JP2004324164A - Method of constructing corrugated steel web pc bridge closure section - Google Patents

Method of constructing corrugated steel web pc bridge closure section Download PDF

Info

Publication number
JP2004324164A
JP2004324164A JP2003118591A JP2003118591A JP2004324164A JP 2004324164 A JP2004324164 A JP 2004324164A JP 2003118591 A JP2003118591 A JP 2003118591A JP 2003118591 A JP2003118591 A JP 2003118591A JP 2004324164 A JP2004324164 A JP 2004324164A
Authority
JP
Japan
Prior art keywords
bridge
corrugated steel
girder
steel web
slab concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003118591A
Other languages
Japanese (ja)
Other versions
JP4220295B2 (en
Inventor
Tsutomu Sumiya
務 角谷
Hidetoshi Miyauchi
秀敏 宮内
Akihiro Nakazono
明広 中薗
Yoshiyuki Yasukawa
義行 安川
Takuya Mori
森  拓也
Takashi Suda
隆 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS Mitsubishi Construction Co Ltd
Original Assignee
PS Mitsubishi Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS Mitsubishi Construction Co Ltd filed Critical PS Mitsubishi Construction Co Ltd
Priority to JP2003118591A priority Critical patent/JP4220295B2/en
Publication of JP2004324164A publication Critical patent/JP2004324164A/en
Application granted granted Critical
Publication of JP4220295B2 publication Critical patent/JP4220295B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To construct a bridge body at a closure section for which timbering cannot be erected on the ground, by employing a simple girder, at the time of erecting a corrugated steel web bridge in an overhanging manner. <P>SOLUTION: There is provided a method of constructing a corrugated steel web PC bridge closure section, according to which first the simple girder 40 is erected across the closure section, and a corrugated steel web 10 is erected across the closure section by using the girder 40, followed by sequentially placing lower floor slab concrete 20 from the side of an overhanging bridge body, to thereby construct a temporary girder formed of the lower floor slab concrete 20 and the corrugated steel web 10. Then the girder 40 is removed, and upper floor slab concrete 30 is sequentially placed from the side of the constructed bridge body 110 by using the temporary girder, followed by straining continuous outside cables, to thereby construct the bridge body at the closure section. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、波形鋼板ウエブPC橋の架設における、側径間又は中央径間の閉合部の施工方法に関する。
【0002】
【従来の技術】
張出し施工されるPC橋の側径間の橋体の施工は、一般に、閉合部の建設地点に地上から支保工を立ち上げることができる場合は、支保工を形成し、この支保工上で施工される。しかし、支保工の設置ができない場合があり、この場合には、橋台と張出し桁先端部間に梁式支保工を掛け渡して、コンクリート荷重を支えて側径間の橋体の施工を行う手段が採られている。
【0003】
また、中央径間の閉合部は通常既設張出し桁先端間に型枠を掛け渡して閉合部コンクリートを打設していた。しかし、地形上の架橋条件によっては、スパン割りの都合により中央径間の閉合部が長距離となる場合が生ずる。この場合には、張出し桁先端間に梁式支保工を掛け渡して、コンクリート荷重を支えて中央径間の閉合部橋体の施工を行う手段を採らざるを得ない。
【0004】
以上の場合、梁式支保工部材は、閉合部の施工期間中の全荷重を支持する機能を必要とする。図10、11はこのような閉合部として側径間の橋体115を施工する場合の側面図である。橋脚100から張出施工された張出橋体110と、橋台50との間に、側径間の橋体115を施工する場合に地上から支保工を立設することができない事情があるときに、梁式支保工を用いる。図10は、側径間の閉合部の橋体115の施工長が比較的短い場合を示すもので、張出施工された橋体110の端部111と橋台50との間に、梁式支保工としてH形鋼130を架設し、側径間の橋体115の施工荷重をすべてこのH形鋼130に負担させるようにしたものである。
【0005】
図11は、閉合部(側径間)の橋体115の施工長が長い場合の例を示すもので、梁式支保工として、大規模なトラス梁140を用い、この大規模なトラス梁140から作業足場141を吊下して、この足場に閉合部の橋体115の施工荷重をすべて負担させて、橋体115を架設する。
【0006】
このような場合に、例えば、閉合部の桁を複数のブロック桁に分割し、施工スパンの両側に支持台を設け、仮設梁を掛け渡し、ブロック桁を仮設梁に設けた架設移動車で所定位置に設置し、ブロック桁を順次仮設梁に吊替えて支持し、各ブロック桁を連結一体化する毎に単純梁化して閉合部の橋体を施工する技術がある(例えば、特許文献1参照。)。
【0007】
この技術は、施工すべきスパンに架設する橋桁を、単純梁として吊り替えるものである。各ブロックは、ワーゲン施工により順次継ぎ足して張出して行く。この工法は、コンクリート荷重をすべて支承する強力な仮設桁を必要とする技術である。
【0008】
【特許文献1】
特許第2517211号公報(第2−3頁、図1)
【0009】
【発明が解決しようとする課題】
本発明は、波形鋼板ウエブPC桁の閉合部橋体の施工に係る技術であって、コンクリート全荷重を支持する大掛りな梁式支保工材を必要としない施工方法、又は梁式支保工材に作用する荷重を軽減し軽量化した作業用支保工によって施工することができる施工方法を提供することを目的とするものである。
【0010】
すなわち、本発明は、波形鋼板ウエブを用いた軽量な桁を橋体とする橋梁を架設する場合に適用される技術であって、閉合部を地上からの支保工によって構築することが出来ない条件の下での架設作業時に、その閉合部の橋体の波形鋼板ウエブのみを架設し、この波形鋼板ウエブに施工コンクリート荷重を負担させることによって施工するか、又は、施工全荷重を負担する必要のない簡易な作業用支保工によって施工し、上記目的を達成しようとするものである。
【0011】
【課題を解決するための手段】
本発明は、上記課題を解決するために開発されたもので、その技術手段は、波形鋼板ウエブPC橋の閉合部橋体を施工するに当り、閉合部に主桁コンクリート荷重を負担させる波形鋼板ウエブ連結体を架設し、下床版コンクリートを打設し、次いで上床版コンクリートを打設し、連続外ケーブルを張設して緊張することを特徴とする波形鋼板ウエブPC橋閉合部の施工方法である。
【0012】
本発明は前記閉合部が側径間である橋体を施工するに当り、波形鋼板ウエブ連結体の一端を既張出施工橋体の先端に連結し他端を橋台上に載置し、下床版コンクリートを打設することを特徴とする波形鋼板ウエブPC橋閉合部の施工方法であり、この場合に、前記下床版コンクリートの打設を、既張出施工橋体側から順次施工してコンクリートと波形鋼板ウエブ連結体との断面急変部の局部応力を緩和するようにすると、容易に合理的に施工をすることができ、特に長い側径間では好適である。また、前記上床版コンクリートの打設を既張出施工橋体側から順次施工すると、上記と同様の理由により好ましい。
【0013】
閉合部が中央径間である橋体を施工する場合には、通常は閉合部の閉合距離は小さいから既張出施工橋間に単に型枠を取付けて閉合することができるが、地形その他の理由に基づきスパンの割付け等の都合によって中央径間の閉合距離が大きくなることがある。その場合には次の本発明を適用する。
【0014】
すなわち、本発明は、前記閉合部が中央径間である橋体を施工するに当り、中央径間の閉合距離と一致する前記波形鋼板ウエブ連結体の両端を既張出施工橋体の先端にそれぞれ連結し、下床版コンクリートを打設することを特徴とする波形鋼板ウエブPC橋閉合部の施工方法である。この場合、前記下床版コンクリートの打設、あるいは上床版コンクリートの打設を、一方又は両方の既張出施工橋体側から順次施工することとすれば、特に長い中央径間の閉合部橋体を施工するときに好適である。
【0015】
上記閉合部の施工の場合に、必要に応じて、波形鋼板ウエブ連結体の架設に作業用ガーダを用い、下床版コンクリート打設後に、前記作業用ガーダを撤去することにより下床版コンクリートに圧縮応力度を与え、下床版コンクリートの引張り応力度を緩和することとすればよい。この場合、波形鋼板ウエブPC橋の特質を充分に生かし、波形鋼板ウエブとその下床版コンクリート施工だけができる簡易な作業用ガーダを用いて、波形鋼板ウエブと下床版とからなる暫定桁を形成し、この暫定桁が上床版コンクリート施工時の荷重を支持するようにし、暫定桁形成後にガーダを撤去可能にした。従って、ガーダは、大規模なガーダを必要としない。これは波形鋼板ウエブが大きな縦剛性を有し、軽量であるという特性を巧妙に利用することによって達成されるものである。
【0016】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態を説明する。
【0017】
図12は本発明を適用した実施例の橋梁の側面図を示すものである。全長495mの4径間の連続ラーメン橋である。各基礎101、101a、101b上に立設された橋脚100、100a、100b上から左右に橋体を張出し延出して張出橋体110を構築し、橋脚間の中間の閉合部で互いに接続する。図の向かって左端部は、張出橋体110と、橋台50との間の側径間閉合部120には、閉合部の橋体115を施工する。
【0018】
実施例では、この側径間閉合部120の下方には、貴重な植物が生育しているため地上から支保工を構築することが出来ない。かつ、トンネル坑口が橋台に隣接しているため施工条件が制約されている。この閉合部120の支間長は上り線が約31m、下り線が約46mであり、通常は、橋体施工中の荷重をすべて負担する大型トラスガーダを新規製作して、この大型トラスガーダを用いて架橋する必要があった。
【0019】
ここで、施工性や経済性などを考慮して、波形鋼板ウエブを先行架設する施工技術を開発した。この施工技術によれば、閉合部橋体の架橋工程における主桁コンクリート荷重を波形鋼板ウエブに負担させることができ、大型トラスガーダを必要としない。
【0020】
場合によっては、波形鋼板ウエブ及び下床版コンクリート施工用足場のみを支承することができる小規模なガーダを使用して閉合部を施工することが可能となる。従って、大規模なガーダを製作する必要がなくなった。
【0021】
図1、図2に実施例の側径間の閉合部の橋体の施工手順を示す。この実施例は作業用ガーダ40を用いた例を示している。
【0022】
本発明によると下床版コンクリート打設時の抵抗断面は波形鋼板のみであり、上床版コンクリート打設時の抵抗断面は、波形鋼板と下床版コンクリートとの合成桁(暫定桁)となる。
【0023】
第1工程:図1(a)に示すように、既設張出桁110の先端111と橋台50上に支脚41、42を立設して、ガーダ40を架け渡し、このガーダ40により波形鋼板ウエブ10を吊って側径間閉合部に架設する。
【0024】
第2工程:図1(b)に示すように、波形鋼板ウエブ10の一端を既設張出桁110の先端111に結合し、他端を橋台50の上に載置する。
【0025】
第3工程:図1(c)に示すように、ガーダ40を用いて下床版コンクリート20の施工用足場を吊り下げ、下床版コンクリート20の型枠21を波形鋼板ウエブ10に取り付け、下床版コンクリートを、各打設長23で示すように、長さ約6mごとに、既設張出桁110側から矢印22で示す方向に順次打設する。適切な打設長ごとに施工し、コンクリートと波形鋼板ウエブ連結体との断面急変部の局部応力を緩和する。このとき下床版コンクリートの打設荷重は波形鋼板ウエブ10により支持する。下床版コンクリート20は補強PC鋼材で緊張し順次一体化しながら施工する。側径間の波形鋼板ウエブ10と下床版コンクリート20との合成桁(暫定桁)は、上床版コンクリート打設時の荷重を負担することができるように設計される。
【0026】
第4工程:図2(d)に示すように、ガーダ40を矢印43で示すように、撤去する。ガーダ40を撤去することにより下床版コンクリート20に圧縮応力度を与え、下床版コンクリート20の引張応力度が緩和される。
【0027】
第5工程:図2(e)に示すように、上床版コンクリート30を既設張出桁110側から順次打設する。この上床版コンクリートの施工は、波形鋼板ウエブ10と下床版コンクリート20とからなる暫定桁に上床版コンクリート30の型枠を取付け、各打設長31で示すように、長さ約6mごとにコンクリートを打設し、矢印32で示すように進行する。このとき、上記暫定桁がコンクリート荷重を支持する。
【0028】
第6工程:図2(f)に示すように、連続外ケーブル33を張設しこれを緊張し、閉合部の橋体架設を完了する。
【0029】
【実施例】
実施例の全体一般図を図12に示す。実施例は、全長495mの4径間の連続ラーメン橋である。側径間閉合部はトンネルに隣接し、地形的には急峻な斜面121となっており、この斜面にはイシモチソウ、オオヒキヨモギ、ヒメコヌカグサなどの全国的に見ても貴重な植物が生育していることから、斜面上に橋脚を設置することが避けられ、側径間閉合部の長い支間割りとなった。
【0030】
この結果、長大支間に適用可能なPCエクストラドーズド橋が選定され、さらに死荷重の軽減を図って波形鋼板ウエブ構造が採用された。図12の向かって左側から、橋脚100、100a、100bを立設し、各スパンは約140m、170m、120m、70mとし、橋脚100上には主塔102を設け、斜張ケーブル112を張設している。
【0031】
主桁は、広幅員2面吊り構造に対応するため、図3に横断面を示すように、波形鋼板ウエブ橋としては世界初の3室箱桁断面とした。上床版幅約20m、下床版幅約14m、桁高4.5〜7.5mである。また、鋼・コンクリート複合構造を積極的に採用し、斜材の主桁側定着部を鋼製ダイヤフラム構造とすることによって自重の軽減を図った。
【0032】
また、桁断面中間部の波形鋼板ウエブの上下フランジは、一般部の桁断面では厚さ19mm、フランジ幅360mmの不連続型とし、閉合部の桁では、上フランジは厚さ40〜46mm、フランジ幅750mm、下フランジは厚さ40mm、フランジ幅500mmとし、側径間施工時の荷重に抵抗することができる部材厚さとしている。
【0033】
施工的には、閉合部部に支保工が立てられないという制約条件があるので、約30mの閉合部部の施工は、波形鋼板ウエブを先行架設し、主桁コンクリート荷重を波形鋼板ウエブに負担させるという新しい施工方法を採用した。
【0034】
閉合部部について、平面骨組解析(FRAME)による床版コンクリートの軸方向応力度を図4〜図6に、鋼フランジの軸方向応力度を図7〜9に示した。横軸は、主塔からの距離(m)を示し、縦軸は軸方向応力度(N/mm)を示し、+は圧縮、−は引張りを示す。図中、◆印は上縁の応力度、□印は下縁の応力度を示す。下床版コンクリート打設時にプレグラウト鋼材(1S28.6)を8本配置し、コンクリート引張応力度を2.0N/mm以下に制御した。
【0035】
図4は下床版コンクリート打設後のコンクリートの軸方向応力度σcを示し、下床版鋼フランジも主桁全断面も応力は小さい。図5はガーダ撤去後のコンクリートの軸方向応力度σcを示し、下床版鋼フランジも主桁全断面も応力は許容範囲内である。図6は上床版打設後のコンクリートの軸方向応力度σcを示すもので、下床版鋼フランジも主桁全断面も応力は許容範囲内である。
【0036】
図7は下床版コンクリート打設後の鋼フランジの軸方向応力度σxを示し、鋼フランジも下床版鋼フランジも主桁全断面も応力は小さい。図8はガーダ撤去後の鋼フランジの軸方向応力度σxを示し、下床版鋼フランジも主桁全断面も応力は許容範囲内である。図9は上床版打設後の鋼フランジの軸方向応力度σxを示すもので、下床版鋼フランジも主桁全断面も応力は許容範囲内である。鋼フランジ上縁の圧縮応力度は、上床版コンクリート打設時に最大170N/mm程度となっている。
【0037】
【発明の効果】
本発明によれば、張出し架設橋体の閉合部の施工において、波形鋼板を先行架設し、これに主桁コンクリート荷重を負担させることによって、大掛りな梁式支保工を省略又は軽量化することができるようになった。また、先行架設した波形鋼板ウエブに、分割打設した主桁コンクリートを随時合成して、断面合成を段階的に増加させることによって、鋼部材及び接合部に生じる応力度を低減することができる。さらに、下床版コンクリートの打設を完了した段階で、波形鋼板の架設に使用したガーダを撤去することによって、下床版コンクリートに圧縮応力を与えることができる。
【図面の簡単な説明】
【図1】実施例の閉合部の橋体の施工手順を示す工程図である。
【図2】実施例の閉合部の橋体の施工手順を示す工程図である。
【図3】波形鋼板ウエブ桁の横断面図である。
【図4】床版コンクリートの軸方向応力度を示すグラフである。
【図5】床版コンクリートの軸方向応力度を示すグラフである。
【図6】床版コンクリートの軸方向応力度を示すグラフである。
【図7】鋼フランジの軸方向応力度を示すグラフである。
【図8】鋼フランジの軸方向応力度を示すグラフである。
【図9】鋼フランジの軸方向応力度を示すグラフである。
【図10】閉合部の橋体の施工を示す側面図である。
【図11】閉合部の橋体の施工を示す側面図である。
【図12】実施例の橋梁の側面図である。
【符号の説明】
10 波型鋼板ウエブ
20 下床版コンクリート
21 型枠
22 矢印
23 打設長
30 上床版コンクリート
31 打設長
32 矢印
33 連続外ケーブル
40 ガーダ
41、42 支脚
43 矢印
50 橋台
100 橋脚
101 基礎
102 主塔
110 橋体
111 端部
112 斜張ケーブル
115 橋体
120 閉合部
121 斜面
130 H形鋼
140 トラス梁
141 作業足場
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method of constructing a closed portion between side spans or a center span in erection of a corrugated steel web PC bridge.
[0002]
[Prior art]
Generally, when a bridge can be built up from the ground at the construction point of the closed part, the support is formed and the bridge is constructed on this bridge. Is done. However, in some cases, it is not possible to install a shoring, in which case a beam type shoring is spanned between the abutment and the end of the overhanging girder to support the concrete load and construct the bridge between the side spans. Is adopted.
[0003]
In addition, the closing portion between the center spans is usually cast with concrete between the ends of the existing overhanging girders by bridging a formwork. However, depending on the bridge condition on the terrain, the closed portion between the center diameters may be long due to span splitting. In this case, it is inevitable to use a beam type shoring between the ends of the overhanging girders to support the concrete load and to construct the closed bridge between the center spans.
[0004]
In the above case, the beam-type support member needs a function of supporting all loads during the construction period of the closing portion. FIGS. 10 and 11 are side views in the case of constructing a bridge body 115 having side spans as such a closed portion. When there is a situation where it is not possible to erect a shoring from the ground when constructing a bridge body 115 between side spans between the overhang bridge body 110 overhanged from the pier 100 and the abutment 50. Use beam type shoring. FIG. 10 shows a case where the construction length of the bridge body 115 at the closed portion between the side diameters is relatively short, and the beam type support is provided between the end 111 of the bridge body 110 overhanged and the abutment 50. An H-shaped steel 130 is erected as a work, and all the construction load of the bridge body 115 between the side spans is borne by the H-shaped steel 130.
[0005]
FIG. 11 shows an example in which the construction length of the bridge body 115 at the closing portion (side span) is long. A large-scale truss beam 140 is used as a beam type support, and the large-scale truss beam 140 is used. , The work scaffold 141 is suspended, and the construction load of the bridge 115 at the closing portion is entirely borne by the scaffold, and the bridge 115 is erected.
[0006]
In such a case, for example, the girder of the closing portion is divided into a plurality of block girder, support bases are provided on both sides of the construction span, temporary beams are bridged, and the predetermined girder is provided by an erection vehicle provided with the block girder on the temporary girder. There is a technique in which a bridge girder is installed at a position, a block girder is sequentially suspended by a temporary beam and supported, and each block girder is connected and integrated into a simple beam to construct a bridge body at a closed portion (for example, see Patent Document 1). .).
[0007]
In this technique, a bridge girder installed on a span to be constructed is suspended as a simple beam. Each block is successively extended and overhanged by wagen construction. This method requires a strong temporary girder to support all concrete loads.
[0008]
[Patent Document 1]
Japanese Patent No. 2517211 (page 2-3, FIG. 1)
[0009]
[Problems to be solved by the invention]
The present invention relates to a technique relating to the construction of a closed bridge body of a corrugated steel web PC girder, and is a construction method that does not require a large beam-type supporting material for supporting a full load of concrete, or a beam-type supporting material. It is an object of the present invention to provide a construction method which can be constructed by a work supporting structure which reduces a load acting on a work and which is reduced in weight.
[0010]
That is, the present invention is a technique applied when a bridge having a lightweight girder using a corrugated steel web as a bridge body is erected, and a condition in which a closed portion cannot be constructed by a support from the ground. It is necessary to install only the corrugated steel web of the bridge body of the closed part during the erection work under the construction and to carry out the concrete load on this corrugated steel web, or to carry the full construction load. It is intended to achieve the above-mentioned purpose by using a simple work support.
[0011]
[Means for Solving the Problems]
The present invention has been developed in order to solve the above-mentioned problems, and the technical means is for corrugated steel plates to bear a main girder concrete load in the closed portion when constructing a closed bridge body of a corrugated steel web PC bridge. A method of constructing a closed section of a corrugated steel web PC bridge, comprising laying a web connection body, placing concrete on a lower slab, then placing concrete on an upper slab, stretching a continuous outer cable, and tensioning. It is.
[0012]
In the present invention, when constructing a bridge body in which the closed portion is a side span, one end of the corrugated steel web connection body is connected to the tip of the overhanging bridge body, the other end is placed on the abutment, and It is a construction method of a corrugated steel web PC bridge closing portion characterized by placing floor slab concrete, and in this case, the lower floor slab concrete placement is performed sequentially from the overhanging bridge body side. When the local stress at the suddenly changing section between the concrete and the corrugated steel web web is relaxed, the construction can be easily and rationally performed, and is particularly suitable for a long span. In addition, it is preferable that the placing of the upper floor slab concrete be sequentially performed from the side of the overhanging bridge body for the same reason as described above.
[0013]
In the case of constructing a bridge with a closed part with a central span, the closing distance of the closed part is usually small, so it is possible to simply close the form by attaching a formwork between the overhanging bridges. , The closing distance between the center diameters may be increased due to circumstances such as span assignment. In that case, the following invention is applied.
[0014]
That is, in the present invention, when constructing a bridge body in which the closed portion is a center span, both ends of the corrugated steel web linked body corresponding to the closing distance between the center spans are attached to the tip of the overhanging bridge body. This is a method for constructing a closed section of a corrugated steel web PC bridge, which is connected to each other and casts a lower deck slab concrete. In this case, if the casting of the lower slab concrete or the placing of the upper slab concrete is to be sequentially performed from one or both of the overhanging bridge bodies, a closed part bridge body having a particularly long central diameter is particularly preferable. It is suitable when constructing.
[0015]
In the case of the construction of the closing portion, if necessary, using a working girder for erection of the corrugated steel web connection body, after placing the lower slab concrete, by removing the working girder to the lower slab concrete. What is necessary is just to give a compressive stress degree and relieve the tensile stress degree of the lower slab concrete. In this case, making full use of the characteristics of the corrugated steel web PC bridge, the provisional girder consisting of the corrugated steel web and the lower slab is formed using a simple work girder that can only perform the corrugated steel web and its lower slab concrete. The provisional girder was formed so that the provisional girder could support the load during the construction of the upper slab, and the girder could be removed after the provisional girder was formed. Therefore, girder does not require large girder. This is achieved by cleverly utilizing the properties of corrugated steel webs having high longitudinal stiffness and light weight.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
FIG. 12 is a side view of a bridge according to an embodiment to which the present invention is applied. It is a continuous ramen bridge with a total length of 495m and a span of four. Bridges are erected from left and right on piers 100, 100a, 100b erected on the respective foundations 101, 101a, 101b to form overhang bridges 110, which are connected to each other at an intermediate joint between the piers. . At the left end in the figure, a bridge body 115 as a closed portion is constructed on the side span closed portion 120 between the overhang bridge body 110 and the abutment 50.
[0018]
In the embodiment, since a valuable plant is growing below the side span closing portion 120, it is not possible to construct a shoring from the ground. In addition, construction conditions are restricted because the tunnel entrance is adjacent to the abutment. The length of the span of the closing part 120 is about 31 m on the up line and about 46 m on the down line. Normally, a large truss girder that bears all the load during construction of the bridge body is newly manufactured and bridged using this large truss girder. I needed to.
[0019]
Here, in consideration of workability and economy, etc., a construction technique for pre-installing a corrugated steel web was developed. According to this construction technique, the main girder concrete load in the bridging process of the closed bridge can be applied to the corrugated steel web, and a large truss girder is not required.
[0020]
In some cases, it is possible to construct the closure using a small-scale girder capable of supporting only the corrugated steel sheet web and the lower floor slab concrete construction scaffold. Therefore, there is no need to produce a large girder.
[0021]
1 and 2 show a construction procedure of a bridge body of a closed portion between side diameters according to the embodiment. This embodiment shows an example in which a working girder 40 is used.
[0022]
According to the present invention, the resistance section at the time of placing the lower slab concrete is only the corrugated steel sheet, and the resistance section at the time of placing the upper slab concrete is a composite girder (temporary girder) of the corrugated steel sheet and the lower slab concrete.
[0023]
First step: As shown in FIG. 1A, the legs 41, 42 are erected on the tip 111 of the existing overhanging beam 110 and the abutment 50, and the girder 40 is bridged. 10 is suspended from the side span and closed.
[0024]
Second step: As shown in FIG. 1 (b), one end of the corrugated steel web 10 is connected to the tip 111 of the existing overhanging beam 110, and the other end is placed on the abutment 50.
[0025]
Third step: As shown in FIG. 1C, a scaffold for construction of the lower slab concrete 20 is suspended using the girder 40, and the formwork 21 of the lower slab concrete 20 is attached to the corrugated steel sheet web 10, and The floor slab concrete is cast in the direction indicated by the arrow 22 from the side of the existing overhang girder 110 about every 6 m in length as indicated by each casting length 23. Construction is carried out for each appropriate casting length to relieve the local stress at the suddenly changing section between the concrete and the corrugated steel web link. At this time, the casting load of the lower slab concrete is supported by the corrugated steel sheet web 10. The lower deck slab concrete 20 is constructed while being reinforced with a reinforced PC steel material while being sequentially integrated. The composite girder (temporary girder) of the corrugated steel sheet web 10 and the lower slab concrete 20 between the side diameters is designed to be able to bear the load at the time of placing the upper slab concrete.
[0026]
Fourth step: As shown in FIG. 2D, the girder 40 is removed as shown by an arrow 43. By removing the girder 40, a compressive stress is applied to the lower slab concrete 20, and the tensile stress of the lower slab concrete 20 is reduced.
[0027]
Fifth step: As shown in FIG. 2E, the upper slab concrete 30 is sequentially driven from the existing overhanging girders 110 side. The construction of the upper slab concrete is performed by attaching a formwork of the upper slab concrete 30 to a provisional girder composed of the corrugated steel web 10 and the lower slab concrete 20 and, as indicated by each casting length 31, every 6 m in length. Concrete is poured and proceeds as indicated by arrow 32. At this time, the provisional girder supports the concrete load.
[0028]
Sixth step: As shown in FIG. 2 (f), a continuous outer cable 33 is stretched and tightened to complete the bridge construction of the closed portion.
[0029]
【Example】
FIG. 12 shows an overall general view of the embodiment. The embodiment is a continuous ramen bridge having a total length of 495 m and a span of four. The side span closure is adjacent to the tunnel and has a steep slope 121 in terms of topography, and on this slope there are nationwide valuable plants, such as Ichimochisou, Ohikiyomogi and Himekonukagusa. Therefore, it was not necessary to install a pier on the slope, and the long span was closed at the side span closure.
[0030]
As a result, a PC extra-dosed bridge applicable to a long span was selected, and a corrugated steel web structure was adopted to further reduce dead load. 12, piers 100, 100a, and 100b are erected from the left side of FIG. 12, each span is about 140 m, 170 m, 120 m, and 70 m. A main tower 102 is provided on the pier 100, and a cable stay cable 112 is installed. are doing.
[0031]
The main girder is the world's first three-chamber box girder cross section of a corrugated steel web bridge as shown in the cross section in FIG. The width of the upper slab is about 20 m, the width of the lower slab is about 14 m, and the girder height is 4.5 to 7.5 m. In addition, the steel-concrete composite structure was actively adopted, and the main girder side anchoring part of the diagonal material was made of a steel diaphragm structure to reduce its own weight.
[0032]
The upper and lower flanges of the corrugated steel web at the middle part of the girder cross section are discontinuous with a thickness of 19 mm and a flange width of 360 mm in the girder cross section of the general part, and the upper flange of the girder of the closed part has a thickness of 40 to 46 mm. The width of the lower flange is 750 mm, the thickness of the lower flange is 40 mm, and the width of the flange is 500 mm.
[0033]
In terms of construction, there is a restriction that no support can be erected at the closed part, so for the construction of the closed part of about 30 m, the corrugated steel web is erected in advance and the main girder concrete load is loaded on the corrugated steel web. A new construction method was adopted.
[0034]
Regarding the closed portion, the axial stress of the slab concrete by plane frame analysis (FRAME) is shown in FIGS. 4 to 6, and the axial stress of the steel flange is shown in FIGS. The horizontal axis indicates the distance (m) from the main tower, the vertical axis indicates the axial stress (N / mm 2 ), + indicates compression, and − indicates tension. In the figure, the symbol ◆ indicates the stress level at the upper edge, and the symbol □ indicates the stress level at the lower edge. Eight pre-grouted steel materials (1S28.6) were placed at the time of placing concrete on the lower floor slab, and the concrete tensile stress was controlled to 2.0 N / mm 2 or less.
[0035]
FIG. 4 shows the degree of axial stress σc of the concrete after placing the concrete on the lower slab. The stress is small in both the steel flange of the lower slab and the entire cross section of the main girder. FIG. 5 shows the axial stress degree σc of the concrete after the girder was removed, and the stress was within the allowable range in both the lower deck slab steel flange and the entire cross section of the main girder. FIG. 6 shows the axial stress degree σc of the concrete after placing the upper slab. The stress is within the allowable range in both the lower slab steel flange and the entire cross section of the main girder.
[0036]
FIG. 7 shows the axial stress degree σx of the steel flange after casting the lower slab concrete. The stress is small in the steel flange, the lower slab steel flange, and the entire cross section of the main girder. FIG. 8 shows the axial stress degree σx of the steel flange after the girder was removed, and the stress was within the allowable range for the lower floor slab steel flange and the entire cross section of the main girder. FIG. 9 shows the axial stress degree σx of the steel flange after the upper slab is cast. The stress is within the allowable range in both the lower slab steel flange and the entire cross section of the main girder. The maximum compressive stress of the upper edge of the steel flange is about 170 N / mm 2 at the time of placing concrete on the upper floor slab.
[0037]
【The invention's effect】
According to the present invention, in the construction of the closing portion of the overhanging bridge body, the corrugated steel sheet is erected in advance and the main girder concrete load is borne, thereby omitting or reducing the weight of a large beam type support structure. Is now available. In addition, by combining the main girder concrete divided and cast on the corrugated steel sheet web erected in advance as needed, and increasing the cross-sectional composition stepwise, it is possible to reduce the stress degree generated in the steel member and the joint. Furthermore, at the stage where the placing of the lower slab concrete is completed, the girder used for erection of the corrugated steel plate is removed, so that a compressive stress can be applied to the lower slab concrete.
[Brief description of the drawings]
FIG. 1 is a process chart showing a procedure for constructing a bridge body of a closed portion according to an embodiment.
FIG. 2 is a process diagram showing a procedure for constructing a bridge body of a closing portion according to the embodiment.
FIG. 3 is a cross-sectional view of a corrugated steel web girder.
FIG. 4 is a graph showing an axial stress level of floor slab concrete.
FIG. 5 is a graph showing an axial stress degree of the slab concrete.
FIG. 6 is a graph showing an axial stress level of floor slab concrete.
FIG. 7 is a graph showing an axial stress degree of a steel flange.
FIG. 8 is a graph showing an axial stress degree of a steel flange.
FIG. 9 is a graph showing an axial stress degree of a steel flange.
FIG. 10 is a side view showing construction of a bridge body of a closing portion.
FIG. 11 is a side view showing construction of a bridge body at a closing portion.
FIG. 12 is a side view of the bridge according to the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Corrugated steel sheet web 20 Lower deck slab concrete 21 Formwork 22 Arrow 23 Casting length 30 Upper deck slab concrete 31 Casting length 32 Arrow 33 Continuous cable 40 Girder 41, 42 Leg 43 Arrow 50 Abutment 100 Bridge pier 101 Foundation 102 Main tower 110 bridge body 111 end 112 cable-stayed cable 115 bridge body 120 closing part 121 slope 130 H-section steel 140 truss beam 141 work scaffold

Claims (8)

波形鋼板ウエブPC橋の閉合部橋体を施工するに当り、閉合部に主桁コンクリート荷重を負担させる波形鋼板ウエブ連結体を架設し、下床版コンクリートを打設し、次いで上床版コンクリートを打設し、連続外ケーブルを張設して緊張することを特徴とする波形鋼板ウエブPC橋閉合部の施工方法。In constructing the bridge part of the corrugated steel web PC bridge, a corrugated steel web connecting body to bear the main girder concrete load is erected in the closed part, the lower slab concrete is poured, and then the upper slab concrete is laid. A method of constructing a closed section of a corrugated steel web PC bridge, wherein the cable is tensioned by stretching a continuous outer cable. 前記閉合部が側径間である橋体を施工するに当り、波形鋼板ウエブ連結体の一端を既張出施工橋体の先端に連結し他端を橋台上に載置し、下床版コンクリートを打設することを特徴とする請求項1記載の波形鋼板ウエブPC橋閉合部の施工方法。In constructing a bridge body in which the closing portion is a side span, one end of the corrugated steel web connection body is connected to the tip of the overhanging bridge body and the other end is placed on the abutment, and the lower slab concrete The method of claim 1, wherein the corrugated steel sheet web PC bridge closing portion is cast. 前記下床版コンクリートの打設を、既張出施工橋体側から順次施工してコンクリートと波形鋼板ウエブ連結体との断面急変部の局部応力を緩和することを特徴とする請求項2記載の波形鋼板ウエブPC橋閉合部の施工方法。3. The corrugation according to claim 2, wherein the lower floor slab concrete is cast sequentially from the overhanging bridge body side to relieve a local stress in a suddenly changing section between the concrete and the corrugated steel web link. Construction method of steel web PC bridge closure. 前記上床版コンクリートの打設を既張出施工橋体側から順次施工することを特徴とする請求項2又は3記載の波形鋼板ウエブPC橋閉合部の施工方法。The method according to claim 2 or 3, wherein the placing of the upper floor slab concrete is sequentially performed from the side of the overhanging bridge body. 前記閉合部が中央径間である橋体を施工するに当り、前記波形鋼板ウエブ連結体の両端を既張出施工橋体の先端にそれぞれ連結し、下床版コンクリートを打設することを特徴とする請求項1記載の波形鋼板ウエブPC橋閉合部の施工方法。In constructing a bridge body in which the closing portion is a center span, the both ends of the corrugated steel web connection body are respectively connected to the tips of the overhanging bridge body, and the lower deck slab concrete is cast. The method for constructing a closed section of a corrugated steel web PC bridge according to claim 1. 前記下床版コンクリートの打設を一方又は両方の既張出施工橋体側から順次施工してコンクリートと波形鋼板ウエブ連結体との断面急変部の局部応力を緩和することを特徴とする請求項5記載の波形鋼板ウエブPC橋閉合部の施工方法。6. The method according to claim 5, wherein the lower floor slab concrete is cast sequentially from one or both of the overhanging bridge bodies to relieve a local stress in a suddenly changing section between the concrete and the corrugated steel web web. The construction method of the closed section of the corrugated steel web PC bridge described in the above. 前記上床版コンクリートの打設を一方又は両方の既張出施工橋体側から順次施工することを特徴とする請求項5又は6記載の波形鋼板ウエブPC橋閉合部の施工方法。The construction method of a corrugated steel web PC bridge closure according to claim 5 or 6, wherein the placing of the upper deck slab concrete is sequentially performed from one or both of the overhanging bridge bodies. 波形鋼板ウエブ連結体の架設に作業用ガーダを用い、下床版コンクリート打設後に、前記作業用ガーダを撤去することにより、下床版コンクリートに圧縮応力度を与え、下床版コンクリートの引張り応力度を緩和することを特徴とする請求項1〜7の何れかに記載の波形鋼板ウエブPC橋閉合部の施工方法。A working girder is used for erection of the corrugated steel sheet web, and after placing the lower slab concrete, the working girder is removed to give a compressive stress degree to the lower slab concrete, and the tensile stress of the lower slab concrete is reduced. The method according to any one of claims 1 to 7, wherein the degree of relaxation is reduced.
JP2003118591A 2003-04-23 2003-04-23 Corrugated steel sheet web PC bridge closure method Expired - Lifetime JP4220295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003118591A JP4220295B2 (en) 2003-04-23 2003-04-23 Corrugated steel sheet web PC bridge closure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003118591A JP4220295B2 (en) 2003-04-23 2003-04-23 Corrugated steel sheet web PC bridge closure method

Publications (2)

Publication Number Publication Date
JP2004324164A true JP2004324164A (en) 2004-11-18
JP4220295B2 JP4220295B2 (en) 2009-02-04

Family

ID=33498090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003118591A Expired - Lifetime JP4220295B2 (en) 2003-04-23 2003-04-23 Corrugated steel sheet web PC bridge closure method

Country Status (1)

Country Link
JP (1) JP4220295B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108633A (en) * 2007-10-31 2009-05-21 Ps Mitsubishi Construction Co Ltd Corrugated steel sheet web bridge construction apparatus and construction method of corrugated steel sheet web bridge
JP2009144411A (en) * 2007-12-13 2009-07-02 Central Nippon Expressway Co Ltd Moving work vehicle assembling/disassembling omission method for cantilever erection method, and corrugated steel plate for use in the same
CN102011369A (en) * 2010-11-12 2011-04-13 中铁十二局集团第二工程有限公司 Construction method of steel shells of bridge closure segments striding over various roads
KR101242842B1 (en) 2012-07-31 2013-03-12 권예지 Construction method for corrugated steel plate web-psc composite beam
CN107386125A (en) * 2017-09-01 2017-11-24 崔欣 The construction method that a kind of Steel Box Girder of Self-Anchored Suspension beam closes up
CN108396651A (en) * 2018-02-06 2018-08-14 中铁二院昆明勘察设计研究院有限责任公司 A kind of box hat chute system and construction method
CN109736206A (en) * 2019-01-28 2019-05-10 宁波交通工程建设集团有限公司 Wavelike steel webplate continuous bridge end bay closes up cast-in-place support structure and construction method
CN112323640A (en) * 2020-11-10 2021-02-05 中交二公局第三工程有限公司 Construction method for temporary cable-stayed corrugated steel web bridge through closure of web in advance
CN113512943A (en) * 2021-04-13 2021-10-19 中交二公局东萌工程有限公司 Continuous rigid frame bridge side span cast-in-place section and closure section construction method
CN115094775A (en) * 2022-07-22 2022-09-23 武汉理工大学 Large-span PC continuous rigid frame bridge non-counterweight closure construction method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7063532B2 (en) 2016-08-17 2022-05-09 東芝ライフスタイル株式会社 Washing machine

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108633A (en) * 2007-10-31 2009-05-21 Ps Mitsubishi Construction Co Ltd Corrugated steel sheet web bridge construction apparatus and construction method of corrugated steel sheet web bridge
JP2009144411A (en) * 2007-12-13 2009-07-02 Central Nippon Expressway Co Ltd Moving work vehicle assembling/disassembling omission method for cantilever erection method, and corrugated steel plate for use in the same
CN102011369A (en) * 2010-11-12 2011-04-13 中铁十二局集团第二工程有限公司 Construction method of steel shells of bridge closure segments striding over various roads
CN102011369B (en) * 2010-11-12 2013-01-23 中铁十二局集团第二工程有限公司 Construction method of steel shells of bridge closure segments striding over various roads
KR101242842B1 (en) 2012-07-31 2013-03-12 권예지 Construction method for corrugated steel plate web-psc composite beam
CN107386125A (en) * 2017-09-01 2017-11-24 崔欣 The construction method that a kind of Steel Box Girder of Self-Anchored Suspension beam closes up
CN107386125B (en) * 2017-09-01 2019-04-26 崔欣 A kind of construction method that Steel Box Girder of Self-Anchored Suspension beam closes up
CN108396651B (en) * 2018-02-06 2023-05-16 中铁二院昆明勘察设计研究院有限责任公司 Steel shell slideway system and construction method
CN108396651A (en) * 2018-02-06 2018-08-14 中铁二院昆明勘察设计研究院有限责任公司 A kind of box hat chute system and construction method
CN109736206A (en) * 2019-01-28 2019-05-10 宁波交通工程建设集团有限公司 Wavelike steel webplate continuous bridge end bay closes up cast-in-place support structure and construction method
CN109736206B (en) * 2019-01-28 2023-11-28 宁波交通工程建设集团有限公司 Cast-in-situ bracket structure for bridge side span closure of corrugated steel web continuous beam and construction method
CN112323640A (en) * 2020-11-10 2021-02-05 中交二公局第三工程有限公司 Construction method for temporary cable-stayed corrugated steel web bridge through closure of web in advance
CN112323640B (en) * 2020-11-10 2023-11-07 中交二公局第三工程有限公司 Construction method for temporary cable-stayed corrugated steel web bridge advanced closure web
CN113512943A (en) * 2021-04-13 2021-10-19 中交二公局东萌工程有限公司 Continuous rigid frame bridge side span cast-in-place section and closure section construction method
CN115094775A (en) * 2022-07-22 2022-09-23 武汉理工大学 Large-span PC continuous rigid frame bridge non-counterweight closure construction method
CN115094775B (en) * 2022-07-22 2023-04-18 武汉理工大学 Large-span PC continuous rigid frame bridge non-counterweight closure construction method

Also Published As

Publication number Publication date
JP4220295B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
CN109972517B (en) Construction method of main beam of cable-stayed bridge with steel-concrete composite beam
CN106906748B (en) Based on the construction method for mixing prestressed assembled corrugated steel web plate composite box girder
JP2004520511A (en) Prestressed synthetic truss girder and method of manufacturing the same
CN102713071A (en) Method for constructing a suspension bridge using temporary cables under tensionless stay cable conditions, and temporary cable for same
KR20130036890A (en) Tied arched p.s.c girder for bridge and construction method for bridge by it
JP2007077630A (en) Continuous girder using precast main-girder segment, and its erection method
CN113638304B (en) Concrete beam type bridge hidden cover beam structure system and construction method thereof
JP2004324164A (en) Method of constructing corrugated steel web pc bridge closure section
KR100823448B1 (en) The improved seismic resistant continuation structure of prestressed concrete composite beam bridge and method thereof
CN108221704B (en) Four-beam type I-steel-concrete composite beam for bridge and construction method
JP2001348815A (en) Cantilever type installing construction method of bridge
CN112982139A (en) Wide-width large-span hybrid beam and short-tower cable-stayed bridge system and construction method thereof
JP2004076457A (en) Method for building steel pc composite bridge
JP2004183433A (en) Box girder bridge structure and its construction method
KR20120054832A (en) Fcm construction method using i-girder
JP2963879B2 (en) Bridge girder
JP2000104221A (en) Combined truss bridge and erection method of the same
KR101734304B1 (en) Manufacturing Method of Efficient Steel-Concrete Composite Girder, Construction Method of Continuous Bridges using such Composite Girder, and Continuous Bridges constructed by such Method
KR200284234Y1 (en) prestressed concrete girder bridge structure rigidly joined to abutment by prestressing
Mato et al. Design and construction of composite tubular arches with network suspension system: recent undertakings and trends
CN113802450A (en) Steel concrete composite beam structure and construction method
CN112962455A (en) Cable-first-beam-second segment hoisting self-anchored suspension bridge construction method
JP2004156343A (en) Composite truss bridge and its construction method
CN218989851U (en) Fully assembled steel-concrete plate truss combined bridge
CN220364850U (en) Arch-beam-Y-shaped pier combined landscape bridge with all-steel structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4220295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141121

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term