JP2004324507A - Horizontal rotary compressor - Google Patents

Horizontal rotary compressor Download PDF

Info

Publication number
JP2004324507A
JP2004324507A JP2003119469A JP2003119469A JP2004324507A JP 2004324507 A JP2004324507 A JP 2004324507A JP 2003119469 A JP2003119469 A JP 2003119469A JP 2003119469 A JP2003119469 A JP 2003119469A JP 2004324507 A JP2004324507 A JP 2004324507A
Authority
JP
Japan
Prior art keywords
compression mechanism
oil supply
lubricating oil
motor
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003119469A
Other languages
Japanese (ja)
Other versions
JP4223858B2 (en
Inventor
Masatsugu Konno
雅嗣 近野
Saho Funakoshi
砂穂 舟越
Hirokatsu Kosokabe
弘勝 香曽我部
Akihiko Ishiyama
明彦 石山
Kenichi Oshima
健一 大島
Yuugo Mukai
有吾 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Appliances Inc
Original Assignee
Hitachi Ltd
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Home and Life Solutions Inc filed Critical Hitachi Ltd
Priority to JP2003119469A priority Critical patent/JP4223858B2/en
Priority to KR1020040007393A priority patent/KR100612811B1/en
Priority to CNA2004100082027A priority patent/CN1540166A/en
Publication of JP2004324507A publication Critical patent/JP2004324507A/en
Application granted granted Critical
Publication of JP4223858B2 publication Critical patent/JP4223858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3223Cooling devices using compression characterised by the arrangement or type of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N13/00Lubricating-pumps
    • F16N13/20Rotary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/38Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with a separate pump; Central lubrication systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/14Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/98Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2210/00Applications
    • F16N2210/16Pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To surely supply a lubricating oil stored at a low side to a sliding part of a compressor mechanism part even when a compressor is largely inclined to any of a motor part side and the compressor mechanism part side. <P>SOLUTION: In this horizontal rotary compressor 40, the compressor mechanism part 42 for compressing a working fluid, and the motor part 41 connected to the compressor mechanism part 42 via a shaft 4 are stored in a sealed container 1 storing the lubricating oil at its bottom, and an oil supply means for supplying the lubricating oil to the sliding part of the compressor mechanism part 42 is provided. This oil supply means comprises: a first oil supply means for supplying the lubricating oil stored at the bottom part at the compressor mechanism part side to the sliding part of the compressor mechanism part 42; and a second oil supply means for supplying the lubricating oil at a bottom part at the motor part side to the sliding part of the compressor mechanism part 42. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、横形ロータリ圧縮機に係り、特に自動車用空気調和機などに用いられる横形ロータリ圧縮機に好適なものである。
【0002】
【従来の技術】
自動車用空気調和機の圧縮機には、高効率、高信頼性、低振動、低騒音などの基本性能はもちろん、省スペース、小形軽量、低コストであることが強く要求される。まとまった空間の少ないエンジンルームに圧縮機を載せるには、その省スペース性から横置きに設置できる圧縮機が望ましい。また、その圧縮機は小形軽量で安価なだけでなく、きびしい使用条件にさらされても高い信頼性を維持できなければならない。特に、自動車が坂道で長時間停車しているときや悪路を走行しているときなど、圧縮機が傾斜する状態においても問題なく運転できなければならない。
【0003】
圧縮機の傾斜に対応できる横型密閉回転圧縮機として、例えば特開平11−182429号公報(特許文献1)に開示されているものがある。この横型密閉回転圧縮機は、底部に潤滑油を貯留した密閉容器の内部に、モータと、その回転軸により駆動される回転圧縮機構と、回転軸の回転圧縮機構側の端部に設けられ、密閉容器底部に貯留された潤滑油に浸漬される給油管とを備え、給油管から吸い上げられた潤滑油を回転軸内部に設けられた給油路を通じて各摺動部に給油するように構成され、給油管の回転軸側基部付近に、横型密閉回転圧縮機の傾斜に応じて先端部が屈曲する可撓部を設けている。特許文献1には、この可撓部により圧縮機が傾斜しても給油管の先端部がそれに追従して給油を確保できるようにすることが記載されている。
【0004】
【特許文献1】
特開平11−182429号公報(図1)
【0005】
【発明が解決しようとする課題】
従来の圧縮機では、モータ側(給油管を有する回転圧縮機構側と反対側)が低く傾斜した場合には、給油管が傾斜に追従するとしても給油管の先端部における潤滑油が少なくなって油面が下がってしまうので、確実な給油できなくなるという問題があった。さらには、モータ側が極端に低く傾斜した場合には、給油管の先端部に潤滑油自身が存在しない状態となって給油管の先端部が油面上方に露出し、給油が不可能になってしまうという問題があった。
【0006】
本発明の目的は、圧縮機がモータ部側および圧縮機構部側の何れの側に大きく傾斜しても低い側に溜った潤滑油を圧縮機構部の摺動部に確実に供給することができ、高信頼性を確保できる横形ロータリ圧縮機を得ることにある。
【0007】
なお、本発明のその他の目的と有利点は以下の記述から明らかにされる。
【0008】
【課題を解決するための手段】
前記目的を達成するために、本発明は、底部に潤滑油を貯留した密閉容器内に、作動流体を圧縮する圧縮機構部と、この圧縮機構部にシャフトを介して接続したモータ部とを収納し、前記潤滑油を前記圧縮機構部の摺動部に供給する給油手段を備えた横形ロータリ圧縮機において、前記給油手段は、圧縮機構部側の底部の潤滑油を前記圧縮機構部の摺動部に供給する第1の給油手段と、前記モータ部側の底部の潤滑油を前記圧縮機構部の摺動部に供給する第2の給油手段とを有する構成としたものである。
本発明でさらに好ましくは、前記第1の給油手段は、前記圧縮機構部のシリンダ内を前記シャフトの回転に伴って偏心回転するローラに追随して往復動するベーンの下部に密閉的に形成されたベーンポンプ室と、前記密閉容器の底部の潤滑油を前記ベーンポンプ室へ吸入する吸入口と、前記ベーンポンプ室から前記圧縮機構部の摺動部に潤滑油を供給する給油路とを備えたベーンポンプを用いて構成することである。
また、前記圧縮機構部は第1および第2の圧縮部よりなる2組の圧縮部を備えて構成され、前記第1の圧縮部は、前記シャフトを軸支する主軸受、第1のシリンダ、仕切板、第1のローラおよび第1のベーンを備えて構成され、前記第2の圧縮部は、前記仕切板、第2のシリンダ、前記シャフトを軸支する副軸受、第2のローラおよび第2のベーンを備えて構成され、前記ベーンポンプは前記第2の圧縮部側に形成することである。
また、前記ベーンポンプ室への吸入口は、前記圧縮機構部を構成するシリンダおよび端板の当接面を含む少なくとも一方側に穿った凹溝により形成することである。
また、前記ベーンポンプ室から前記圧縮機構部の摺動部に潤滑油を供給する給油路の一部を、プレス加工により給油路を形作る溝を有する板で構成した給油用カバー25を前記端板の側面側に固定することにより形成することである。
また、前記圧縮機構部を構成するモータ部側の端板により圧縮機構部側とモータ部側とを仕切り、前記端板の下部に圧縮機構部側とモータ部側とを連通する連通穴を設け、前記圧縮機構部の圧縮室の吐出口を前記モータ部側に連通するように設け、前記主軸受の上部に圧縮機構部側とモータ部側とを連通する絞り穴を設け、前記圧縮機構部側に圧縮機の外へ前記作動流体を吐出する吐出パイプを設けることである。
また、前記第2の給油手段は、前記密閉容器内を吐出圧とすると共に、一側端部が前記シャフトの貫通穴のモータ部側の開口に連通し且つ他側端部が前記密閉容器の底部に延びている給油用パイプを備えて構成することである。
また、前記給油用バイプを支持する支持部材に前記給油パイプを圧縮機全体の回転に伴って回転可能に取付けることである。
また、前記圧縮機構部の摺動部に連通する貫通穴を前記シャフトに設け、前記貫通穴の圧縮機構部側およびモータ部側の少なくとも一方の端部に遠心ポンプを設けることである。
【0009】
【発明の実施の形態】
以下、本発明の横形ロータリ圧縮機の一実施例を、図1から図9を用いて説明する。
【0010】
まず、本実施例の横形ロータリ圧縮機の全体構成に関して、図1および図2を参照しながら説明する。本実施例は横形2シリンダロータリ圧縮機の例である。
【0011】
横形ロータリ圧縮機40は、自動車用空気調和機の冷凍サイクルの構成要素として自動車のエンジンルームなどに配置されて使用される。この圧縮機40は、密閉容器1内に、モータ部41と、このモータ部41により駆動される圧縮機構部42とを収納して構成されている。
【0012】
密閉容器1は、横長で円筒状の本体部と、その両側の蓋部とを備えて構成されている。モータ部41は、密閉容器1に固定されたステータ2と、シャフト4を圧入したロータ3とを備えて構成されている。圧縮機構部42は、シャフト4によりモータ部41と直結しており、2組の圧縮部を備えて構成されている。
【0013】
第1の圧縮部は、シャフト4を軸支する主軸受5、第1のシリンダ6、仕切板7、第1のローラ12、第1のベーン14、第1のスプリング16により構成されている。第2の圧縮部は、仕切板7、第2のシリンダ8、シャフト4を軸支する副軸受9、第2のローラ13、第2のベーン15、第2のスプリング17によって構成されている。前記二つのシリンダ6、8は、その中間に仕切板7を挟持し、その両側に主軸受5および副軸受9を配置することにより、これらで囲まれた二つの空間をシリンダ室として形成している。従って、主軸受5、仕切板7および副軸受9は、各シリンダ6、8に対する端板として機能する。そして、主軸受5は、密閉容器1に固定されており、密閉容器1内を圧縮機構部側とモータ部側とに仕切っている。
【0014】
シャフト4は、その中央部を主軸受5に支持され、左右両側が圧縮機構部側およびモータ部側に延びており、中心部に左右に貫通する穴33を設けている。この貫通穴33は潤滑油を圧縮機構部42の摺動部に供給するために形成されている。シャフト4の両端部は密閉容器1の両端部近くに位置しており、貫通穴33が開口されている。シャフト4は互いに位相を180度異にする2個のクランク部10、11を有している。これらクランク部10、11にローラ12、13がそれぞれ自転自在に嵌合されている。このように、位相が180度異なる2組の圧縮部とすることにより圧縮部のバランスが良好になり低振動化を図ることができる。
【0015】
次に、第1の圧縮部および第2の圧縮部の具体的構成および動作について図1および図2を参照しながら説明する。
【0016】
シャフト4の回転に伴ってローラ12、13はシリンダ6、8内を偏心回転するようになっている。ベーン14、15は、密閉容器内のガス圧(吐出圧)とスプリング16、17によりローラ12、13に押圧され、シリンダ室内を吸入室18と圧縮室19に仕切っている。そして、ローラ12、13の偏心回転に追従して、シリンダ6、8のベーンスロット20内で往復動する。
【0017】
係る構成において、圧縮機40の圧縮動作は以下のように行われる。モータ部41に通電されると、ロータ3はシャフト4を駆動し、クランク部11に嵌合されたローラ12、13がシリンダ6、8内を偏心回転する。これにより作動流体(例えば冷媒ガス)は、吸入パイプ23より吸入口21を通り、吸入室18に吸入される。そして、吸入完了後、吸入室18は圧縮室19となり、圧縮室19内で圧縮され、吐出弁(図示せず)を有する吐出口22より吐出される。
【0018】
第1の圧縮部では、作動流体はモータ部側へ吐出される。モータ部側へ吐出された作動流体は、主軸受5に設けた絞り穴30を通って圧縮機構部側に至り、圧縮機構部側に開口した吐出パイプ24より圧縮機外へ吐出される。第2の圧縮部では、作動流体は副軸受9と副軸受カバー28により密閉された空間28aに吐出され、貫通穴29を通ってモータ部側へ吐出される。このモータ部側へ吐出された作動流体は、第1の圧縮部から吐出された作動流体と混合して、主軸受5に設けた絞り穴30を通って圧縮機構部側に至り、圧縮機構部側に開口した吐出パイプ24より圧縮機外へ吐出される。ここで、潤滑油を含む作動流体は、絞り穴30を通過した後、絞り穴30に対向して圧縮機構側に設置された油分離用の板37に衝突することで潤滑油を分離してから、吐出パイプ24より圧縮機外へ吐出されるようになっている。分離された潤滑油は密閉容器1内の底部に集められる。
【0019】
次に、圧縮機構部への給油手段について図1および図4を参照しながら説明する。
【0020】
圧縮機構部42の摺動部に潤滑油を供給する給油手段は、圧縮機構部側の底部の潤滑油を圧縮機構部42の摺動部に供給する第1の給油手段と、モータ部側の底部の潤滑油を圧縮機構部42の摺動部に供給する第2の給油手段とを有する。
【0021】
第1の給油手段はベーンポンプを用いたものである。副軸受9に最も近いシリンダ8内を往復動するベーン15の下部には、ベーン15、シリンダ8、仕切板7、副軸受9によりベーンポンプ室15aが密閉的に形成され、これらによってベーンポンプが構成される。このベーンポンプを用いて、密閉容器1の底部に貯留した潤滑油を、給油路26を通してシャフト4内の貫通穴33へ圧送し、貫通穴33に設けた横穴から軸受5、9の摺動部やローラ12、13の摺動部などへ給油する。なお、給油路26は、副軸受9および副軸受カバー28に設けられた貫通穴と、給油カバー15の凹部により形成される空間とを連通することによって構成されており、ベーンポンプ室15aとシャフト4の貫通穴33とを連通するものである。
【0022】
第2の給油手段は密閉容器1内のモータ部側の圧力と圧縮機構部42内の圧力との差圧を利用して給油するものである。シャフト4のモータ部側の端部には、給油用パイプ34がシャフト4の貫通穴33に連通されるように設けられている。給油用パイプ34は、密閉容器1に固定された支持部材35に一側端部が取付けられると共に、他側端部が密閉容器1内の底部に延びている。給油用パイプ34の他側端部が位置する底部の潤滑油は、密閉容器内のモータ部側の吐出圧により、給油用パイプ34を通してシャフト4内の貫通穴33へ圧送され、貫通穴33に設けた横穴から軸受5、9の摺動部やローラ12、13の摺動部などへ給油される。なお、支持部材35はステータ2に固定されていてもよい。
【0023】
次に、圧縮機40が水平状態にあるときの第1の給油手段の給油動作について図3および図4を参照しながら説明する。
【0024】
このベーンポンプは、図3にベーン15が上死点の位置にあるときを示し、図4にベーン15が下死点の位置にあるときを示す。ベーン15が上方へ移動することにより、密閉容器1の底部に貯留した潤滑油は、吸入口27からベーンポンプ室15aに吸入される。詳細に言えば、ベーン15が上方へ移動する際には、給油路26と吸入口27の両者から吸入した潤滑油が図3に示すようにベーンポンプ室15aに吸入される。この吸入行程の前半においては、給油路26内の潤滑油が有する慣性力のために、その逆流抵抗が大きいので、多くは吸入口27から流入する。なお、この給油路26内の慣性力は直前の吐出工程において給油路26内の潤滑油が給油カバー側へ送られる状態から切換えられることにより発生する。
【0025】
一方、ベーン15が下方へ移動すると、ベーンポンプ室15a内の潤滑油は押し出され、吐出行程となる。この吐出行程の前半では、給油路26内の潤滑油の慣性力による流路抵抗に比べ、この流路と直交して設けた吸入口27の抵抗の方が大きいので、吸入口27から油溜り部へ逆流する油量は少なく、その多くは給油路26側へ吐出される。
【0026】
これらの動作を繰返すことで、吸入口27から多少逆流する潤滑油以外は、給油路26を通って摺動部へ供給されることになる。そして、圧縮機40の水平状態における給油は、ベーンポンプにより行なわれるように設定されている。
【0027】
また、ベーンポンプの吸入口27はシリンダ8に穿った凹溝と副軸受9の外周部の縁とにより形成されている。これによって、テーパ形状の流体ダイオードを別に製作して給油路に挿入するものと比較して、低コスト、小形軽量の圧縮機40とすることができる。
【0028】
図5の変形例に示すように、シリンダ8に設ける凹溝による吸入穴27の中心の位置を、ベーンスロット20の中心から横にずらすようにすると、ベーン15が下方に移動する際の下降流の影響を受けにくくなり、さらに給油効率が向上する。また、図6の変形例に示すように、ベーンポンプ室の吸入口27を形成する穴を、シリンダ8の代わりに副軸受9に設けるようにしてもよい。
【0029】
さらに本実施例では、圧縮機構部42の摺動部へ確実に給油して高信頼性を確保するため、次のような構成としている。主軸受5により圧縮機構部42とモータ部41とは仕切られており、主軸受上部には絞り穴30が設けられ、主軸受下部には潤滑油が圧縮機構部42とモータ部41を自由に移動できるように1つまたは複数の連通穴31が設けられている。それぞれのシリンダ6、8から吐出された作動流体は一度モータ部側へ吐出され、主軸受上部に設けた絞り穴30を通って圧縮機構部側へ移動する。絞り穴30を通過する際、作動流体の圧力は低下するので、圧縮機構部側内の圧力はモータ部側より低くなる。この圧力差と釣り合うように、密閉容器1の底部に貯留した潤滑油は連通穴31を通ってモータ部41から圧縮機構部42へ移動するので、圧縮機構部側の油面はモータ部側の油面より高くなる。そして、圧縮機構部側の油面をシャフト4に設けた給油用の貫通穴33の位置より高くなるように設定することで、給油路26を満たす潤滑油のヘッドが上がり、ベーンポンプの給油効率が向上することになる。また、モータ部側の油面をロータ3の下端より低くなるように設定することで、ロータ3の回転による潤滑油の攪拌を防ぐことができ、攪拌損失を低減できる。
【0030】
圧縮機40が傾斜したときの給油動作について図8および図9を参照しながら説明する。
【0031】
図8は圧縮機構部側が相対的に下になるように圧縮機40が傾斜した状態を示す図である。圧縮機構部側が下になるように傾斜すると、モータ部41の底に溜った潤滑油は重力により連通穴31を通って圧縮機構部側へ移動する。ベーンポンプの吸入口27は密閉容器1の底に近い位置で且つ圧縮機構部側にあるので、吸入口27の周辺には常に潤滑油が存在し、十分に潤滑油を摺動部へ供給することができる。ここで、潤滑油が直接吐出ポート24を通って圧縮機外へ出ていかないようにするため、吐出ポート24の開口部は潤滑油に浸らない位置、すなわち、圧縮機構部側の空間内で、できるだけ油面から遠くて、油分離板37に対して作動流体が絞り穴30を通った後衝突する側と逆側に近接した位置に設けている。
【0032】
図9はモータ部側が相対的に下になるように圧縮機40が傾斜した状態を示す図である。モータ部側が下になるように傾斜すると、圧縮機構部42の底に溜った潤滑油は重力により連通穴31を通ってモータ部側へ移動する。このとき、圧縮機構部側にほとんど潤滑油がない状態となるまで傾斜していると、ベーンポンプ内は作動流体(冷媒ガス)で満たされ、ベーンポンプは機能しなくなる。しかし、モータ部側に設けた給油用パイプ34の吸入口は、モータ部41の底に溜った潤滑油に浸っており、その吸入口周辺に十分な潤滑油が存在する状態となる。そして、モータ部側の圧力は圧縮機構部側の圧力より高いため、差圧によりモータ部側の潤滑油が給油用パイプ34を通ってシャフト4の貫通穴33に流入し、摺動部に供給されることになる。なお、圧縮機構部側とモータ部側との差圧により、作動流体も絞り穴30、連通穴31を通って圧縮機構部側に移動する。このとき、圧縮機構部42とモータ部41の圧力が等しくなり差圧給油が不可能とならないように、連通穴31の穴径を設定している。
【0033】
圧縮機40が傾斜した場合、圧縮機構部側とモータ部側のどちらが下になるように傾斜しても、上述したように、常に潤滑油が十分に溜っている側から給油を行なうので、傾斜が大きくなっても確実に給油でき、高い信頼性を維持できる。
【0034】
さらに本実施例では、摺動部へ確実に給油し高信頼性を確保するため、シャフト4の両端部に遠心ポンプ32、36を取付けている。遠心ポンプ32、36は平板の中央部に穴を開口した簡単な構造である。この遠心ポンプ32、36の作用を、圧縮機40がほぼ水平かまたは圧縮機構部側が下になるように傾斜している場合、すなわち潤滑油の流れがベーンポンプから給油路26を通って摺動部へ向かう場合について説明する。遠心ポンプ32、36は、シャフト4の貫通穴33の入口を狭めるもので、ベーンポンプにより圧送されてきた潤滑油は遠心ポンプ32の狭い入口を通ってシャフト4の貫通穴33に入ろうとする。このとき、シャフト4は回転しているため潤滑油に遠心力が働き、入口を通過した後、シャフト4の径方向へ飛ばされて貫通穴33の壁面まで移動する。この動作が連続することで、潤滑油を貫通穴33内へ引き込もうとするポンプ作用が生じる。遠心ポンプ36はシャフト4の貫通穴33の出口部にあるので、潤滑油が遠心ポンプ36を通過して貫通穴33から出た後は、潤滑油に遠心力を発生させる力は働かず、ポンプ作用は生じない。この場合、遠心ポンプ36は流路抵抗となり、シャフト4の貫通穴33内に潤滑油を保持する役割を果たすので、摺動部へ十分に潤滑油を供給することができる。
【0035】
圧縮機40がモータ部側が下になるように傾斜しているとき、すなわち潤滑油の流れが給油用パイプ34から摺動部へ向かう場合には、遠心ポンプ32、36はそれぞれ上記と逆の作用を行なう。この構成により、さらに確実に摺動部への給油ができ、信頼性が高められる。
【0036】
なお、遠心ポンプ32、36の代わりに、公知の他の給油機構、例えば、シャフト4の内部に収容された、金属板をねじったパドルと称する給油機構や粘性ポンプなどでもよい。
【0037】
さらに本実施例では、圧縮機40がシャフト4の回転面で傾いたときにも摺動部へ確実に給油し高信頼性を確保するため、次のような構造としている。給油用パイプ34は、シャフト4の回転面で回転自在になるように、支持部材35に取付けられている。そして給油用パイプ34の吸入口は、自重または付設したおもりにより、常に鉛直方向下向きに開口するようになっている。この構成により、圧縮機40がシャフト4の回転面で傾いたときでも、給油用パイプ34の吸入口は常に潤滑油に浸っており、摺動部へ確実に給油できる。なお、おもりを付設する場合には、磁石をおもりとして給油用パイプ34の吸入口近傍に取付けることで、潤滑油中の摩耗粉などを吸着できるので、摺動部に摩耗粉などが侵入せず、高い信頼性を確保できる。
【0038】
さらに本実施例では、低コストかつ小形軽量の圧縮機40を提供するため、次のような構成としている。給油路26の一部は副軸受カバー28と給油用カバー25により形成される。この給油用カバー25を、図7に示すように、プレス加工により給油路を形作る溝を有する板で構成し、副軸受カバー28とともに副軸受9に固定している。この構成により、ベーンポンプ室15aからシャフト4の貫通穴33までをパイプで連結する必要がないので、パイプの曲げ加工や取付けの工程を省くことができ、低コストの圧縮機40を提供できる。さらに、パイプを用いる場合には略コの字形に曲げる必要があるが、ある程度大きな半径で曲げなければならず、その分圧縮機40の全長が長くなってしまうが、本実施例の構成にすることでこの問題を回避でき、小形軽量の圧縮機40を提供することができる。
【0039】
【発明の効果】
以上の実施例の説明から明らかなように、本発明によれば、圧縮機がモータ部側および圧縮機構部側の何れの側に大きく傾斜しても低い側に溜った潤滑油を圧縮機構部の摺動部に確実に供給することができ、高信頼性を確保できる横形ロータリ圧縮機が得られる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る横形ロータリ圧縮機の縦断面図である。
【図2】図1のA−A断面相当図である。
【図3】図1の横形ロータリ圧縮機のベーンが上死点の位置にあるときの要部拡大断面図である。
【図4】図1の横形ロータリ圧縮機のベーンが下死点の位置にあるときの要部拡大断面図である。
【図5】図1の横形ロータリ圧縮機の吸入口の変形例を示す図2相当図である。
【図6】図1の横形ロータリ圧縮機の吸入口の変形例を示す図1相当図である。
【図7】図1の横形ロータリ圧縮機に用いる給油用カバー単体の斜視図である。
【図8】図1の横形ロータリ圧縮機が圧縮機構部側に低く傾斜した状態の縦断面図である。
【図9】図1の横形ロータリ圧縮機が圧縮機構部側に低く傾斜した状態の縦断面図である。
【符号の説明】
1…密閉容器、2…ステータ、3…ロータ、4…シャフト、5…主軸受(端板)、6…第1のシリンダ、7…仕切板(端板)、8…第2のシリンダ、9…副軸受(端板)、10、11…クランク部、12…第1のローラ、13…第2のローラ、14…第1のベーン、15…第2のベーン、16…第1のスプリング、17…第2のスプリング、18…吸入室、19…圧縮室、20…ベーンスロット、24…吐出パイプ、25…給油用カバー、26…給油路、27…ベーンポンプ吸入口、30…絞り穴、31…連通穴、32、36…遠心ポンプ、34…給油用パイプ、35…支持部材、40…横形ロータリ圧縮機、41…モータ部、42…圧縮機構部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a horizontal rotary compressor, and is particularly suitable for a horizontal rotary compressor used for an air conditioner for an automobile or the like.
[0002]
[Prior art]
Compressors for air conditioners for automobiles are required to have not only basic performance such as high efficiency, high reliability, low vibration and low noise, but also space saving, small size and light weight, and low cost. In order to mount the compressor in an engine room with a small space, a compressor that can be installed horizontally is desirable because of its space saving. In addition, the compressor must be compact, lightweight and inexpensive, as well as maintain high reliability even when subjected to severe use conditions. In particular, the vehicle must be able to operate without problems even when the compressor is inclined, such as when the vehicle is stopped for a long time on a slope or running on a bad road.
[0003]
As a horizontal hermetic rotary compressor capable of coping with the inclination of the compressor, for example, there is one disclosed in Japanese Patent Application Laid-Open No. H11-182429 (Patent Document 1). This horizontal hermetic rotary compressor is provided inside a hermetic container storing lubricating oil at the bottom, a motor, a rotary compression mechanism driven by its rotary shaft, and an end of the rotary shaft on the rotary compression mechanism side, An oil supply pipe immersed in lubricating oil stored at the bottom of the sealed container, and configured to supply lubricating oil sucked up from the oil supply pipe to each sliding portion through an oil supply path provided inside the rotary shaft, A flexible portion is provided near the rotation shaft side base of the oil supply pipe, the tip of which is bent according to the inclination of the horizontal hermetic rotary compressor. Patent Literature 1 describes that even if the compressor is tilted by the flexible portion, the leading end of the oil supply pipe can follow the oil supply to secure oil supply.
[0004]
[Patent Document 1]
JP-A-11-182429 (FIG. 1)
[0005]
[Problems to be solved by the invention]
In the conventional compressor, when the motor side (the side opposite to the rotary compression mechanism side having the oil supply pipe) is inclined low, even if the oil supply pipe follows the inclination, the lubricating oil at the tip end of the oil supply pipe decreases. There was a problem that it was impossible to reliably refuel because the oil level was lowered. Further, when the motor side is extremely low inclined, the lubricating oil itself does not exist at the end of the oil supply pipe, and the end of the oil supply pipe is exposed above the oil level, so that lubrication becomes impossible. There was a problem that it would.
[0006]
An object of the present invention is to reliably supply lubricating oil accumulated on a lower side to a sliding portion of a compression mechanism section even if the compressor is greatly inclined to either a motor section side or a compression mechanism section side. Another object of the present invention is to obtain a horizontal rotary compressor that can ensure high reliability.
[0007]
Other objects and advantages of the present invention will be apparent from the following description.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention includes a compression mechanism for compressing a working fluid and a motor connected to the compression mechanism via a shaft in a closed container storing lubricating oil at a bottom portion. In a horizontal rotary compressor provided with oil supply means for supplying the lubricating oil to the sliding portion of the compression mechanism, the oil supply means slides the lubricating oil on the bottom of the compression mechanism toward the compression mechanism. And a second oil supply unit for supplying lubricating oil at the bottom of the motor unit side to a sliding portion of the compression mechanism unit.
More preferably, in the present invention, the first oil supply means is hermetically formed at a lower portion of a vane which reciprocates in a cylinder of the compression mechanism following a roller which rotates eccentrically with the rotation of the shaft. A vane pump having a vane pump chamber, a suction port for sucking lubricating oil at the bottom of the hermetic container into the vane pump chamber, and an oil supply passage for supplying lubricating oil from the vane pump chamber to a sliding portion of the compression mechanism. That is to say, it is configured.
Further, the compression mechanism section includes two sets of compression sections including a first and a second compression section, and the first compression section includes a main bearing that supports the shaft, a first cylinder, A partition plate, a first roller, and a first vane, wherein the second compression unit includes a partition plate, a second cylinder, a sub-bearing that supports the shaft, a second roller, and a second roller. 2 vanes, and the vane pump is formed on the second compression section side.
Further, the suction port to the vane pump chamber is formed by a concave groove formed on at least one side including a contact surface of a cylinder and an end plate constituting the compression mechanism.
Further, a part of an oil supply passage for supplying lubricating oil from the vane pump chamber to the sliding portion of the compression mechanism is formed by a plate having a groove having an oil supply passage formed by press working. It is formed by fixing to the side surface side.
Further, the compression mechanism section and the motor section side are separated by an end plate on the motor section side constituting the compression mechanism section, and a communication hole for communicating the compression mechanism section side and the motor section side is provided below the end plate. A discharge opening of a compression chamber of the compression mechanism section is provided so as to communicate with the motor section side, and a throttle hole communicating the compression mechanism section side and the motor section side is provided above the main bearing; A discharge pipe for discharging the working fluid to the outside of the compressor is provided on the side.
In addition, the second oil supply means sets the discharge pressure in the closed container, one end of which communicates with the opening of the through hole of the shaft on the motor portion side, and the other end of which is connected to the closed container. In other words, the fuel tank is provided with an oil supply pipe extending to the bottom.
Further, the oil supply pipe is rotatably attached to a support member supporting the oil supply pipe so as to rotate with the rotation of the entire compressor.
Further, a through-hole communicating with a sliding portion of the compression mechanism is provided in the shaft, and a centrifugal pump is provided at at least one end of the through-hole on the compression mechanism side and the motor side.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the horizontal rotary compressor according to the present invention will be described below with reference to FIGS.
[0010]
First, the overall configuration of the horizontal rotary compressor according to the present embodiment will be described with reference to FIGS. This embodiment is an example of a horizontal two-cylinder rotary compressor.
[0011]
The horizontal rotary compressor 40 is used as a component of a refrigeration cycle of an automotive air conditioner, for example, disposed in an engine room of an automobile. The compressor 40 is configured such that a motor unit 41 and a compression mechanism unit 42 driven by the motor unit 41 are housed in the sealed container 1.
[0012]
The closed container 1 includes a horizontally long, cylindrical main body, and lids on both sides thereof. The motor unit 41 includes the stator 2 fixed to the closed casing 1 and the rotor 3 into which the shaft 4 is press-fitted. The compression mechanism section 42 is directly connected to the motor section 41 by the shaft 4, and includes two sets of compression sections.
[0013]
The first compression unit includes a main bearing 5 that supports the shaft 4, a first cylinder 6, a partition plate 7, a first roller 12, a first vane 14, and a first spring 16. The second compression section includes a partition plate 7, a second cylinder 8, an auxiliary bearing 9 that supports the shaft 4, a second roller 13, a second vane 15, and a second spring 17. The two cylinders 6 and 8 sandwich the partition plate 7 in the middle and arrange the main bearing 5 and the sub-bearing 9 on both sides thereof to form two spaces surrounded by these as a cylinder chamber. I have. Therefore, the main bearing 5, the partition plate 7, and the auxiliary bearing 9 function as end plates for the respective cylinders 6, 8. The main bearing 5 is fixed to the closed casing 1 and partitions the inside of the closed casing 1 into a compression mechanism side and a motor side.
[0014]
The shaft 4 has a central portion supported by the main bearing 5, left and right sides extending to the compression mechanism portion side and the motor portion side, and a hole 33 penetrating left and right at the center portion. The through hole 33 is formed to supply lubricating oil to the sliding portion of the compression mechanism 42. Both ends of the shaft 4 are located near both ends of the closed container 1, and a through hole 33 is opened. The shaft 4 has two crank portions 10 and 11 whose phases are different from each other by 180 degrees. Rollers 12 and 13 are fitted to these crank portions 10 and 11 so that they can rotate freely. As described above, by using two sets of the compression units having phases different from each other by 180 degrees, the balance of the compression units is improved, and the vibration can be reduced.
[0015]
Next, specific configurations and operations of the first compression unit and the second compression unit will be described with reference to FIGS. 1 and 2.
[0016]
As the shaft 4 rotates, the rollers 12 and 13 rotate eccentrically in the cylinders 6 and 8. The vanes 14 and 15 are pressed by rollers 12 and 13 by gas pressure (discharge pressure) in a closed container and springs 16 and 17 to partition a cylinder chamber into a suction chamber 18 and a compression chamber 19. Then, following the eccentric rotation of the rollers 12 and 13, they reciprocate in the vane slots 20 of the cylinders 6 and 8.
[0017]
In such a configuration, the compression operation of the compressor 40 is performed as follows. When the motor unit 41 is energized, the rotor 3 drives the shaft 4, and the rollers 12 and 13 fitted to the crank unit 11 rotate eccentrically in the cylinders 6 and 8. As a result, the working fluid (for example, refrigerant gas) is sucked into the suction chamber 18 from the suction pipe 23 through the suction port 21. After the suction is completed, the suction chamber 18 becomes a compression chamber 19, is compressed in the compression chamber 19, and is discharged from a discharge port 22 having a discharge valve (not shown).
[0018]
In the first compression section, the working fluid is discharged to the motor section side. The working fluid discharged to the motor portion passes through the throttle hole 30 provided in the main bearing 5 to reach the compression mechanism portion side, and is discharged out of the compressor through a discharge pipe 24 opened to the compression mechanism portion side. In the second compression section, the working fluid is discharged into a space 28a sealed by the sub-bearing 9 and the sub-bearing cover 28, and is discharged through the through hole 29 to the motor section side. The working fluid discharged to the motor section side is mixed with the working fluid discharged from the first compression section, reaches the compression mechanism section side through the throttle hole 30 provided in the main bearing 5, and is compressed. It is discharged out of the compressor from a discharge pipe 24 opened to the side. Here, the working fluid containing the lubricating oil passes through the throttle hole 30 and then collides with an oil separating plate 37 provided on the compression mechanism side opposite to the throttle hole 30 to separate the lubricating oil. From the discharge pipe 24 to the outside of the compressor. The separated lubricating oil is collected at the bottom in the closed container 1.
[0019]
Next, oil supply means for the compression mechanism will be described with reference to FIGS.
[0020]
The lubricating means for supplying the lubricating oil to the sliding portion of the compression mechanism section 42 includes first lubricating means for supplying the lubricating oil on the bottom of the compression mechanism section to the sliding section of the compression mechanism section 42, Second lubrication means for supplying the lubricating oil at the bottom to the sliding portion of the compression mechanism section.
[0021]
The first oil supply means uses a vane pump. A vane pump chamber 15a is hermetically formed below the vane 15 reciprocating in the cylinder 8 closest to the sub-bearing 9 by the vane 15, the cylinder 8, the partition plate 7, and the sub-bearing 9, and these constitute a vane pump. You. Using this vane pump, the lubricating oil stored in the bottom of the sealed container 1 is pressure-fed to the through hole 33 in the shaft 4 through the oil supply passage 26, and the sliding portions of the bearings 5, 9 and Oil is supplied to the sliding portions of the rollers 12 and 13. The oil supply passage 26 is formed by communicating a through hole provided in the auxiliary bearing 9 and the auxiliary bearing cover 28 with a space formed by a concave portion of the oil supply cover 15, and the vane pump chamber 15 a is connected to the shaft 4. And the through hole 33.
[0022]
The second refueling means refuels using a pressure difference between the pressure in the motor unit side in the sealed container 1 and the pressure in the compression mechanism unit 42. An oil supply pipe 34 is provided at an end of the shaft 4 on the motor section side so as to communicate with the through hole 33 of the shaft 4. One end of the oil supply pipe 34 is attached to a support member 35 fixed to the closed container 1, and the other end extends to the bottom in the closed container 1. The lubricating oil at the bottom where the other end of the refueling pipe 34 is located is pressure-fed to the through hole 33 in the shaft 4 through the refueling pipe 34 by the discharge pressure of the motor unit side in the closed container. Oil is supplied to the sliding portions of the bearings 5 and 9 and the sliding portions of the rollers 12 and 13 from the lateral holes provided. Note that the support member 35 may be fixed to the stator 2.
[0023]
Next, the refueling operation of the first refueling means when the compressor 40 is in the horizontal state will be described with reference to FIGS.
[0024]
The vane pump is shown in FIG. 3 when the vane 15 is located at the top dead center, and in FIG. 4 when the vane 15 is located at the bottom dead center. As the vane 15 moves upward, the lubricating oil stored at the bottom of the closed container 1 is sucked into the vane pump chamber 15a from the suction port 27. More specifically, when the vane 15 moves upward, lubricating oil sucked from both the oil supply passage 26 and the suction port 27 is sucked into the vane pump chamber 15a as shown in FIG. In the first half of the suction stroke, the backflow resistance is large due to the inertial force of the lubricating oil in the oil supply passage 26, so that most of the oil flows from the suction port 27. The inertial force in the oil supply passage 26 is generated by switching from a state in which the lubricating oil in the oil supply passage 26 is sent to the oil supply cover side in the immediately preceding discharge step.
[0025]
On the other hand, when the vane 15 moves downward, the lubricating oil in the vane pump chamber 15a is pushed out, and the discharge stroke starts. In the first half of the discharge stroke, the resistance of the suction port 27 provided orthogonal to the flow path is larger than the resistance of the flow path due to the inertia force of the lubricating oil in the oil supply path 26. The amount of oil flowing back to the section is small, and most of the oil is discharged to the oil supply passage 26 side.
[0026]
By repeating these operations, lubricating oil other than the lubricating oil flowing somewhat backward from the suction port 27 is supplied to the sliding portion through the oil supply passage 26. The oil supply in the horizontal state of the compressor 40 is set to be performed by the vane pump.
[0027]
Further, the suction port 27 of the vane pump is formed by a concave groove formed in the cylinder 8 and an outer peripheral edge of the auxiliary bearing 9. As a result, the compressor 40 can be made lower in cost, smaller in size and lighter than the one in which a tapered fluid diode is separately manufactured and inserted into the oil supply passage.
[0028]
As shown in the modification of FIG. 5, when the position of the center of the suction hole 27 formed by the concave groove provided in the cylinder 8 is shifted laterally from the center of the vane slot 20, the downward flow when the vane 15 moves downward And the refueling efficiency is further improved. Further, as shown in a modified example of FIG. 6, a hole forming the suction port 27 of the vane pump chamber may be provided in the sub bearing 9 instead of the cylinder 8.
[0029]
Further, in the present embodiment, the following configuration is adopted in order to reliably lubricate the sliding portion of the compression mechanism section 42 and secure high reliability. The compression mechanism section 42 and the motor section 41 are partitioned by the main bearing 5, the throttle hole 30 is provided in the upper section of the main bearing, and the lubricating oil freely flows through the compression mechanism section 42 and the motor section 41 in the lower section of the main bearing. One or more communication holes 31 are provided so as to be movable. The working fluid discharged from each of the cylinders 6 and 8 is discharged once to the motor unit side, and moves to the compression mechanism unit side through the throttle hole 30 provided in the upper part of the main bearing. When passing through the throttle hole 30, the pressure of the working fluid decreases, so that the pressure in the compression mechanism side is lower than that in the motor section side. The lubricating oil stored at the bottom of the sealed container 1 moves from the motor 41 to the compression mechanism 42 through the communication hole 31 so as to balance this pressure difference. It is higher than the oil level. By setting the oil level on the compression mechanism side higher than the position of the oil supply through hole 33 provided in the shaft 4, the head of the lubricating oil filling the oil supply passage 26 rises, and the oil supply efficiency of the vane pump increases. Will be improved. Further, by setting the oil level on the motor section side to be lower than the lower end of the rotor 3, it is possible to prevent the lubricating oil from being agitated by the rotation of the rotor 3, and to reduce the agitation loss.
[0030]
The refueling operation when the compressor 40 is tilted will be described with reference to FIGS.
[0031]
FIG. 8 is a view showing a state where the compressor 40 is inclined such that the compression mechanism side is relatively lower. When the compression mechanism side is inclined downward, the lubricating oil collected at the bottom of the motor section 41 moves to the compression mechanism side through the communication hole 31 by gravity. Since the suction port 27 of the vane pump is located near the bottom of the closed casing 1 and on the side of the compression mechanism, lubricating oil is always present around the suction port 27, and the lubricating oil must be sufficiently supplied to the sliding portion. Can be. Here, in order to prevent the lubricating oil from directly going out of the compressor through the discharge port 24, the opening of the discharge port 24 is located at a position not immersed in the lubricating oil, that is, in the space on the compression mechanism side. It is provided at a position as far as possible from the oil level and close to the side opposite to the side where the working fluid collides with the oil separating plate 37 after passing through the throttle hole 30.
[0032]
FIG. 9 is a diagram showing a state where the compressor 40 is inclined such that the motor section side is relatively lower. When the motor section is inclined downward, the lubricating oil collected at the bottom of the compression mechanism section 42 moves to the motor section side through the communication hole 31 by gravity. At this time, if the compressor mechanism is inclined until there is almost no lubricating oil on the side of the compression mechanism, the inside of the vane pump is filled with the working fluid (refrigerant gas), and the vane pump stops functioning. However, the suction port of the oil supply pipe 34 provided on the motor section side is immersed in the lubricating oil accumulated at the bottom of the motor section 41, and there is a state where sufficient lubricating oil exists around the suction port. Since the pressure on the motor part side is higher than the pressure on the compression mechanism part side, the lubricating oil on the motor part side flows into the through hole 33 of the shaft 4 through the oil supply pipe 34 due to the differential pressure and is supplied to the sliding part. Will be done. The working fluid also moves toward the compression mechanism through the throttle hole 30 and the communication hole 31 due to the pressure difference between the compression mechanism and the motor. At this time, the hole diameter of the communication hole 31 is set so that the pressures of the compression mechanism 42 and the motor 41 are not equal to each other and the differential pressure lubrication becomes impossible.
[0033]
When the compressor 40 is tilted, the lubrication oil is always supplied from the side where the lubricating oil is sufficiently accumulated as described above, regardless of which of the compression mechanism portion and the motor portion is tilted downward. Even if the size becomes large, lubrication can be ensured and high reliability can be maintained.
[0034]
Further, in this embodiment, centrifugal pumps 32 and 36 are attached to both ends of the shaft 4 in order to reliably supply oil to the sliding portion and to ensure high reliability. The centrifugal pumps 32 and 36 have a simple structure in which a hole is opened at the center of the flat plate. The operation of the centrifugal pumps 32 and 36 is performed when the compressor 40 is substantially horizontal or inclined so that the compression mechanism side is downward, that is, the flow of the lubricating oil flows from the vane pump through the oil supply passage 26 to the sliding portion. The case of going to will be described. The centrifugal pumps 32 and 36 narrow the entrance of the through hole 33 of the shaft 4, and the lubricating oil pumped by the vane pump tries to enter the through hole 33 of the shaft 4 through the narrow entrance of the centrifugal pump 32. At this time, since the shaft 4 is rotating, centrifugal force acts on the lubricating oil, and after passing through the inlet, the lubricating oil is blown in the radial direction of the shaft 4 and moves to the wall surface of the through hole 33. When this operation is continued, a pump action for drawing the lubricating oil into the through hole 33 occurs. Since the centrifugal pump 36 is located at the outlet of the through hole 33 of the shaft 4, after the lubricating oil passes through the centrifugal pump 36 and exits from the through hole 33, the centrifugal force is not exerted on the lubricating oil. No effect occurs. In this case, the centrifugal pump 36 serves as a flow path resistance and plays a role of retaining the lubricating oil in the through hole 33 of the shaft 4, so that the lubricating oil can be sufficiently supplied to the sliding portion.
[0035]
When the compressor 40 is inclined so that the motor section side is downward, that is, when the flow of the lubricating oil is directed from the oil supply pipe 34 to the sliding section, the centrifugal pumps 32 and 36 operate in the opposite manner to the above. Perform With this configuration, oil can be more reliably supplied to the sliding portion, and reliability is improved.
[0036]
Instead of the centrifugal pumps 32 and 36, another known oil supply mechanism, for example, an oil supply mechanism called a paddle with a twisted metal plate housed inside the shaft 4 or a viscous pump may be used.
[0037]
Further, in the present embodiment, the following structure is adopted in order to surely supply oil to the sliding portion even when the compressor 40 is inclined on the rotation surface of the shaft 4 and to secure high reliability. The oil supply pipe 34 is attached to the support member 35 so as to be rotatable on the rotation surface of the shaft 4. The inlet of the refueling pipe 34 is always opened vertically downward by its own weight or an attached weight. With this configuration, even when the compressor 40 is tilted on the rotation surface of the shaft 4, the suction port of the oil supply pipe 34 is always immersed in the lubricating oil, and the sliding portion can be reliably supplied with oil. In the case where a weight is attached, by attaching a magnet as a weight near the suction port of the oil supply pipe 34, wear powder and the like in the lubricating oil can be absorbed, so that the wear powder and the like do not enter the sliding portion. , High reliability can be secured.
[0038]
Further, in the present embodiment, the following configuration is provided in order to provide a low-cost, compact and lightweight compressor 40. A part of the oil supply passage 26 is formed by the auxiliary bearing cover 28 and the oil supply cover 25. As shown in FIG. 7, the oil supply cover 25 is formed of a plate having a groove for forming an oil supply passage by press working, and is fixed to the auxiliary bearing 9 together with the auxiliary bearing cover 28. With this configuration, there is no need to connect the vane pump chamber 15a to the through hole 33 of the shaft 4 with a pipe, so that the pipe bending and mounting steps can be omitted, and the low-cost compressor 40 can be provided. Furthermore, when a pipe is used, it is necessary to bend in a substantially U-shape, but it must be bent with a large radius to some extent, and the overall length of the compressor 40 becomes longer by that amount. Thus, this problem can be avoided, and the compact and lightweight compressor 40 can be provided.
[0039]
【The invention's effect】
As apparent from the above description of the embodiment, according to the present invention, even if the compressor is greatly inclined to either the motor section side or the compression mechanism section side, the lubricating oil accumulated on the lower side is compressed by the compression mechanism section. The horizontal rotary compressor can be reliably supplied to the sliding portion of the rotary compressor and high reliability can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a horizontal rotary compressor according to one embodiment of the present invention.
FIG. 2 is a cross-sectional view corresponding to the line AA in FIG.
3 is an enlarged sectional view of a main part of the horizontal rotary compressor of FIG. 1 when a vane is at a position of a top dead center.
4 is an enlarged sectional view of a main part of the horizontal rotary compressor of FIG. 1 when a vane is located at a bottom dead center.
5 is a diagram corresponding to FIG. 2, showing a modified example of the suction port of the horizontal rotary compressor of FIG. 1;
FIG. 6 is a diagram corresponding to FIG. 1, showing a modification of the suction port of the horizontal rotary compressor of FIG. 1;
FIG. 7 is a perspective view of a single lubrication cover used in the horizontal rotary compressor of FIG. 1;
8 is a longitudinal sectional view of the horizontal rotary compressor of FIG. 1 in a state where the horizontal rotary compressor is inclined low toward the compression mechanism.
9 is a longitudinal sectional view of the horizontal rotary compressor of FIG. 1 in a state where the horizontal rotary compressor is inclined low toward the compression mechanism.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Closed container, 2 ... Stator, 3 ... Rotor, 4 ... Shaft, 5 ... Main bearing (end plate), 6 ... 1st cylinder, 7 ... Partition plate (end plate), 8 ... 2nd cylinder, 9 ... sub bearings (end plates), 10, 11 ... crank parts, 12 ... first rollers, 13 ... second rollers, 14 ... first vanes, 15 ... second vanes, 16 ... first springs, 17 second spring, 18 suction chamber, 19 compression chamber, 20 vane slot, 24 discharge pipe, 25 oil supply cover, 26 oil supply path, 27 vane pump suction port, 30 throttle hole, 31 ... Communication hole, 32, 36 ... Centrifugal pump, 34 ... Pipe for oil supply, 35 ... Support member, 40 ... Horizontal rotary compressor, 41 ... Motor part, 42 ... Compression mechanism part.

Claims (9)

底部に潤滑油を貯留した密閉容器内に、作動流体を圧縮する圧縮機構部と、この圧縮機構部にシャフトを介して接続したモータ部とを収納し、前記潤滑油を前記圧縮機構部の摺動部に供給する給油手段を備えた横形ロータリ圧縮機において、
前記給油手段は、圧縮機構部側の底部の潤滑油を前記圧縮機構部の摺動部に供給する第1の給油手段と、前記モータ部側の底部の潤滑油を前記圧縮機構部の摺動部に供給する第2の給油手段とを有する横形ロータリ圧縮機。
A compression mechanism for compressing the working fluid and a motor connected to the compression mechanism via a shaft are housed in a closed container storing lubricating oil at the bottom, and the lubricating oil slides on the compression mechanism. In a horizontal rotary compressor provided with oiling means for supplying to a moving part,
The lubricating means includes a first lubricating means for supplying a lubricating oil at a bottom of the compression mechanism to a sliding portion of the compression mechanism, and a lubricating oil at a bottom of the motor for sliding the compression mechanism. And a second oil supply means for supplying the oil to the section.
前記第1の給油手段は、前記圧縮機構部のシリンダ内を前記シャフトの回転に伴って偏心回転するローラに追随して往復動するベーンの下部に密閉的に形成されたベーンポンプ室と、前記密閉容器の底部の潤滑油を前記ベーンポンプ室へ吸入する吸入口と、前記ベーンポンプ室から前記圧縮機構部の摺動部に潤滑油を供給する給油路とを備えたベーンポンプを用いて構成したことを特徴とする請求項1に記載の横形ロータリ圧縮機。The first oil supply means includes a vane pump chamber hermetically formed below a vane that reciprocates in a cylinder of the compression mechanism following a roller that is eccentrically rotated with the rotation of the shaft. A vane pump having a suction port for sucking lubricating oil at the bottom of the container into the vane pump chamber and an oil supply path for supplying lubricating oil from the vane pump chamber to a sliding portion of the compression mechanism section is provided. The horizontal rotary compressor according to claim 1, wherein 前記圧縮機構部は第1および第2の圧縮部よりなる2組の圧縮部を備えて構成され、前記第1の圧縮部は、前記シャフトを軸支する主軸受、第1のシリンダ、仕切板、第1のローラおよび第1のベーンを備えて構成され、前記第2の圧縮部は、前記仕切板、第2のシリンダ、前記シャフトを軸支する副軸受、第2のローラおよび第2のベーンを備えて構成され、前記ベーンポンプは前記第2の圧縮部側に形成したことを特徴とする請求項2に記載の横形ロータリ圧縮機。The compression mechanism section includes two sets of compression sections including a first and a second compression section. The first compression section includes a main bearing that supports the shaft, a first cylinder, and a partition plate. , A first roller and a first vane, the second compressing section includes a partition plate, a second cylinder, an auxiliary bearing for supporting the shaft, a second roller, and a second roller. The horizontal rotary compressor according to claim 2, wherein the compressor is provided with a vane, and the vane pump is formed on the second compression unit side. 前記ベーンポンプ室への吸入口は、前記圧縮機構部を構成するシリンダおよび端板の当接面を含む少なくとも一方側に穿った凹溝により形成したことを特徴とする請求項2に記載の横形ロータリ圧縮機。The horizontal rotary according to claim 2, wherein the suction port to the vane pump chamber is formed by a concave groove formed on at least one side including a contact surface of a cylinder and an end plate that constitute the compression mechanism. Compressor. 前記ベーンポンプ室から前記圧縮機構部の摺動部に潤滑油を供給する給油路の一部を、プレス加工により給油路を形作る溝を有する板で構成した給油用カバー25を前記端板の側面側に固定することにより形成したことを特徴とする請求項2に記載の横形ロータリ圧縮機。A part of the oil supply passage for supplying the lubricating oil from the vane pump chamber to the sliding portion of the compression mechanism is formed by a plate having a groove having an oil supply passage formed by press working. 3. The horizontal rotary compressor according to claim 2, wherein the horizontal rotary compressor is formed by fixing the rotary compressor. 前記圧縮機構部を構成するモータ部側の端板により圧縮機構部側とモータ部側とを仕切り、前記端板の下部に圧縮機構部側とモータ部側とを連通する連通穴を設け、前記圧縮機構部の圧縮室の吐出口を前記モータ部側に連通するように設け、前記主軸受の上部に圧縮機構部側とモータ部側とを連通する絞り穴を設け、前記圧縮機構部側に圧縮機の外へ前記作動流体を吐出する吐出パイプを設けたことを特徴とする請求項1または2に記載の横形ロータリ圧縮機。The compression mechanism section side and the motor section side are partitioned by an end plate on the motor section side constituting the compression mechanism section, and a communication hole communicating the compression mechanism section side and the motor section side is provided below the end plate, A discharge port of a compression chamber of the compression mechanism is provided so as to communicate with the motor section side, and a throttle hole communicating the compression mechanism section and the motor section is provided above the main bearing, and a throttle hole is provided on the compression mechanism section side. 3. The horizontal rotary compressor according to claim 1, wherein a discharge pipe for discharging the working fluid is provided outside the compressor. 前記第2の給油手段は、前記密閉容器内を吐出圧とすると共に、一側端部が前記シャフトの貫通穴のモータ部側の開口に連通し且つ他側端部が前記密閉容器の底部に延びている給油用パイプを備えて構成したことを特徴とする請求項1に記載の横形ロータリ圧縮機。The second oil supply means is configured such that the inside of the closed container is set to a discharge pressure, one end of the second oil supply unit communicates with the opening of the through hole of the shaft on the motor unit side, and the other end is connected to the bottom of the closed container. 2. The horizontal rotary compressor according to claim 1, wherein the compressor is provided with an extending oil supply pipe. 前記給油用パイプを支持する支持部材に前記給油パイプを圧縮機全体の回転に伴って回転可能に取付けたことを特徴とする請求項7に記載の横形ロータリ圧縮機。The horizontal rotary compressor according to claim 7, wherein the oil supply pipe is rotatably attached to a support member that supports the oil supply pipe in accordance with rotation of the entire compressor. 前記圧縮機構部の摺動部に連通する貫通穴を前記シャフトに設け、前記貫通穴の圧縮機構部側およびモータ部側の少なくとも一方の端部に遠心ポンプを設けたことを特徴とする請求項1から8の何れかに記載の横形ロータリ圧縮機。A through hole communicating with a sliding portion of the compression mechanism portion is provided in the shaft, and a centrifugal pump is provided at at least one end of the through hole on the compression mechanism side and the motor side. 9. The horizontal rotary compressor according to any one of 1 to 8.
JP2003119469A 2003-04-24 2003-04-24 Horizontal rotary compressor Expired - Fee Related JP4223858B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003119469A JP4223858B2 (en) 2003-04-24 2003-04-24 Horizontal rotary compressor
KR1020040007393A KR100612811B1 (en) 2003-04-24 2004-02-05 Horizontal Rotary Compressor
CNA2004100082027A CN1540166A (en) 2003-04-24 2004-03-01 Horizontal rotary commpressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003119469A JP4223858B2 (en) 2003-04-24 2003-04-24 Horizontal rotary compressor

Publications (2)

Publication Number Publication Date
JP2004324507A true JP2004324507A (en) 2004-11-18
JP4223858B2 JP4223858B2 (en) 2009-02-12

Family

ID=33498684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119469A Expired - Fee Related JP4223858B2 (en) 2003-04-24 2003-04-24 Horizontal rotary compressor

Country Status (3)

Country Link
JP (1) JP4223858B2 (en)
KR (1) KR100612811B1 (en)
CN (1) CN1540166A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101045672B1 (en) 2009-06-22 2011-06-30 히다치 어플라이언스 가부시키가이샤 Horizontal arrangement type closed type compressor
WO2020080020A1 (en) * 2018-10-15 2020-04-23 サンデンホールディングス株式会社 Compressor
WO2023286943A1 (en) * 2021-07-15 2023-01-19 삼성전자주식회사 Horizontal type rotary compressor and home appliance including same
US11953001B2 (en) 2021-07-15 2024-04-09 Samsung Electronics Co., Ltd. Horizontal type rotary compressor and home appliance including the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105402135A (en) * 2014-08-18 2016-03-16 珠海格力节能环保制冷技术研究中心有限公司 Rotary compressor
KR20180014615A (en) 2016-08-01 2018-02-09 엘지전자 주식회사 Clothes treatment apparatus
CN106907323B (en) * 2017-04-26 2018-09-11 广东美芝精密制造有限公司 Compressor
CN107288881B (en) * 2017-07-06 2020-03-13 珠海格力节能环保制冷技术研究中心有限公司 Pump body assembly, fluid machine and heat exchange equipment
JP6967994B2 (en) * 2018-02-23 2021-11-17 本田技研工業株式会社 Lubricating oil supply device
CN109654019A (en) * 2019-02-21 2019-04-19 浙江博阳压缩机有限公司 A kind of horizontal rotary compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101045672B1 (en) 2009-06-22 2011-06-30 히다치 어플라이언스 가부시키가이샤 Horizontal arrangement type closed type compressor
WO2020080020A1 (en) * 2018-10-15 2020-04-23 サンデンホールディングス株式会社 Compressor
WO2023286943A1 (en) * 2021-07-15 2023-01-19 삼성전자주식회사 Horizontal type rotary compressor and home appliance including same
US11953001B2 (en) 2021-07-15 2024-04-09 Samsung Electronics Co., Ltd. Horizontal type rotary compressor and home appliance including the same

Also Published As

Publication number Publication date
JP4223858B2 (en) 2009-02-12
KR20040092381A (en) 2004-11-03
CN1540166A (en) 2004-10-27
KR100612811B1 (en) 2006-08-18

Similar Documents

Publication Publication Date Title
JPH109160A (en) Scroll compressor
JPH11241682A (en) Compressor for co2
JP2007315261A (en) Hermetic compressor
JP4223858B2 (en) Horizontal rotary compressor
US8342827B2 (en) Hermetic compressor and refrigeration cycle device having the same
US7878771B2 (en) Hermetic type compressor with wave-suppressing member in the oil reservoir
EP1717448A2 (en) Rotary vane compressor
JP2001271745A (en) Intake muffler for compressor, compressor using intake muffler for compressor, and refrigerator using compressor
JPH0735076A (en) Horizontal rotary compressor
CN108603505B (en) Method for manufacturing rotary compressor
JP4074760B2 (en) Hermetic rotary compressor and refrigeration / air conditioner
JP7134381B1 (en) hermetic compressor
JP2004293530A (en) Fluid compressor
JPH0615870B2 (en) Horizontal rotary compressor
JP2005220781A (en) Horizontal multistage rotary compressor
JP2012197725A (en) Rolling piston compressor, and vane
JP3653353B2 (en) Scroll compressor
JP2010116836A (en) Rotary type fluid machine
JP4263047B2 (en) Horizontal type compressor
KR100629870B1 (en) Lubrication system for horizontal compressor
JP2005054578A (en) Sealed rotary compressor
JP2005036741A (en) Horizontal compressor
JP2006329141A (en) Scroll compressor
KR100504913B1 (en) Horizontal type compressor having pressure plate
KR101738454B1 (en) Hermetic compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060126

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees