下のときは、水車全体を水中に浸して作動させることができるので、小型大出力化を図ることができる。しかも、水車を浮揚する部分下面に取り付けることにより、所定流速を超えると、浮体の一端側の浮揚によって水車が水上に露出し始め、その後流速の増加に従ってさらに浮体の一端側が浮揚して露出部分が大きくなるようにすることができる。つまり、所定流速を超えた後は、流速が大きくなるに従って、水車の水中部作動面積を減少させることにより出力の増大を抑制することができるので、水車が出力する機械エネルギーの定格を超えた増大を抑制することができる浮体型水力発電装置を得ることができる。
【0030】
請求項2記載の発明によれば、水車設置位置と浮体前部又は後部重量から求められる係留点を適切に選ぶことにより、簡単に、所定流速を超えると、浮体の一端側である浮体後部の浮揚によって水車が水上に露出し始め、その後流速の増加に従ってさらに浮体後部が浮揚して露出部分が大きくなるようにすることができるので、構成の簡略化を図った浮体型水力発電装置を得ることができる。
【0031】
請求項3記載の発明によれば、サボニウス或いはクロスフロー型タービンの水車において、小型大出力化を図ると共に、水車が出力する機械エネルギーの定格を超えた増大を抑制することができる浮体型水力発電装置を得ることができる。
【0032】
請求項4記載の発明によれば、スクリュー型であって発電機を伝動軸により駆動する水車において、小型大出力化を図ると共に、水車が出力する機械エネルギーの定格を超えた増大を抑制することができる浮体型水力発電装置を得ることができる。
【0033】
請求項5記載の発明によれば、流れ方向に対して垂直方向に2個水車を配置することにより、各水車が持つ垂直方向荷重を相殺することができる浮体型水力発電装置を得ることができる。
【図面の簡単な説明】
【図1】(a)は本発明の浮体型水力発電装置の側面図であり、(b)は天面図であり、(c)は正面図である。
【図2】図1に示す水車20の簡略A−A線断面図である。
【図3】(a)は流速が所定流速よりも低い時、浮体型水力発電装置に働く力を示し、(b)は流速が所定流速と等しいとき、浮体型水力発電装置に働く力を示し、(c)は流速が所定流速を超えた時、浮体型水力発電装置に働く力を示す説明図である。
【図4】流速対所定流速比と水車20の出力対定格出力比との関係を示すグラフである。
【図5】(a)は図1の浮体型水力発電装置を構成する浮体前部11の先端形状の天面図であり、(b)は側面図である。
【符号の説明】
10 浮体
11 浮体前部
12 浮体後部
20 水車
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a floating-type hydroelectric power generation device, and in particular, to a small-scale power generation device that converts kinetic energy of a water flow or a tidal current of a river into power such as electric power, and reduces a water head due to a civil engineering structure such as a dam or an intake waterway. The present invention relates to a floating-type hydroelectric power generator that generates electricity by installing a water wheel on a floating body moored in a water flow instead of making it.
[0002]
[Prior art]
A device in which an underwater water turbine is installed on the left and right central planes of a catamaran type boat has been known for a long time mainly in Southeast Asia.
[0003]
[Problems to be solved by the invention]
However, the above-mentioned hanging type water turbine has a small output despite its large size because only a part of the webs constituting the water turbine is immersed in the water. In addition, the mechanical energy, which is the output of the underwater turbine, increases as the flow velocity increases. For this reason, when the flow velocity exceeds the predetermined flow velocity, mechanical energy, which is the output of the turbine that exceeds the rating of the generator, is supplied to the generator, and the generator may be damaged.
[0004]
In view of the above, the present invention provides a floating-type hydroelectric power generation device capable of reducing the size of a mechanical power output from a water turbine beyond a rated value while reducing the size and increasing the output while focusing on the above problems. That is the task.
[0005]
[Means for Solving the Problems]
The invention according to claim 1, which has been made to solve the above problem, is a floating body moored on the water surface, and which floats at one end in the flow direction as the flow velocity increases, and the floating part of the floating body. And a water turbine mounted on the bottom surface.
[0006]
According to the first aspect of the invention, the floating body is moored on the water surface, and one end in the flow direction floats as the flow velocity increases. The water wheel is attached to the lower surface of the floating part of the floating body. Therefore, by attaching the water wheel to the lower surface of the floating body, when the fluid is at a predetermined flow rate or less, the entire water wheel can be immersed in water to operate. Moreover, by attaching the water wheel to the lower surface of the floating portion, when the flow velocity exceeds a predetermined flow rate, the water turbine starts to be exposed on the water by floating on one end side of the floating body, and thereafter, the one end side of the floating body floats further as the flow velocity increases, so that the exposed portion is exposed. It can be made larger. That is, after exceeding the predetermined flow velocity, the increase in the output can be suppressed by decreasing the working area of the underwater portion of the water turbine as the flow velocity increases.
[0007]
The invention according to claim 2 is the floating body type hydroelectric power generator according to claim 1, wherein the floating body has a buoyancy center at a fixed position regardless of a floating body posture, and a floating body front part. A floating body rear portion provided on the downstream side in the flow direction, and wherein the water wheel is attached to a lower surface side of the floating body rear portion.
[0008]
According to the invention described in claim 2, the floating body is constituted by a floating body front portion having a buoyancy center at a fixed position regardless of the floating body posture, and a floating body rear portion provided on the downstream side in the flow direction with respect to the floating body front portion. Have been. The water wheel is attached to the lower surface of the rear part of the floating body. Therefore, by appropriately selecting the mooring point determined from the water turbine installation position and the weight of the front or rear part of the floating body, the water wheel is exposed above the water by the floating of the rear part of the floating body, which is one end side of the floating body, when the flow velocity exceeds a predetermined flow rate. At the beginning, as the flow velocity increases, the rear portion of the floating body can further float and the exposed portion can be made larger.
[0009]
The invention according to claim 3 is the floating hydroelectric power generator according to claim 1 or 2, wherein the water turbine is a Savonius or cross-flow turbine.
[0010]
According to the third aspect of the present invention, in the water turbine of the Savonius or cross-flow turbine, it is possible to increase the size and output of the turbine and to suppress an increase in the mechanical energy output by the turbine beyond the rating.
[0011]
According to a fourth aspect of the present invention, there is provided the floating-type hydroelectric power generator according to the first or second aspect, wherein the waterwheel is a screw type and the generator is driven by a transmission shaft. Exists.
[0012]
According to the invention as set forth in claim 4, in the screw turbine, in which the generator is driven by the transmission shaft, the size and output are increased and the increase in the mechanical energy output by the turbine beyond the rating is suppressed. Can be.
[0013]
According to a fifth aspect of the present invention, there is provided the floating-type hydroelectric power generator according to any one of the first to fourth aspects, wherein two water turbines are arranged in a direction perpendicular to a flow direction. Exists in hydroelectric generators.
[0014]
According to the fifth aspect of the present invention, by arranging two water turbines in the direction perpendicular to the flow direction, it is possible to offset the vertical load of each turbine.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1A is a side view of a floating hydroelectric power generator of the present invention, FIG. 1B is a top view, and FIG. 1C is a front view. As shown in these figures, the floating-type hydroelectric power generation device includes a floating body 10 moored on the water surface, and a water wheel 20 attached to the lower surface of the floating body 10.
[0016]
The floating body 10 is a catamaran type having an arc-shaped boat body bottom shape along the fluid flow direction Y1, and has a floating body front portion 11 having a buoyancy center at a fixed position regardless of the floating body posture, and a floating body front portion. 11 is provided on the downstream side in the flow direction Y1. The water wheel 20 is attached to the bottom surface of the floating body rear portion 12 described above. As shown in a simplified cross-sectional view taken along the line AA of FIG. 1 shown in FIG. 2, the water turbine 20 is of a Savonius type including a rotating shaft 21 and wings 22 provided around the rotating shaft 21 and having a substantially circular cross section. It is a water wheel.
[0017]
In the figure, reference numeral 30 denotes a speed increaser for increasing the rotation shaft speed of the Savonius type water turbine 20 and a speed increaser generator which is a generator directly connected to the speed increaser. Reference numeral 40 denotes a mooring point of the floating body 10. . The floating body 10 is reserved at the highest flow velocity position in the center of the river, for example, by making a cable or the like into a V shape from a retaining base point built on both banks of the river.
[0018]
Next, the relationship between the flow velocity and the floating posture of the floating hydroelectric power generator having the above-described configuration will be described below with reference to FIG.
FIG. 3 (a) shows the force acting on the floating hydroelectric generator when the flow velocity is lower than the predetermined flow velocity, (b) shows the force acting on the floating hydroelectric generator when the flow velocity is equal to the predetermined flow velocity, c) shows the force acting on the floating hydroelectric generator when the flow velocity exceeds a predetermined flow velocity.
[0019]
The floating posture of the floating body 10 includes a head lowering moment M1 generated around the mooring point 40 by a water wheel resistance Y2 which is a resistance force of water acting on the water turbine 20, and weights of respective parts downstream of the mooring point 40 (downward arrows in the figure). Is determined by the relationship with the head-lifting moment M2 generated around the mooring point 40.
[0020]
That is, as shown in FIG. 7A, when the flow velocity is lower than the predetermined flow velocity, the water wheel resistance Y2 is small. For this reason, in the state where the floating body 10 is inclined toward the rear part 12 of the floating body, a head lowering moment M1 generated by the water wheel resistance Y2 around the mooring point 40, a rear part weight Y3 of the floating body, and a water wheel / speed increasing generator weight Y4 are generated. The head-lifting moment M2 is in an equilibrium state. In the state shown in FIG. 2A, the rear part 12 of the floating body mainly generates buoyancy to support the entire weight.
[0021]
On the other hand, as shown in FIG. 3B, when the flow velocity becomes equal to the predetermined flow velocity, the water turbine resistance Y2 increases, and accordingly, the head dropping moment M1 generated around the mooring point 40 by the water turbine resistance Y2 increases. . For this reason, the floating body 10 floats on the floating body rear part 12 side, sinks in the floating body front part 11 side, and is in a state where the floating body rear part 12 is substantially parallel to the water surface H as compared with the state shown in FIG. A head-lifting moment M1 generated around the mooring point 40 and a head-lifting moment M2 generated around the mooring point 40 by the floating body rear weight Y3 and the water turbine / intensifier generator weight Y4 are in an equilibrium state. In the state shown in FIG. 2B, the floating body front portion 11 mainly generates buoyancy to support the entire weight.
[0022]
Further, as shown in FIG. 4C, when the flow velocity exceeds the predetermined flow velocity, the resistance Y2 of the water turbine part further increases, and the head lowering moment M1 generated around the mooring point 40 by the resistance Y2 of the water turbine part further increases. growing. For this reason, the floating body 10 further floats on the floating body rear part 12 side, further sinks on the floating body front part 11 side, and floats the floating body rear part 12 on the water surface as compared with the state shown in FIG. The head lowering moment M1 generated by the Y2 around the mooring point 40 and the lifting moment M2 generated by the floating body rear weight Y3 and the water turbine / intensifier generator weight Y4 around the mooring point 40 are in an equilibrium state. In the state shown in FIG. 4C, the floating body front portion 11 supports the entire weight.
[0023]
Since the center of buoyancy of the floating body front portion 11 is at a fixed position regardless of the floating body posture, the head lowering moment M1 of the floating body front portion 11 does not occur around the mooring point 40 even if the floating body rear portion 12 floats. For this reason, even if the water wheel resistance Y2 increases slightly, the rear part 12 of the floating body can be largely levitated.
[0024]
As described above, as apparent from the description of FIG. 3, when the flow velocity is lower than the predetermined speed, the floating water turbine is inclined toward the floating rear portion 12, so that the entire water turbine 20 can be immersed in water to operate. it can. On the other hand, when the flow velocity exceeds the predetermined flow rate, the waterwheel 20 starts to be exposed on the water due to the floating of the floating body rear portion 12, and then the floating body rear portion 12 further floats as the flow velocity increases, so that the exposed portion becomes large. That is, after the flow velocity exceeds the predetermined flow velocity, the underwater working area of the water turbine 20 can be reduced as the flow velocity increases.
[0025]
Therefore, as shown in FIG. 4, in the conventional case shown by the dotted line, the output of the water turbine 20 continues to increase even if the flow velocity exceeds a predetermined flow velocity (flow velocity ratio 1). According to the device, it is possible to suppress an increase in the output of the water turbine 20 after exceeding the predetermined flow velocity.
[0026]
Also, the tip of the above-mentioned floating body front part 11 is tapered as shown in FIG. 5, and the buoyancy of the tip part is reduced so that the floating of the floating body rear part 12 is further advanced when a predetermined flow velocity is exceeded, thereby further suppressing the output increase. Can be considered.
[0027]
In the above-described embodiment, the description has been made using the Savonius type as the water turbine 20. However, for example, a cross flow type turbine or a screw type that drives a generator by a transmission shaft may be used. Is also conceivable.
[0028]
In addition, in the above-described embodiment, the number of the water turbines 20 is singular, but for example, two water turbines 20 may be arranged in a direction perpendicular to the flow direction Y1. In this case, the vertical load of each water wheel 20 can be offset.
[0029]
【The invention's effect】
As described above, according to the first aspect of the present invention, by mounting the water wheel on the lower surface of the floating body, the entire water wheel can be immersed in water and operated when the fluid is at a predetermined flow rate or less. Large output can be achieved. Moreover, by attaching the water wheel to the lower surface of the floating portion, when the flow velocity exceeds a predetermined flow rate, the water turbine starts to be exposed on the water by floating on one end side of the floating body, and thereafter, the one end side of the floating body floats further as the flow velocity increases, so that the exposed portion is exposed. It can be made larger. In other words, after the flow velocity exceeds the predetermined flow velocity, as the flow velocity increases, the increase in output can be suppressed by reducing the working area of the underwater part of the water turbine, so that the increase in the mechanical energy output by the water turbine exceeds the rating Floating-type hydroelectric power generation device capable of suppressing the occurrence of water can be obtained.
[0030]
According to the second aspect of the present invention, by appropriately selecting the mooring point determined from the water turbine installation position and the weight of the front or rear part of the floating body, if the flow velocity exceeds a predetermined flow rate, it can be easily determined that the rear part of the floating body which is one end side of the floating body is used. As the water turbine starts to be exposed on the water due to levitation, the rear part of the floating body can be further levitated to increase the exposed portion as the flow velocity increases, so that a floating hydroelectric power generator with a simplified configuration is obtained. Can be.
[0031]
According to the third aspect of the present invention, in a water turbine of a Savonius or cross-flow turbine, a floating-type hydroelectric power generator capable of increasing the size and output of the turbine and suppressing an increase in mechanical energy output by the turbine beyond the rating. A device can be obtained.
[0032]
According to the invention as set forth in claim 4, in the screw turbine, in which the generator is driven by the transmission shaft, the size and output are increased, and the increase of the mechanical energy output by the turbine beyond the rating is suppressed. Floating-type hydroelectric power generation device can be obtained.
[0033]
According to the fifth aspect of the present invention, by arranging two water turbines in a direction perpendicular to the flow direction, it is possible to obtain a floating type hydroelectric power generation device capable of canceling the vertical load of each turbine. .
[Brief description of the drawings]
1 (a) is a side view of a floating type hydroelectric power generator of the present invention, (b) is a top view, and (c) is a front view.
FIG. 2 is a simplified sectional view taken along line AA of the water turbine 20 shown in FIG.
FIG. 3 (a) shows the force acting on the floating hydroelectric generator when the flow velocity is lower than the predetermined flow velocity, and FIG. 3 (b) shows the force acting on the floating hydroelectric generator when the flow velocity is equal to the predetermined flow velocity. And (c) is an explanatory diagram showing the force acting on the floating hydroelectric generator when the flow velocity exceeds a predetermined flow velocity.
FIG. 4 is a graph showing a relationship between a flow velocity to a predetermined flow velocity ratio and an output of the turbine 20 to a rated output ratio.
5 (a) is a top view of the tip shape of the floating body front part 11 constituting the floating hydroelectric power generating apparatus of FIG. 1, and FIG. 5 (b) is a side view.
[Explanation of symbols]
10 Floating body 11 Floating body front part 12 Floating body rear part 20

Claims (5)

水面上に係留にされていると共に、流速が大きくなるに従って、流れ方向の一端側が浮揚する浮体と、
前記浮体の前記浮揚する部分底面に取り付けられた水車と
を備えたことを特徴とする浮体型水力発電装置。
A floating body that is moored on the water surface and that floats at one end in the flow direction as the flow velocity increases,
A water turbine attached to the bottom surface of the floating part of the floating body.
請求項1記載の浮体型水力発電装置であって、
前記浮体は、浮体姿勢に係わらず、一定位置に浮力中心がある浮体前部と、前記浮体前部に対して流れ方向の下流側に設けられる浮体後部とを有し、
前記浮体後部の下面側に前記水車が取り付けられている
ことを特徴とする浮体型水力発電装置。
The floating hydroelectric generator according to claim 1,
The floating body has a floating body front portion having a buoyancy center at a fixed position regardless of the floating body posture, and a floating body rear portion provided on the downstream side in the flow direction with respect to the floating body front portion,
The floating-type hydroelectric power generator, wherein the water wheel is attached to a lower surface of a rear portion of the floating body.
請求項1又は2記載の浮体型水力発電装置であって、
前記水車はサボニウス或いはクロスフロー型タービンである
ことを特徴とする浮体型水力発電装置。
The floating hydroelectric power generator according to claim 1 or 2,
The water turbine is a Savonius or cross-flow turbine, and is a floating hydroelectric power generator.
請求項1又は2記載の浮体型水力発電装置であって、
前記水車がスクリュー型であって発電機を伝動軸により駆動する
ことを特徴とする浮体型水力発電装置。
The floating hydroelectric power generator according to claim 1 or 2,
The water turbine is of a screw type, and a generator is driven by a transmission shaft.
請求項1〜4何れか1項記載の浮体型水力発電装置であって、
前記水車を流れ方向に対して垂直方向に2個配置した
ことを特徴とする浮体型水力発電装置。
The floating hydroelectric generator according to any one of claims 1 to 4,
A floating hydroelectric power generator, wherein two water turbines are arranged in a direction perpendicular to the flow direction.
JP2003119755A 2003-04-24 2003-04-24 Floating hydroelectric generator Expired - Fee Related JP4482647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119755A JP4482647B2 (en) 2003-04-24 2003-04-24 Floating hydroelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003119755A JP4482647B2 (en) 2003-04-24 2003-04-24 Floating hydroelectric generator

Publications (2)

Publication Number Publication Date
JP2004324518A true JP2004324518A (en) 2004-11-18
JP4482647B2 JP4482647B2 (en) 2010-06-16

Family

ID=33498897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119755A Expired - Fee Related JP4482647B2 (en) 2003-04-24 2003-04-24 Floating hydroelectric generator

Country Status (1)

Country Link
JP (1) JP4482647B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539016A (en) * 2006-06-02 2009-11-12 セッポ・リューネネン Method and apparatus for converting wave energy into electricity by difference in flow resistance shape factor
JP5458426B1 (en) * 2013-02-05 2014-04-02 浩平 速水 Power generation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539016A (en) * 2006-06-02 2009-11-12 セッポ・リューネネン Method and apparatus for converting wave energy into electricity by difference in flow resistance shape factor
US8206113B2 (en) 2006-06-02 2012-06-26 Ryynaenen Seppo Method and apparatus for converting marine wave energy by means of a difference in flow resistance form factors into electricity
JP5458426B1 (en) * 2013-02-05 2014-04-02 浩平 速水 Power generation system
WO2014122731A1 (en) * 2013-02-05 2014-08-14 株式会社音力発電 Power generation system

Also Published As

Publication number Publication date
JP4482647B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP6810194B2 (en) Systems and methods for improved water rotors
US9624909B2 (en) Platform for generating electricity from flowing fluid using generally prolate turbine
US6956300B2 (en) Gimbal-mounted hydroelectric turbine
JP5189647B2 (en) Multipoint mooring and stabilization system and control method for submersible turbines using flow
US7397144B1 (en) Bearing-less floating wind turbine
CA2671027C (en) Power generation system using helical turbine
JP2013528737A (en) Unidirectional hydroturbine with reinforced ducts, blades and generator
US20100123316A1 (en) Power generator barge
JP2003307173A (en) Buoyancy type power generation device
JP3530871B2 (en) Hydro, wave and wind energy converters
JP2007009830A (en) Float type hydraulic power generation device
JP2002310054A (en) Tidal current power generator
WO2014021472A1 (en) Waterwheel, hydroelectric generator, and hydroelectric generation system
JP2006183648A (en) Hydrodynamic force power-generating device
EP2730778B1 (en) Natural energy extraction device
JP2004324518A (en) Hydraulic power generation device of floating body type
JP2002081362A (en) Hydraulic power generating system
US20130118176A1 (en) Regenerative offshore energy plant
JP2005214142A (en) Power generating device
JPS6240551B2 (en)
KR101261367B1 (en) Electric power generator using water power, magnetic force and wind force
JP2018145956A (en) Hydraulic power generation system
WO2010023437A2 (en) Improvements in and relating to turbines
JPH08109865A (en) Automatic omnidirectional type natural water flow generating water turbine
KR200309923Y1 (en) The power generating system of barge method utilizing the fluid velocity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees