JP2004323705A - Liquid-crystalline polyester resin composition - Google Patents

Liquid-crystalline polyester resin composition Download PDF

Info

Publication number
JP2004323705A
JP2004323705A JP2003121283A JP2003121283A JP2004323705A JP 2004323705 A JP2004323705 A JP 2004323705A JP 2003121283 A JP2003121283 A JP 2003121283A JP 2003121283 A JP2003121283 A JP 2003121283A JP 2004323705 A JP2004323705 A JP 2004323705A
Authority
JP
Japan
Prior art keywords
polyester resin
crystalline polyester
liquid
parts
anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003121283A
Other languages
Japanese (ja)
Inventor
Shinji Otomo
新治 大友
Koichi Mizumoto
孝一 水本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003121283A priority Critical patent/JP2004323705A/en
Publication of JP2004323705A publication Critical patent/JP2004323705A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid-crystalline polyester resin composition capable of producing a molding excellent in lightweight nature. <P>SOLUTION: [1] The liquid-crystalline polyester resin composition contains a liquid-crystalline polyester resin and a hollow spherical body, the content of which being 1-100 pts.wt. based on 100 pts.wt. of the liquid-crystalline polyester resin and the strength of which being ≥1,000 kg/cm<SP>2</SP>. [2] The composition according to the above [1] further contains an inorganic filler, which is ≤40 pts.wt. based on 100 pts.wt. of the liquid-crystalline polyester resin. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、液晶性ポリエステル樹脂組成物に関する。
【0002】
【従来の技術】
液晶性ポリエステル樹脂は、耐熱性、機械物性に優れ、溶融時の流動性にも優れていることから、精密成形が可能な材料の1つとして、電気・電子分野で使用されている。近年、電気・電子分野においては、部品として用いられる成形品の小型化、軽量化、高性能化の要求が強くなってきており、これに伴い、成形品の軽量化が求められている。
成形品の軽量化の方法としては、液晶性ポリエステル樹脂に従前の中空球体を配合した樹脂組成物を用いる方法を提案しているが(特許文献1参照)、従前の中空球体を配合した樹脂組成物を用いて得られる成形品は、なお軽量化の余地が残されていた。
【0003】
【特許文献1】
特開2001−172479
【0004】
【発明が解決しようとする課題】
本発明の目的は、軽量性に優れた成形品を製造し得る液晶性ポリエステル樹脂組成物を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、上記したような問題点を解決し得る液晶性ポリエステル樹脂組成物を見出すべく、鋭意検討を重ねた結果、液晶性ポリエステル樹脂とある種の中空球体とを含有する樹脂組成物が、軽量性に優れた成形品を与えることを見出し、本発明を完成させるに至った。
即ち、本発明は、液晶性ポリエステル樹脂と中空球体とを含み、液晶性ポリエステル樹脂100重量部に対して中空球体が1〜100重量部であり、中空球体の強度が1000kg/cm以上であることを特徴とする液晶性ポリエステル樹脂組成物を提供するものである。
【0006】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の液晶性ポリエステル樹脂組成物は、液晶性ポリエステル樹脂と中空球体とを含むものである。
使用される液晶性ポリエステル樹脂は、サーモトロピック液晶ポリマーと呼ばれるポリエステルであり、450℃以下の温度で異方性溶融体を形成するものである。
液晶性ポリエステル樹脂としては、例えば、
(1)芳香族ジカルボン酸、芳香族ジオール、芳香族アミノフェノールおよび芳香族ヒドロキシカルボン酸の組み合わせからなるもの、
(2)異種の芳香族ヒドロキシカルボン酸からなるもの、
(3)芳香族ジカルボン酸と芳香族ジオールとの組み合わせからなるもの、
(4)ポリエチレンテレフタレートなどのポリエステルに芳香族ヒドロキシカルボン酸を反応させたもの、
などが挙げられる。
なお、これらの芳香族ジカルボン酸、芳香族ジオールおよび芳香族ヒドロキシカルボン酸の代わりに、それらのエステル形成性誘導体を使用してもよい。
【0007】
本発明で用いる液晶ポリエステルの構造単位としては、例えば、下記のものが挙げられるが、これらに限定されるものではない。
芳香族ヒドロキシカルボン酸に由来する構造単位:

Figure 2004323705
上記、繰り返し構造単位は、ハロゲン原子またはアルキル基で置換されていてもよい。
【0008】
芳香族ジオールに由来する繰り返し構造単位:
Figure 2004323705
上記、繰り返し構造単位は、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。
【0009】
芳香族ジカルボン酸に由来する構造単位:
Figure 2004323705
上記、繰り返し構造単位は、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。
【0010】
芳香族アミノフェノールに由来する構造単位:
Figure 2004323705
上記、繰り返し構造単位は、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。
なお、上記のアルキル基としては、炭素数1〜10のアルキル基が好ましく、上記のアリール基としては炭素数6〜20のアリール基が好ましい。
【0011】
耐熱性、機械物性、加工性のバランスの観点から、液晶性ポリエステル樹脂は、前記(I)、(II)式で示される構造単位の合計が30〜70モル%であることが好ましい。
前記構造単位の組み合わせとしては、例えば、以下の(A)〜(D)の組み合わせなどが挙げられる。
(A):(I)、(III)、(IV)、(V)
(B):(A)の構造単位の組み合わせにおいて、(VI)を加えたもの
(C):(I)(II)(III)(IV)
(D):(C)の構造単位の組み合わせにおいて、(VI)を加えたもの
【0012】
本発明で用いる液晶ポリエステルの製造方法は、特に限定されないが、例えば、芳香族ヒドロキシカルボン酸、芳香族ジオール及び芳香族アミノフェノールからなる群から選ばれる少なくとも1種を過剰量の脂肪酸無水物によりアシル化してアシル化物を得、得られたアシル化物と、芳香族ヒドロキシカルボン酸及び芳香族カルボン酸からなる群から選ばれる少なくとも1種とをエステル交換(重縮合)することにより溶融重合する方法が挙げられる。アシル化物としては、予めアシル化して得た脂肪酸エステルを用いてもよい(特開2002−220444、特開2002−146003)。
【0013】
アシル化反応においては、脂肪酸無水物の添加量がフェノール性水酸基の1.0〜1.2倍当量であることが好ましく、より好ましくは1.05〜1.1倍当量である。脂肪酸無水物の添加量が1.0倍当量未満では、エステル交換(重縮合)時にアシル化物や芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸などが昇華し、反応系が閉塞しやすい傾向があり、また、1.2倍当量を超える場合には、得られる芳香族液晶ポリエステルの着色が著しくなる傾向がある。アシル化反応は、130℃〜180℃で10分〜10時間反応させることが好ましく、140〜160℃で30分〜3時間反応させることがより好ましい。
【0014】
アシル化反応に使用される脂肪酸無水物は、特に限定されないが、例えば、無水酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸、無水吉草酸、無水ピバル酸、無水2エチルヘキサン酸、無水モノクロル酢酸、無水ジクロル酢酸、無水トリクロル酢酸、無水モノブロモ酢酸、無水ジブロモ酢酸、無水トリブロモ酢酸、無水モノフルオロ酢酸、無水ジフルオロ酢酸、無水トリフルオロ酢酸、無水グルタル酸、無水マレイン酸、無水コハク酸、無水β−ブロモプロピオン酸等が挙げられるが、特に限定されるものでない。これらは2種類以上を混合して用いてもよい。価格と取り扱い性の観点から、無水酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸が好ましく使用され、無水酢酸がより好ましく使用される。
【0015】
エステル交換においては、アシル化物のアシル基がカルボキシル基の0.8〜1.2倍当量であることが好ましい。
【0016】
エステル交換は、130〜400℃で0.1〜50℃/分の割合で昇温しながら行なうことが好ましく、150〜350℃で0.3〜5℃/分の割合で昇温しながら行なうことが好ましい。
【0017】
アシル化して得た脂肪酸エステルとカルボン酸とをエステル交換させる際、平衡を移動させるため、副生する脂肪酸と未反応の脂肪酸無水物は、蒸発させるなどして系外に除去することが好ましい。
【0018】
エステル交換による重縮合は、通常、溶融重合により行なわれるが、溶融重合と固相重合とを併用してもよい。固相重合は、溶融重合工程からポリマーを抜出し、その後、粉砕してパウダー状もしくはフレーク状にした後、公知の固相重合方法により行なうことが好ましい。具体的には、例えば、窒素などの不活性雰囲気下、20〜350℃、1〜30時間固相状態で熱処理する方法などが挙げられる。固相重合は、攪拌しながらでも、攪拌することなく静置した状態で行なってもよい。なお適当な攪拌機構を備えることにより溶融重合槽と固相重合槽とを同一の反応槽とすることもできる。固相重合後、得られた液晶ポリエステルは、公知の方法によりペレット化し、成形してもよい。
【0019】
本発明で用いる中空球体は、機械的強度(破壊抑制)の観点から、強度が1000kg/cm以上であることが必要であり、1000〜1800kg/cmであることが好ましく、1200〜1800kg/cmであることがより好ましい。
中空球体の平均粒径は、成形性や機械的強度(破壊抑制)の観点から、5μm〜100μmであることが好ましく、10μm〜50μmであることがより好ましい。
中空球体の体積中空率は、72%〜80%であることが好ましく、75%〜78%であることがより好ましい。
中空球体の真密度(真比重)は、0.5〜0.7g/cmであることが好ましく、0.55〜0.65g/cmであることがより好ましい。
【0020】
中空球体は、比重や剛性のバランスの観点から、液晶ポリエステル樹脂100重量部に対して、1〜100重量部であることが必要であり、5〜40重量部であることが好ましく、5〜20重量部であることがより好ましい。
【0021】
本発明で用いる中空球体は、一般にバルーンと呼ばれているものであり、中空球体の材料としては、例えば、アルミナ、シリカ、ガラスなどの無機材料;尿素樹脂、フェノール樹脂等の有機材料、これらの二種以上が混合された材料などが挙げられる。これらの材料の中で、耐熱性や強度の観点からガラスが好ましい。よって、中空球体としては、ガラスバルーンが好適に用いられる。
【0022】
本発明の液晶性ポリエステル樹脂組成物には、本発明の目的を損なわない範囲で、アルミナ繊維、ボロン繊維、チタン酸カリウム繊維、アスベクト、シリカ、水酸化アルミニウム、炭酸カルシウム、ガラス繊維、炭素繊維、ウォラスナイト、タルク、マイカ、グラファイトなどの無機フィラー、硬化エポキシ樹脂、架橋ベンゾグアナミン樹脂、架橋アクリルポリマーなどの有機フィラー、ポリアミド、ポリエステル、ポリフェニレンスルフィド、ポリエーテルケトン、ポリカーボネート、ポリエーテルスルホン、ポリフェニルエーテル及びその変性物、ポリエーテルイミド等などの熱可塑性樹脂、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、シアネート樹脂などの熱硬化性樹脂、シランカップリング剤、酸化防止剤、紫外線吸収剤などの各種添加剤を一種または二種以上を添加してもよい。
これら材料の中では無機繊維が好ましく、中でもガラス繊維が好適に用いられる。
【0023】
無機繊維を配合する場合、流動性の観点から、液晶ポリエステル樹脂100重量部に対して、無機繊維が40重量部以下であることが好ましく、より好ましくは20重量部以下であり、1重量部以上であることが好ましく、より好ましくは3重量部以上、さらに好ましくは5重量部以上である。
また、中空球体と無機繊維との配合量の合計は、液晶ポリエステル樹脂100重量部に対して、140重量部以下であることが好ましく、より好ましくは60重量部以下、さらに好ましくは40重量部以下である。
【0024】
本発明の液晶性ポリエステル樹脂組成物の調製手段としては、液晶性ポリエステル樹脂、中空球体、必要に応じて、無機繊維等の各成分をヘンシェルミキサーやタンブラー等を用いて混合してもよいし、各成分を押出機を用いて溶融混練して組成物のペレットとしてもよいし、各成分をヘンシェルミキサーやタンブラー等を用いて混合した後、押出機を用いて溶融混練して組成物のペレットとしてもよい。中でも、各成分を押出機を用いて溶融混練して組成物のペレットとすることが好ましい。
【0025】
本発明の液晶性ポリエステル樹脂組成物を用い、射出成形法等の成形方法によれば、様々な成形品を得ることができる。射出成形の条件としては、中空球体の破壊抑制の観点から、成形機の射出圧力および保持圧力を1000kgf/cm以下で行うのが好ましい。
【0026】
このようにして得られる成形品は、軽量性と機械的強度に優れたものであるので、例えば、コネクター、ソケット、リレー、コイルボビン、光ピックアップ、発振子、コンピュータ関連部品、等の電気・電子部品;ICトレー等の半導体製造プロセス関連部品;VTR、テレビ、アイロン、エアコン、ステレオ、掃除機、冷蔵庫、炊飯器、照明器具、等の家庭電気製品部品;コンパクトディスク、レーザーディスク、スピーカー、等の音響製品部品;電話機、ファクシミリ、モデム等の通信機器部品;ヒータホルダー、等の複写機、印刷機関連部品;インペラー、ファン歯車、ギヤ、軸受け、モーター部品及びケース、等の機械部品;マイクロ波調理用鍋、耐熱食器、等の調理用器具;床材、壁材などの断熱、防音用材料、梁、柱などの支持材料、屋根材等の建築資材、または土木建築用材料;航空機部品、宇宙機器用部品;原子炉等の放射線施設部材、海洋施設部材、洗浄用治具、パイプ類、ノズル類、センサー類部品、スポーツ用品、レジャー用品等に好適に使用することができる。
特に液晶性ポリエステル樹脂組成物が軽量で流動性に優れることから、微細な成形品である光ピックアップ部品として最適に使用することができる。
【0027】
【実施例】
以下、本発明を実施例に基づいて説明するが、本発明が実施例により限定されるものではないことは言うまでもない。
【0028】
実施例1
攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p―ヒドロキシ安息香酸 830.7g(5.0モル)、4,4’−ジヒドロキシビフェニル 465.5g(2.5モル)、テレフタル酸 394.6g(2.375モル)、イソフタル酸20.8g(0.125モル)、無水酢酸1153g(11.0モル)を仕込んだ。反応器内を十分に窒素ガスで置換した後、窒素ガス気流下で15分かけて150℃まで昇温し、温度を保持して3時間還流させた。その後、留出する副生酢酸、未反応の無水酢酸を留去しながら2時間50分かけて320℃まで昇温し、トルクの上昇が認められる時点を反応終了とみなし、内容物を取り出した。得られた固形分は室温まで冷却し、粗粉砕機で粉砕後、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から320℃まで5時間かけて昇温し、320℃で3時間保持し、固層で重合反応を進めた。得られた樹脂について、偏光顕微鏡により液晶性を測定したところ、光学的異方性を有する溶融相を形成する液晶性ポリエステルであることが分かった。得られた樹脂を1400g、平均粒径27μm、強度1260kg/cmのガラスバルーン[住友3M(株)製、商品名:スコッチライトS60HS、真比重0.60、材料比重2.55]を150g、旭ファイバーガラス製チョップドガラスCS03JAPX−01を450gとを二軸押出機(IKG社製 PMT47)を用いて、シリンダー温度405℃で造粒し、液晶ポリエステル樹脂組成物のペレットを得た。得られたペレットを415℃の成形温度で加工した。
【0029】
実施例2
攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p―ヒドロキシ安息香酸 27.6g(0.2モル)、4,4’−ジヒドロキシビフェニル 465.5g(2.5モル)、2−ヒドロキシ6−ナフトエ酸903.3g(4.8モル)、テレフタル酸415.3g(2.5モル)、無水酢酸 1153g(11.0モル)を仕込んだ。反応器内を十分に窒素ガスで置換した後、窒素ガス気流下で15分かけて150℃まで昇温し、温度を保持して3時間還流させた。その後、留出する副生酢酸、未反応の無水酢酸を留去しながら2時間50分かけて320℃まで昇温し、トルクの上昇が認められる時点を反応終了とみなし、内容物を取り出した。得られた固形分は室温まで冷却し、粗粉砕機で粉砕後、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から324℃まで5時間かけて昇温し、324℃で3時間保持し、固層で重合反応を進めた。得られた樹脂について、偏光顕微鏡により液晶性を測定したところ、光学的異方性を有する溶融相を形成する液晶性ポリエステルであることが分かった。得られた樹脂を1400g、平均粒径27μm、強度1260kg/cmのガラスバルーン[住友3M(株)製、商品名:スコッチライトS60HS、真比重0.60、材料比重2.55]を150g、旭ファイバーガラス製チョップドガラスCS03JAPX−01を450gとを二軸押出機(IKG社製 PMT47)を用いて、シリンダー温度350℃で造粒し、液晶ポリエステル樹脂組成物のペレットを得た。得られたペレットを365℃の成形温度で加工した。
【0030】
実施例3
攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p―ヒドロキシ安息香酸 690.6g(5.0モル)、4,4’−ジヒドロキシビフェニル 372.4g(2.0モル)、2−ヒドロキシ6−ナフトエ酸37.6g(0.2モル)、テレフタル酸398.7g(2.4モル)、パラアミノフェノール43.7g(0.4モル)、無水酢酸 1153g(11.0モル)を仕込んだ。反応器内を十分に窒素ガスで置換した後、窒素ガス気流下で15分かけて150℃まで昇温し、温度を保持して3時間還流させた。その後、留出する副生酢酸、未反応の無水酢酸を留去しながら2時間50分かけて320℃まで昇温し、トルクの上昇が認められる時点を反応終了とみなし、内容物を取り出した。得られた固形分は室温まで冷却し、粗粉砕機で粉砕後、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から306℃まで5時間かけて昇温し、306℃で3時間保持し、固層で重合反応を進めた。得られた樹脂について、偏光顕微鏡により液晶性を測定したところ、光学的異方性を有する溶融相を形成する液晶性ポリエステルであることが分かった。得られた樹脂を1400g、平均粒径27μm、強度1260kg/cmのガラスバルーン[住友3M(株)製、商品名:スコッチライトS60HS、真比重0.60、材料比重2.55]を150g、旭ファイバーガラス製チョップドガラスCS03JAPX−01を450gとを二軸押出機(IKG社製 PMT47)を用いて、シリンダー温度355℃で造粒し、液晶ポリエステル樹脂組成物のペレットを得た。得られたペレットを365℃の成形温度で加工した。
【0031】
比較例1
攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p―ヒドロキシ安息香酸 830.7g(5.0モル)、4,4’−ジヒドロキシビフェニル 465.5g(2.5モル)、テレフタル酸 394.6g(2.375モル)、イソフタル酸20.8g(0.125モル)、無水酢酸1153g(11.0モル)を仕込んだ。反応器内を十分に窒素ガスで置換した後、窒素ガス気流下で15分かけて150℃まで昇温し、温度を保持して3時間還流させた。その後、留出する副生酢酸、未反応の無水酢酸を留去しながら2時間50分かけて320℃まで昇温し、トルクの上昇が認められる時点を反応終了とみなし、内容物を取り出した。得られた固形分は室温まで冷却し、粗粉砕機で粉砕後、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から320℃まで5時間かけて昇温し、320℃で3時間保持し、固層で重合反応を進めた。得られた樹脂について、偏光顕微鏡により液晶性を測定したところ、光学的異方性を有する溶融相を形成する液晶性ポリエステルであることが分かった。得られた樹脂を1400g、平均粒径35μm、強度700kg/cmのガラスバルーン[住友3M(株)製、商品名:スコッチライトS60、真比重0.60、材料比重2.55]を150g、旭ファイバーガラス製チョップドガラスCS03JAPX−01を450gとを二軸押出機(IKG社製 PMT47)を用いて、シリンダー温度405℃で造粒し、液晶ポリエステル樹脂組成物のペレットを得た。得られたペレットを415℃の成形温度で加工した。なお、比重はASTM4号ダンベルを用いて、ASTM D792に準拠して測定した(23℃)。
【0032】
【表1】
Figure 2004323705
PHBA:パラヒドロキシ安息香酸
DHB:4,4‘−ヒドロキシビフェニル
TP:テレフタル酸
IP:イソフタル酸
HNA:2−ヒドロキシ6−ナフトエ酸
PAP:パラアミノフェノール
【0033】
【発明の効果】
本発明によれば、軽量性に優れた成形品を製造し得る液晶性ポリエステル樹脂組成物を提供すること可能となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid crystalline polyester resin composition.
[0002]
[Prior art]
Liquid crystalline polyester resins are used in the electrical and electronic fields as one of the materials that can be precision molded because they have excellent heat resistance, mechanical properties, and excellent fluidity during melting. In recent years, in the electric and electronic fields, there has been a strong demand for smaller, lighter, and higher-performance molded products used as components, and accordingly, there has been a demand for reduced weight of molded products.
As a method for reducing the weight of a molded article, a method using a resin composition in which a conventional hollow sphere is blended with a liquid crystalline polyester resin has been proposed (see Patent Document 1). However, a resin composition in which a conventional hollow sphere is blended is proposed. The molded article obtained by using the product still has room for weight reduction.
[0003]
[Patent Document 1]
JP 2001-172479 A
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a liquid crystalline polyester resin composition capable of producing a molded article having excellent lightness.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to find a liquid crystalline polyester resin composition that can solve the above-described problems, and as a result, a resin composition containing a liquid crystalline polyester resin and a certain kind of hollow sphere However, they found that a molded article excellent in lightness was provided, and completed the present invention.
That is, the present invention includes a liquid crystalline polyester resin and a hollow sphere, wherein the hollow sphere is 1 to 100 parts by weight based on 100 parts by weight of the liquid crystalline polyester resin, and the strength of the hollow sphere is 1000 kg / cm 2 or more. It is intended to provide a liquid crystalline polyester resin composition characterized by the above.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The liquid crystalline polyester resin composition of the present invention contains a liquid crystalline polyester resin and hollow spheres.
The liquid crystalline polyester resin used is a polyester called a thermotropic liquid crystal polymer and forms an anisotropic melt at a temperature of 450 ° C. or less.
As the liquid crystalline polyester resin, for example,
(1) a combination of an aromatic dicarboxylic acid, an aromatic diol, an aromatic aminophenol and an aromatic hydroxycarboxylic acid,
(2) those composed of different kinds of aromatic hydroxycarboxylic acids,
(3) those comprising a combination of an aromatic dicarboxylic acid and an aromatic diol;
(4) those obtained by reacting an aromatic hydroxycarboxylic acid with a polyester such as polyethylene terephthalate;
And the like.
In addition, instead of these aromatic dicarboxylic acids, aromatic diols and aromatic hydroxycarboxylic acids, their ester-forming derivatives may be used.
[0007]
Examples of the structural unit of the liquid crystal polyester used in the present invention include the following, but are not limited thereto.
Structural unit derived from aromatic hydroxycarboxylic acid:
Figure 2004323705
The repeating structural unit described above may be substituted with a halogen atom or an alkyl group.
[0008]
Repeating structural unit derived from aromatic diol:
Figure 2004323705
The repeating structural unit described above may be substituted with a halogen atom, an alkyl group or an aryl group.
[0009]
Structural unit derived from aromatic dicarboxylic acid:
Figure 2004323705
The repeating structural unit described above may be substituted with a halogen atom, an alkyl group or an aryl group.
[0010]
Structural unit derived from aromatic aminophenol:
Figure 2004323705
The repeating structural unit described above may be substituted with a halogen atom, an alkyl group or an aryl group.
In addition, as said alkyl group, a C1-C10 alkyl group is preferable, and a C6-C20 aryl group is preferable as said aryl group.
[0011]
From the viewpoint of balance between heat resistance, mechanical properties, and workability, the liquid crystalline polyester resin preferably has a total of the structural units represented by the formulas (I) and (II) of 30 to 70 mol%.
Examples of the combination of the structural units include the following combinations (A) to (D).
(A): (I), (III), (IV), (V)
(B): a combination of the structural units of (A) with the addition of (VI) (C): (I) (II) (III) (IV)
(D): a combination of (C) with the addition of (VI)
The method for producing the liquid crystal polyester used in the present invention is not particularly limited. For example, at least one selected from the group consisting of aromatic hydroxycarboxylic acids, aromatic diols and aromatic aminophenols is acylated with an excess amount of fatty acid anhydride. To obtain an acylated product, and the obtained acylated product is subjected to transesterification (polycondensation) with at least one selected from the group consisting of an aromatic hydroxycarboxylic acid and an aromatic carboxylic acid to carry out melt polymerization. Can be As the acylated product, a fatty acid ester obtained by acylation in advance may be used (JP-A-2002-220444, JP-A-2002-146003).
[0013]
In the acylation reaction, the amount of the fatty acid anhydride to be added is preferably 1.0 to 1.2 times equivalent of the phenolic hydroxyl group, more preferably 1.05 to 1.1 times equivalent. If the amount of the fatty acid anhydride added is less than 1.0 equivalent, the acylated product, aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, etc. will sublimate during transesterification (polycondensation), and the reaction system tends to be clogged, On the other hand, when the amount exceeds 1.2 times equivalent, coloring of the obtained aromatic liquid crystal polyester tends to be remarkable. The acylation reaction is preferably performed at 130 ° C. to 180 ° C. for 10 minutes to 10 hours, and more preferably performed at 140 ° C. to 160 ° C. for 30 minutes to 3 hours.
[0014]
The fatty acid anhydride used in the acylation reaction is not particularly limited. For example, acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, pivalic anhydride, 2-ethylhexanoic anhydride, monochloroacetic anhydride, etc. , Dichloroacetic anhydride, trichloroacetic anhydride, monobromoacetic anhydride, dibromoacetic anhydride, tribromoacetic anhydride, monofluoroacetic anhydride, difluoroacetic anhydride, trifluoroacetic anhydride, glutaric anhydride, maleic anhydride, succinic anhydride, β- Bromopropionic acid is exemplified, but not particularly limited. These may be used as a mixture of two or more. From the viewpoint of price and handleability, acetic anhydride, propionic anhydride, butyric anhydride, and isobutyric anhydride are preferably used, and acetic anhydride is more preferably used.
[0015]
In the transesterification, the acyl group of the acylated product is preferably 0.8 to 1.2 times equivalent of the carboxyl group.
[0016]
The transesterification is preferably performed at a temperature of 130 to 400 ° C. at a rate of 0.1 to 50 ° C./min while increasing the temperature at a temperature of 150 to 350 ° C. at a rate of 0.3 to 5 ° C./min. Is preferred.
[0017]
When the fatty acid ester obtained by acylation is transesterified with a carboxylic acid, in order to shift the equilibrium, it is preferable to remove the by-product fatty acid and unreacted fatty acid anhydride out of the system by evaporating or the like.
[0018]
Polycondensation by transesterification is usually performed by melt polymerization, but melt polymerization and solid phase polymerization may be used in combination. The solid-phase polymerization is preferably performed by a known solid-phase polymerization method after extracting the polymer from the melt polymerization step, pulverizing the polymer into a powder or a flake, and then pulverizing the polymer. Specifically, for example, a method in which heat treatment is performed in a solid state at 20 to 350 ° C. for 1 to 30 hours in an inert atmosphere such as nitrogen. The solid-phase polymerization may be performed with or without stirring. By providing a suitable stirring mechanism, the melt polymerization tank and the solid phase polymerization tank can be the same reaction tank. After the solid phase polymerization, the obtained liquid crystal polyester may be pelletized and molded by a known method.
[0019]
Hollow spheres used in the present invention, from the viewpoint of mechanical strength (fracture suppression), strength must be at 1000 kg / cm 2 or more, preferably 1000~1800kg / cm 2, 1200~1800kg / cm 2 is more preferable.
The average particle size of the hollow sphere is preferably 5 μm to 100 μm, more preferably 10 μm to 50 μm, from the viewpoint of moldability and mechanical strength (destruction suppression).
The hollow volume ratio of the hollow sphere is preferably from 72% to 80%, more preferably from 75% to 78%.
True density of the hollow sphere (true specific gravity) is preferably 0.5~0.7g / cm 3, more preferably 0.55~0.65g / cm 3.
[0020]
The hollow sphere needs to be 1 to 100 parts by weight, preferably 5 to 40 parts by weight, and more preferably 5 to 20 parts by weight with respect to 100 parts by weight of the liquid crystal polyester resin from the viewpoint of the balance between specific gravity and rigidity. More preferably, it is part by weight.
[0021]
The hollow sphere used in the present invention is generally called a balloon. Examples of the material of the hollow sphere include inorganic materials such as alumina, silica, and glass; organic materials such as urea resin and phenol resin; Examples thereof include materials in which two or more kinds are mixed. Among these materials, glass is preferable from the viewpoint of heat resistance and strength. Therefore, a glass balloon is suitably used as the hollow sphere.
[0022]
In the liquid crystal polyester resin composition of the present invention, alumina fibers, boron fibers, potassium titanate fibers, asbestos, silica, aluminum hydroxide, calcium carbonate, glass fibers, carbon fibers, as long as the object of the present invention is not impaired. Inorganic fillers such as wollastonite, talc, mica, graphite, etc., cured epoxy resins, crosslinked benzoguanamine resins, organic fillers such as crosslinked acrylic polymers, polyamide, polyester, polyphenylene sulfide, polyether ketone, polycarbonate, polyether sulfone, polyphenyl ether and Modified products, thermoplastic resins such as polyetherimide, thermosetting resins such as phenolic resin, epoxy resin, polyimide resin and cyanate resin, silane coupling agents, antioxidants, ultraviolet absorbers, etc. It may be added one or two or more of various additives.
Among these materials, inorganic fibers are preferable, and among them, glass fibers are suitably used.
[0023]
When blending inorganic fibers, from the viewpoint of fluidity, the amount of the inorganic fibers is preferably 40 parts by weight or less, more preferably 20 parts by weight or less, and 1 part by weight or more based on 100 parts by weight of the liquid crystal polyester resin. It is preferably at least 3 parts by weight, more preferably at least 5 parts by weight.
The total amount of the hollow spheres and the inorganic fibers is preferably 140 parts by weight or less, more preferably 60 parts by weight or less, and still more preferably 40 parts by weight or less, based on 100 parts by weight of the liquid crystal polyester resin. It is.
[0024]
As a preparation means of the liquid crystalline polyester resin composition of the present invention, a liquid crystalline polyester resin, hollow spheres, if necessary, each component such as inorganic fibers may be mixed using a Henschel mixer or a tumbler, Each component may be melt-kneaded using an extruder to form a pellet of the composition, or each component may be mixed using a Henschel mixer or a tumbler, and then melt-kneaded using an extruder to form a pellet of the composition. Is also good. Above all, it is preferable that each component is melt-kneaded using an extruder to form a pellet of the composition.
[0025]
According to a molding method such as an injection molding method using the liquid crystalline polyester resin composition of the present invention, various molded products can be obtained. As for the conditions of the injection molding, it is preferable that the injection pressure and the holding pressure of the molding machine be 1000 kgf / cm 2 or less from the viewpoint of suppressing the destruction of the hollow sphere.
[0026]
Since the molded article obtained in this way is excellent in lightness and mechanical strength, for example, electric / electronic parts such as connectors, sockets, relays, coil bobbins, optical pickups, oscillators, computer-related parts, etc. Parts for semiconductor manufacturing processes such as IC trays; parts for home appliances such as VTRs, televisions, irons, air conditioners, stereos, vacuum cleaners, refrigerators, rice cookers, lighting equipment, etc .; sounds such as compact discs, laser discs, speakers, etc. Product parts; Telecommunications equipment parts such as telephones, facsimile machines, modems, etc .; Copier and printer related parts such as heater holders; Mechanical parts such as impellers, fan gears, gears, bearings, motor parts and cases; Microwave cooking Cooking utensils such as pots, heat-resistant dishes, etc .; insulation of flooring and wall materials, soundproofing materials, support for beams, columns, etc. Materials for construction materials such as materials and roofing materials, or materials for civil engineering and construction; parts for aircraft and space equipment; parts for radiation facilities such as nuclear reactors, parts for marine facilities, cleaning jigs, pipes, nozzles, sensors, It can be suitably used for sports goods, leisure goods and the like.
In particular, since the liquid crystalline polyester resin composition is lightweight and excellent in fluidity, it can be optimally used as an optical pickup component as a fine molded product.
[0027]
【Example】
Hereinafter, the present invention will be described based on examples, but it goes without saying that the present invention is not limited to the examples.
[0028]
Example 1
In a reactor equipped with a stirrer, a torque meter, a nitrogen gas inlet tube, a thermometer and a reflux condenser, 830.7 g (5.0 mol) of p-hydroxybenzoic acid and 465.5 g of 4,4′-dihydroxybiphenyl ( 2.5 mol), 394.6 g (2.375 mol) of terephthalic acid, 20.8 g (0.125 mol) of isophthalic acid, and 1153 g (11.0 mol) of acetic anhydride. After sufficiently replacing the inside of the reactor with nitrogen gas, the temperature was raised to 150 ° C. over 15 minutes under a nitrogen gas stream, and the temperature was maintained at reflux for 3 hours. Thereafter, the temperature was raised to 320 ° C. over 2 hours and 50 minutes while distilling off distilling by-product acetic acid and unreacted acetic anhydride, and the time when a rise in torque was recognized was regarded as the end of the reaction, and the contents were taken out. . The obtained solid content was cooled to room temperature, crushed by a coarse crusher, and then heated in a nitrogen atmosphere from room temperature to 250 ° C. over 1 hour, and then heated from 250 ° C. to 320 ° C. over 5 hours. C. for 3 hours, and the polymerization reaction was advanced in a solid layer. When the liquid crystallinity of the obtained resin was measured by a polarizing microscope, it was found that the resin was a liquid crystalline polyester forming a molten phase having optical anisotropy. 150 g of a glass balloon [manufactured by Sumitomo 3M Co., Ltd., trade name: Scotchlite S60HS, true specific gravity 0.60, material specific gravity 2.55] of 1400 g of the obtained resin, average particle diameter 27 μm, and strength 1260 kg / cm 2 , 450 g of chopped glass CS03JAPX-01 made of Asahi fiber glass was granulated at a cylinder temperature of 405 ° C. using a twin screw extruder (PMT47 manufactured by IKG) to obtain pellets of a liquid crystal polyester resin composition. The obtained pellet was processed at a molding temperature of 415 ° C.
[0029]
Example 2
In a reactor equipped with a stirrer, a torque meter, a nitrogen gas inlet tube, a thermometer and a reflux condenser, 27.6 g (0.2 mol) of p-hydroxybenzoic acid and 465.5 g of 4,4′-dihydroxybiphenyl ( 2.5 mol), 903.3 g (4.8 mol) of 2-hydroxy 6-naphthoic acid, 415.3 g (2.5 mol) of terephthalic acid, and 1153 g (11.0 mol) of acetic anhydride. After sufficiently replacing the inside of the reactor with nitrogen gas, the temperature was raised to 150 ° C. over 15 minutes under a nitrogen gas stream, and the temperature was maintained at reflux for 3 hours. Thereafter, the temperature was raised to 320 ° C. over 2 hours and 50 minutes while distilling off distilling by-product acetic acid and unreacted acetic anhydride, and the time when a rise in torque was recognized was regarded as the end of the reaction, and the contents were taken out. . The obtained solid content was cooled to room temperature, pulverized by a coarse pulverizer, and then heated from room temperature to 250 ° C. over 1 hour in a nitrogen atmosphere, and then heated from 250 ° C. to 324 ° C. over 5 hours to obtain 324. C. for 3 hours, and the polymerization reaction was advanced in a solid layer. When the liquid crystallinity of the obtained resin was measured by a polarizing microscope, it was found that the resin was a liquid crystalline polyester forming a molten phase having optical anisotropy. 150 g of a glass balloon [manufactured by Sumitomo 3M Co., Ltd., trade name: Scotchlite S60HS, true specific gravity 0.60, material specific gravity 2.55] of 1400 g of the obtained resin, average particle diameter 27 μm, and strength 1260 kg / cm 2 , 450 g of chopped glass CS03JAPX-01 made of Asahi fiber glass was granulated at a cylinder temperature of 350 ° C. using a twin screw extruder (PMT47 manufactured by IKG) to obtain pellets of a liquid crystal polyester resin composition. The obtained pellet was processed at a molding temperature of 365 ° C.
[0030]
Example 3
In a reactor equipped with a stirrer, a torque meter, a nitrogen gas inlet tube, a thermometer and a reflux condenser, 690.6 g (5.0 mol) of p-hydroxybenzoic acid and 372.4 g of 4,4′-dihydroxybiphenyl ( 2.0 mol), 37.6 g (0.2 mol) of 2-hydroxy 6-naphthoic acid, 398.7 g (2.4 mol) of terephthalic acid, 43.7 g (0.4 mol) of paraaminophenol, 1153 g of acetic anhydride (11.0 mol) was charged. After sufficiently replacing the inside of the reactor with nitrogen gas, the temperature was raised to 150 ° C. over 15 minutes under a nitrogen gas stream, and the temperature was maintained at reflux for 3 hours. Thereafter, the temperature was raised to 320 ° C. over 2 hours and 50 minutes while distilling off distilling by-product acetic acid and unreacted acetic anhydride, and the time when a rise in torque was recognized was regarded as the end of the reaction, and the contents were taken out. . The obtained solid content was cooled to room temperature, pulverized by a coarse pulverizer, and then heated in a nitrogen atmosphere from room temperature to 250 ° C. over 1 hour, and then heated from 250 ° C. to 306 ° C. over 5 hours. C. for 3 hours, and the polymerization reaction was advanced in a solid layer. When the liquid crystallinity of the obtained resin was measured by a polarizing microscope, it was found that the resin was a liquid crystalline polyester forming a molten phase having optical anisotropy. 150 g of a glass balloon [manufactured by Sumitomo 3M Co., Ltd., trade name: Scotchlite S60HS, true specific gravity 0.60, material specific gravity 2.55] of 1400 g of the obtained resin, average particle diameter 27 μm, and strength 1260 kg / cm 2 , 450 g of chopped glass CS03JAPX-01 made of Asahi fiber glass was granulated at 355 ° C. cylinder temperature using a twin screw extruder (PMT47 manufactured by IKG) to obtain pellets of a liquid crystal polyester resin composition. The obtained pellet was processed at a molding temperature of 365 ° C.
[0031]
Comparative Example 1
In a reactor equipped with a stirrer, a torque meter, a nitrogen gas inlet tube, a thermometer and a reflux condenser, 830.7 g (5.0 mol) of p-hydroxybenzoic acid and 465.5 g of 4,4′-dihydroxybiphenyl ( 2.5 mol), 394.6 g (2.375 mol) of terephthalic acid, 20.8 g (0.125 mol) of isophthalic acid, and 1153 g (11.0 mol) of acetic anhydride. After sufficiently replacing the inside of the reactor with nitrogen gas, the temperature was raised to 150 ° C. over 15 minutes under a nitrogen gas stream, and the temperature was maintained at reflux for 3 hours. Thereafter, the temperature was raised to 320 ° C. over 2 hours and 50 minutes while distilling off distilling by-product acetic acid and unreacted acetic anhydride, and the time when a rise in torque was recognized was regarded as the end of the reaction, and the contents were taken out. . The obtained solid content was cooled to room temperature, crushed by a coarse crusher, and then heated in a nitrogen atmosphere from room temperature to 250 ° C. over 1 hour, and then heated from 250 ° C. to 320 ° C. over 5 hours. C. for 3 hours, and the polymerization reaction was advanced in a solid layer. When the liquid crystallinity of the obtained resin was measured by a polarizing microscope, it was found that the resin was a liquid crystalline polyester forming a molten phase having optical anisotropy. 150 g of a glass balloon [manufactured by Sumitomo 3M Co., Ltd., trade name: Scotchlite S60, true specific gravity 0.60, material specific gravity 2.55] of 1400 g of the obtained resin, average particle diameter of 35 μm, and strength of 700 kg / cm 2 , 450 g of chopped glass CS03JAPX-01 made of Asahi fiber glass was granulated at a cylinder temperature of 405 ° C. using a twin screw extruder (PMT47 manufactured by IKG) to obtain pellets of a liquid crystal polyester resin composition. The obtained pellet was processed at a molding temperature of 415 ° C. The specific gravity was measured using an ASTM No. 4 dumbbell according to ASTM D792 (23 ° C.).
[0032]
[Table 1]
Figure 2004323705
PHBA: para-hydroxybenzoic acid DHB: 4,4'-hydroxybiphenyl TP: terephthalic acid IP: isophthalic acid HNA: 2-hydroxy 6-naphthoic acid PAP: para-aminophenol
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the liquid crystalline polyester resin composition which can manufacture the molded article excellent in lightweight property.

Claims (5)

液晶性ポリエステル樹脂と中空球体とを含み、液晶性ポリエステル樹脂100重量部に対して中空球体が1〜100重量部であり、中空球体の強度が1000kg/cm以上であることを特徴とする液晶性ポリエステル樹脂組成物。A liquid crystal comprising a liquid crystalline polyester resin and a hollow sphere, wherein the hollow sphere is 1 to 100 parts by weight based on 100 parts by weight of the liquid crystalline polyester resin, and the strength of the hollow sphere is 1000 kg / cm 2 or more. Polyester resin composition. さらに、無機繊維を含み、液晶性ポリエステル樹脂100重量部に対して無機繊維が40重量部以下である請求項1記載の組成物。The composition according to claim 1, further comprising an inorganic fiber, wherein the amount of the inorganic fiber is 40 parts by weight or less based on 100 parts by weight of the liquid crystalline polyester resin. 中空球体が、ガラスバルーンである請求項1または2記載の組成物。3. The composition according to claim 1, wherein the hollow sphere is a glass balloon. 無機繊維が、ガラス繊維である請求項1〜3のいずれかに記載の組成物。The composition according to any one of claims 1 to 3, wherein the inorganic fibers are glass fibers. 請求項1〜4のいずれかに記載の組成物を成形して得られることを特徴とする成形品。A molded article obtained by molding the composition according to any one of claims 1 to 4.
JP2003121283A 2003-04-25 2003-04-25 Liquid-crystalline polyester resin composition Pending JP2004323705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121283A JP2004323705A (en) 2003-04-25 2003-04-25 Liquid-crystalline polyester resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121283A JP2004323705A (en) 2003-04-25 2003-04-25 Liquid-crystalline polyester resin composition

Publications (1)

Publication Number Publication Date
JP2004323705A true JP2004323705A (en) 2004-11-18

Family

ID=33499899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121283A Pending JP2004323705A (en) 2003-04-25 2003-04-25 Liquid-crystalline polyester resin composition

Country Status (1)

Country Link
JP (1) JP2004323705A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330468A (en) * 2004-04-22 2005-12-02 Nippon Petrochemicals Co Ltd All aromatic liquid crystal polyester resin composition and optical pickup lens holder
JP2011026541A (en) * 2009-03-11 2011-02-10 Sumitomo Chemical Co Ltd Liquid crystalline polyester resin composition and molded article thereof
WO2018097011A1 (en) * 2016-11-24 2018-05-31 ポリプラスチックス株式会社 Fully aromatic polyesteramide and method for producing same
JP2019065263A (en) * 2017-09-29 2019-04-25 東レ株式会社 Liquid crystalline polyester resin composition and molded article formed of the same
CN110655792A (en) * 2019-10-29 2020-01-07 中广核高新核材科技(苏州)有限公司 Low-dielectric-laser direct-forming composite material suitable for 5G communication and preparation method thereof
US20210075162A1 (en) * 2019-09-10 2021-03-11 Ticona Llc Electrical Connector Formed from a Polymer Composition having a Low Dielectric Constant and Dissipation Factor
US11258184B2 (en) 2019-08-21 2022-02-22 Ticona Llc Antenna system including a polymer composition having a low dissipation factor
US11555113B2 (en) 2019-09-10 2023-01-17 Ticona Llc Liquid crystalline polymer composition
US11637365B2 (en) 2019-08-21 2023-04-25 Ticona Llc Polymer composition for use in an antenna system
US11646760B2 (en) 2019-09-23 2023-05-09 Ticona Llc RF filter for use at 5G frequencies
WO2023145516A1 (en) * 2022-01-26 2023-08-03 ポリプラスチックス株式会社 Liquid crystalline resin composition for planar connectors, and planar connector using same
US11721888B2 (en) 2019-11-11 2023-08-08 Ticona Llc Antenna cover including a polymer composition having a low dielectric constant and dissipation factor
US11912817B2 (en) 2019-09-10 2024-02-27 Ticona Llc Polymer composition for laser direct structuring
US11917753B2 (en) 2019-09-23 2024-02-27 Ticona Llc Circuit board for use at 5G frequencies

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236859A (en) * 1985-04-12 1986-10-22 Polyplastics Co Thermoplastic resin composition
JPS6474258A (en) * 1987-09-16 1989-03-20 Sumitomo Chemical Co Liquid crystal polyester resin composition
JPH0288642A (en) * 1988-09-26 1990-03-28 Toyobo Co Ltd Thermoplastic resin composition
JPH05139783A (en) * 1991-11-06 1993-06-08 Asahi Glass Co Ltd Glass balloon contained forming composition
JPH06226771A (en) * 1993-01-29 1994-08-16 Tokai Kogyo Kk Injection molding resin composition
JP2001031848A (en) * 1999-07-23 2001-02-06 Nippon Petrochem Co Ltd Thermotropic liquid crystal copolyester resin composition and heater-supporter by using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236859A (en) * 1985-04-12 1986-10-22 Polyplastics Co Thermoplastic resin composition
JPS6474258A (en) * 1987-09-16 1989-03-20 Sumitomo Chemical Co Liquid crystal polyester resin composition
JPH0288642A (en) * 1988-09-26 1990-03-28 Toyobo Co Ltd Thermoplastic resin composition
JPH05139783A (en) * 1991-11-06 1993-06-08 Asahi Glass Co Ltd Glass balloon contained forming composition
JPH06226771A (en) * 1993-01-29 1994-08-16 Tokai Kogyo Kk Injection molding resin composition
JP2001031848A (en) * 1999-07-23 2001-02-06 Nippon Petrochem Co Ltd Thermotropic liquid crystal copolyester resin composition and heater-supporter by using the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330468A (en) * 2004-04-22 2005-12-02 Nippon Petrochemicals Co Ltd All aromatic liquid crystal polyester resin composition and optical pickup lens holder
JP2011026541A (en) * 2009-03-11 2011-02-10 Sumitomo Chemical Co Ltd Liquid crystalline polyester resin composition and molded article thereof
WO2018097011A1 (en) * 2016-11-24 2018-05-31 ポリプラスチックス株式会社 Fully aromatic polyesteramide and method for producing same
JP6388749B1 (en) * 2016-11-24 2018-09-12 ポリプラスチックス株式会社 Totally aromatic polyester amide and method for producing the same
JP2019065263A (en) * 2017-09-29 2019-04-25 東レ株式会社 Liquid crystalline polyester resin composition and molded article formed of the same
JP7159693B2 (en) 2017-09-29 2022-10-25 東レ株式会社 Liquid crystalline polyester resin composition and molded article made of the same
US11258184B2 (en) 2019-08-21 2022-02-22 Ticona Llc Antenna system including a polymer composition having a low dissipation factor
US11705641B2 (en) 2019-08-21 2023-07-18 Ticoan Llc Antenna system including a polymer composition having a low dissipation factor
US11637365B2 (en) 2019-08-21 2023-04-25 Ticona Llc Polymer composition for use in an antenna system
US11912817B2 (en) 2019-09-10 2024-02-27 Ticona Llc Polymer composition for laser direct structuring
US20210075162A1 (en) * 2019-09-10 2021-03-11 Ticona Llc Electrical Connector Formed from a Polymer Composition having a Low Dielectric Constant and Dissipation Factor
US11555113B2 (en) 2019-09-10 2023-01-17 Ticona Llc Liquid crystalline polymer composition
US11646760B2 (en) 2019-09-23 2023-05-09 Ticona Llc RF filter for use at 5G frequencies
US11917753B2 (en) 2019-09-23 2024-02-27 Ticona Llc Circuit board for use at 5G frequencies
CN110655792B (en) * 2019-10-29 2022-06-14 中广核高新核材科技(苏州)有限公司 Low-dielectric-laser direct-forming composite material suitable for 5G communication and preparation method thereof
CN110655792A (en) * 2019-10-29 2020-01-07 中广核高新核材科技(苏州)有限公司 Low-dielectric-laser direct-forming composite material suitable for 5G communication and preparation method thereof
US11721888B2 (en) 2019-11-11 2023-08-08 Ticona Llc Antenna cover including a polymer composition having a low dielectric constant and dissipation factor
WO2023145516A1 (en) * 2022-01-26 2023-08-03 ポリプラスチックス株式会社 Liquid crystalline resin composition for planar connectors, and planar connector using same
JP7393589B1 (en) 2022-01-26 2023-12-06 ポリプラスチックス株式会社 Liquid crystalline resin composition for planar connectors and planar connectors using the same

Similar Documents

Publication Publication Date Title
JP6439027B1 (en) Liquid crystal polyester resin composition and molded body
JP6473796B1 (en) Liquid crystal polyester resin composition and molded body
US6649730B2 (en) Aromatic polyester amide
JP2007154169A (en) Liquid crystal polyester resin composition and molded product for electronic part
US20070219301A1 (en) Liquid-Crystal Polyester Resin Composition
US20070293633A1 (en) Liquid crystalline polymer cpmposition and use thereof
JP2016094615A (en) Mesomorphism polymer composition having thermal conductivity and dimension stability
JP2004323705A (en) Liquid-crystalline polyester resin composition
JPWO2019098228A1 (en) Liquid crystal polyester composition and resin molded article
JP2019094489A (en) Liquid crystal polyester resin composition, and molded article
JP2010150377A (en) Thermoplastic resin having high thermal conductivity and composition thereof
JP2010215905A (en) Thermoplastic resin composition, method for producing the same, and molded article
JP5396764B2 (en) Liquid crystalline polyester particles and molded articles thereof
JP5447440B2 (en) Method for producing liquid crystal polyester resin composition
JP5197553B2 (en) Liquid crystalline resin composition and molded product thereof
JP2004189867A (en) Aromatic liquid crystal polyester solution composition
WO2013114787A1 (en) Process for producing resin composition
JP2008019428A (en) Liquid crystalline polymer composition and application of the same
JP4035861B2 (en) Aromatic polyester composition
JPWO2019198665A1 (en) Liquid crystal polyester resin, method for producing the same, and molded article made of the same
JP5407988B2 (en) Liquid crystalline resin composition and molded product thereof
JP2004244452A (en) Aromatic liquid crystal polyester and its film
JP4810767B2 (en) Resin composition for optical pickup parts
JP2021059670A (en) Liquid crystal polyester resin composition, molded article and production method of liquid crystal polyester resin composition
JP2004351860A (en) Manufacturing method of pellet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080130

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303