JP2004323627A - Method for polyester production - Google Patents

Method for polyester production Download PDF

Info

Publication number
JP2004323627A
JP2004323627A JP2003118439A JP2003118439A JP2004323627A JP 2004323627 A JP2004323627 A JP 2004323627A JP 2003118439 A JP2003118439 A JP 2003118439A JP 2003118439 A JP2003118439 A JP 2003118439A JP 2004323627 A JP2004323627 A JP 2004323627A
Authority
JP
Japan
Prior art keywords
polyester
ipa
acid
alkali metal
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003118439A
Other languages
Japanese (ja)
Inventor
Asuka Takahashi
あすか 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2003118439A priority Critical patent/JP2004323627A/en
Publication of JP2004323627A publication Critical patent/JP2004323627A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a polyester having excellent operability, gas barrier properties and heat resistance. <P>SOLUTION: In producing the polyester comprising ≥4 mol% of isophthalic acid as an acid component and ethylene glycol or 1,4-butanediol as a main glycol component, isophthalic acid containing 1-10 mass ppm calculated as an alkali metal atom of an alkali metal compound is used as a raw material. Preferably a phosphorus compound is used as a catalyst. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、操業性が良好で、オリゴマーによる成形金型の汚染が少なく、かつ、ガスバリア性、耐熱性に優れたポリエステルの製造方法に関するものである。
【0002】
【従来の技術】
ポリエチレンテレフタレート(PET)などのポリエステルは、機械的強度、化学的安定性、透明性に優れており、また、軽量、安価であるために、各種のシート、フィルム、容器などに幅広く用いられ、特に、炭酸飲料、果汁飲料、液体調味料、食用油、酒、ワイン用などの容器用途の伸びが著しい。近年では、炭酸飲料、ワイン等の飲料用容器あるいは医療品用容器等においては、内容物を保存するという観点から、ガスバリヤー性が要求される場合が高まっている。しかし、PETからなる容器は、ガスバリア性が不十分であるという問題があり、これを解決するものとして、ポリエチレンイソフタレート(PEI)またはポリ(エチレンイソフタレート/エチレンテレフタレート)(PEIT)のような共重合ポリエステルからなるものが提案されている(例えば特許文献1)。
【0003】
しかし、こうした共重合ポリエステル樹脂は、その重合時に、エチレンイソフタレート環状2量体などのオリゴマー(DEI)が多量に副生するため、これらが成形時に成形金型を汚染したり成形品に異物として混入しやすいという問題があった。環状オリゴマーの発生量を抑制する方法として、例えば特許文献2にはプロトン酸触媒を用いる方法が提案されている。しかしながら、この方法では、PEIまたはPEIT中のジエチレングリコール(DEG)共重合割合が増加しすぎ、PEIまたはPEITのガラス転移点(Tg)が低下してしまうため、樹脂チップの乾燥中に、チップ同士がブロッキングしてしまい、取り扱いが悪くなり、操業性が低下するという問題があった。また、成形品にした際に十分な耐熱性が得られないという問題もあった。一方、ポリブチレンイソフタレート(PBI)系ポリエステルの場合には、プロトン酸触媒を用いると、テトラヒドロフラン(THF)が多量に発生し、重合反応が進まなくなり、高重合度のポリマーが得られないという問題があった。
【0004】
ガスバリア性と耐熱性を両立させる方法として、特許文献3には、PEITに1,3−ビス(2−ヒドロキシエトキシ)ベンゼンを共重合する方法が提案されている。しかし、この方法では、1,3−ビス(2−ヒドロキシエトキシ)ベンゼンに起因するオリゴマーが発生し、成形金型等を汚染する場合があり、必ずしも優れた方法とは言えなかった。
【0005】
【特許文献1】
特開昭59−64624号公報
【特許文献2】
特開昭59−64625号公報
【特許文献3】
特開2001−342334号公報
【0006】
【発明が解決しようとする課題】
本発明は上記のような問題点を解決し、操業性が良好で、オリゴマーによる成形金型の汚染が少なく、かつ、ガスバリア性、耐熱性に優れたポリエステルの製造方法を提供することを課題とするものである。
【0007】
【課題を解決するための手段】
本発明者らは、鋭意検討の結果、ポリエステルの原料として、アルカリ金属化合物を特定量含有するイソフタル酸を用いることにより、上記課題が解決されることを見出し、本発明に到達した。
【0008】
すなわち、本発明の要旨は次のとおりである。
1.酸成分としてイソフタル酸を4mol%以上含有し、エチレングリコールまたは1,4−ブタンジオールを主たるグリコール成分とするポリエステルを製造するに際し、原料としてアルカリ金属化合物をアルカリ金属原子として1〜10質量ppm含有するイソフタル酸を用いることを特徴とするポリエステルの製造方法。
2.エステル化反応工程または重縮合工程において、触媒としてリン化合物を添加することを特徴とする1に記載のポリエステルの製造方法。
【0009】
【発明の実施の形態】
以下、本発明について詳細に説明する。
【0010】
本発明により製造されるポリエステルは、酸成分としてイソフタル酸(IPA)を4mol%以上含有するものである。IPAの含有量が4mol%未満では、ガスバリア性が低下するため好ましくない。
【0011】
ポリエステルを構成する他の酸成分としては、テレフタル酸(TPA)、フタル酸、アジピン酸、セバシン酸、2,6−ナフタレンジカルボン酸、5−ナトリウムスルホイソフタル酸、パラヒドロキシ安息香酸、1,4−ナフタレンジカルボン酸、4,4’−ジフェニルジカルボン酸、ジフェノキシエタンジカルボン酸、ドデカン二酸、ヘキサデカン二酸、エイコサン二酸、乳酸、コハク酸、ダイマー酸、2−(9,10−ジヒドロ−9−オキサ−10−オキサイド−10−フォスファフェナントレン−10−イル)メチルコハク酸、ビス−(2−ヒドロキシエチル)−エステル、3−メチルホスフィニコプロピオン酸、ε−カプロラクトン、δ−バレロラクトンなどが挙げられるが、中でもテレフタル酸が好ましく用いられる。
【0012】
一方、ポリエステルの主たるグリコール成分は、エチレングリコール(EG)または1,4−ブタンジオール(BD)である。少量であれば、他のグリコール成分、例えば、ネオペンチルグリコール、1,3−プロピレングリコール、1,4−シクロヘキサンジメタノール、2−メチル−1,3−プロパンジオール、トリシクロデカンジメタノール、ジエチレングリコール、トリエチレングリコール、1,6−ヘキサンジオール、1,9−ナノンジオール、ポリエチレングリコール、ポリテトラメチレングリコールなどの脂肪族グリコールを用いてもよい。また、グリコールは併用しても差し支えない。
【0013】
本発明の製造方法は、上記のポリエステルを製造するにあたって、アルカリ金属化合物をアルカリ金属原子として1〜10ppm含有するIPAを原料として使用する必要がある。原料のIPAに含有しているアルカリ金属化合物がアルカリ金属原子として1質量ppm未満であると、ポリエステルを構成する主たるグリコールがEGの場合には、IPAとEGのエステル化反応時、および重縮合反応時において、DEGが多量に副生し、DEGが多量に共重合されたポリエステルとなる。DEGの共重合割合が高くなると、Tgが低下し、樹脂ペレットの乾燥中にチップ同士がブロッキングし取り扱いが悪くなり、操業性が低下するため好ましくない。また、成形品にした際に十分な耐熱性が得られなくなるため好ましくない。また、主たるグリコールがBDの場合には、THFが多量に発生し、酸/グリコールの比率が変化して重合反応が進まなくなるため好ましくない。
【0014】
原料のIPAに含有しているアルカリ金属化合物がアルカリ金属原子として10質量ppmを超えると、主たるグリコールがEGの場合には、DEGの副生量が低下し、DEI等のオリゴマーが多量に副生し、成形金型等を汚染するため好ましくない。また、脂肪族グリコールの種類に関わらず、所望の極限粘度のポリエステルが得られず、ポリエステルの強度特性が低下する場合がある。
【0015】
アルカリ金属化合物の元素の種類としては、Na、K、Liなどが好ましく、それらの元素は、水酸化物、酢酸塩、または炭酸塩としてIPAに含有されていることが好ましい。
【0016】
IPA中にアルカリ金属化合物を含有させる方法としては、容器の中にIPAの粉体を投入し、アルカリ金属化合物の溶解した水を加え、浸した後脱水し、乾燥する方法、あらかじめ容器をアルカリ金属化合物の水溶液に接触させ、容器内壁にアルカリ金属化合物を付着させておき、その容器にIPAを投入し、IPA中にアルカリ金属化合物を移行させる等の方法が挙げられるが、これらに限定されるものではない。
【0017】
このようなアルカリ金属化合物を含有するIPAとEGとを反応させる場合には、IPAに対してモル比1.1〜4.0のEGとからなるスラリーをエステル化反応缶に投入し、窒素ガス制圧下、温度180〜200℃で5〜7時間エステル化反応を行い、PEIの低重合体を得ることができる。また、これを高重合度化させるために、このPEI低重合体に重合触媒を添加し、0.01〜13.3hPaの減圧下、温度250〜280℃で、極限粘度が0.5以上となるまで重縮合反応を行うことができる。
【0018】
また、テレフタル酸(TPA)を共重合させる場合には、上記の方法で得たPEI低重合体と、温度230〜250℃で窒素ガス制圧下、ビス−(β−ヒドロキシエチル)テレフタレートおよび/またはその低重合体の存在するエステル化反応槽に、TPAに対してモル比1.1〜2.0倍のEGとTPAのスラリーを添加し、常圧下、滞留時間7〜8時間反応させて、得られた反応率95%のPET低重合体とを、各々重合反応缶に所定量移送し、重合触媒を添加し、0.01〜13.3hPaの減圧下、温度250〜280℃で、極限粘度が0.5以上となるまで重縮合反応を行うことにより製造できる。
【0019】
また、アルカリ金属化合物を含有するIPAとBDとを反応させる場合には、IPAに対してモル比1.1〜4.0のBDとからなるスラリーをエステル化反応缶に投入し、窒素ガス制圧下、温度180〜200℃で5〜7時間エステル化反応を行い、PBIの低重合体を得ることができる。また、これを高重合度化させるために、このPBI低重合体に重合触媒を添加し、0.01〜13.3hPaの減圧下、温度250〜280℃で、極限粘度が0.5以上となるまで重縮合を行うことにより、PBIを得ることができる。
【0020】
さらに、PBIにTPAを共重合させる場合には、温度150℃で窒素ガス制圧下、エステル化反応槽に、テレフタル酸ジメチル(DMT)とDMTに対してモル比1.1〜2.0のBDおよび重合触媒を添加し、常圧下、滞留時間1〜2時間で反応させた後、2〜5時間かけて230〜250℃に昇温することによりBDとTPAののエステル化物を得ることができる。このエステル化物と上記の方法で得たPBIとを、各々重合反応缶に所定量移送し、重合触媒を添加し、0.01〜13.3hPaの減圧下、温度230〜260℃で、極限粘度が0.5以上となるまで重縮合反応を行うことにより製造できる。
また、TPA、IPA、BDの共重合ポリエステルは、次の方法で製造するこのもできる。すなわち、窒素ガス制圧下、IPAとDMTの存在する重合反応缶に、IPAとDMTに対してモル比1.1〜2.0のBDおよび重合触媒を添加し、温度150℃で1〜2時間反応させた後、2〜5時間かけて230〜250℃に昇温し、BD、TPA、IPAのエステル化物を得た後、さらに230〜260℃で極限粘度が0.5以上となるまで重縮合反応を行う。
【0021】
また、本発明の効果を阻害しない範囲であれば、ヒンダードフェノール系化合物のような抗酸化剤、コバルト化合物、蛍光剤、染料のような色調改良剤、二酸化チタンのような顔料および酸化セリウムのような耐光剤などの添加物を含有させてもよい。
【0022】
本発明のポリエステル樹脂の製造方法では、エステル化反応前または重縮合反応前に、触媒としてリン化合物を添加することが好ましい。リン化合物の種類としては、特に限定されないが、リン酸、リン酸トリメチル、リン酸トリエチルなどが挙げられ、リン酸トリエチルが好ましい。
【0023】
リン化合物の添加量は、酸成分1molに対し0.2×10−4〜200×10−4molの範囲とすることが好ましく、0.3×10−4〜100×10−4molの範囲がさらに好ましく、0.4×10−4〜50×10−4molの範囲が最も好ましい。リン化合物の添加量が、酸成分1molに対し200×10−4molを超えると、エステル化反応工程または重縮合化工程において、グリコールがEGの場合にはDEGの副生量が増加し、また、グリコールがBDの場合にはTHFが多量に生成し、いずれの場合も好ましくない。また、リン化合物の添加量が、酸成分1molに対し0.2×10−4mol未満となると、エステル化反応工程または重縮合化工程において、DEG等のエーテル体の副生量が低下し、DEI等のオリゴマーが多量に副生し、成形金型等を汚染するため好ましくない。
【0024】
本発明の製法により得られたIPA酸成分の共重合されたポリエステルは、他のポリエステルと混合して用いてもよい。例えば、IPA共重合量の比較的高いポリエステルを、PETやPBTにより希釈し、目的に応じて耐熱性、バリア性、加工性などを調整して用いることができる。
【0025】
【作用】
DEGやTHF等のエーテル縮合物は、主としてオリゴマーのカルボキシル基が、一種の酸触媒として作用し、グリコールがエーテル結合することにより副生する。原料のIPA中に含有しているアルカリ金属化合物は、塩基として作用するため、アルカリ金属化合物の含有量が多いと、グリコールがEGの場合には、DEGの副生量が低下してしまい、環状オリゴマーの発生を引き起こすと推定される。また、グリコールの種類に関わらず、アルカリ金属化合物はエステル化反応を阻害する作用があるため、反応時間が長くなり、操業性が低下したり、所望の重合度、すなわち強度特性のポリエステルを得ることができない場合がある。一方、アルカリ金属化合物の含有量が少なくなりすぎると、DEGやTHF等のエーテル体の副生量が極端に多くなり、ガラス転移温度を低下させたり、作業環境の悪化を引き起こす。グリコールがEGの場合には、重合時に副生するDEGを有効活用し、その共重合割合を制御することが可能となり、比較的簡便に、操業性やポリエステルの耐熱性を低下させることなく低オリゴマー化を図ることが可能となる。
【0026】
【実施例】
次に、本発明を実施例によって具体的に説明する。なお、特性値等の測定及び評価方法は、次の通りである。
(a)極限粘度
フェノールと四塩化エタンとの等重量混合物を溶媒として、温度20.0℃で測定した。
(b)IPA、DEG及びその他の共重合割合
ポリエステルを重水素化ヘキサフルオロイソプロパノールと重水素化クロロホルムとの容量比1/25の混合溶媒に溶解し、日本電子社製LA−400型NMR装置でH−NMRを測定し、得られたチャートの各共重合成分のプロトンのピークの積分強度から、共重合割合を求めた。
(c)ガラス転移温度(Tg)
パーキンエルマー社製示差熱走査熱量計DSC−7型を用い、25℃から280℃の範囲で、昇温速度20℃/分で測定し、再昇温時のチャートよりTgを求めた。
(d)ガスバリア性(炭酸ガス透過係数)〔単位:ml・mm/m2・day・atm 〕
ボトルの切片について、ジーエルサイエンス社製GPM−250型測定器を用いて、二酸化炭素の透過した体積から求めた。この値は低いほど良く、8.0未満であれば合格とした。
(e)ボトルの耐熱性
延伸ブロー成形により得たボトルに、70℃の熱水を満たし、30分間放置後の体積変化の有無を目視で調べた。
○:体積変化なし(合格)。
×:体積変化あり(不合格)。
(f)金属含有量
白金るつぼに試料5g秤量し、濃硫酸2mlを加え電気炉で灰化する。るつぼ中の灰分を希塩酸水溶液に溶解させ、日本ジャーレルアッシュ製ICP分析装置ARIS−APにて定量した。
(g)ボトル成形不良の有無
プレフォーム、ボトルを目視で確認し、形状不良、ひび割れ等外観検査を行った。
○:不良なし(合格)
△:一部不良品(1割以下)(不合格)
×:不良品多発(1割超)(不合格)
【0027】
実施例1
1N水酸化ナトリウム水溶液20Lを容積100Lのステンレス製容器に上部投入口より投入し、下部排水バルブよりこの水溶液を抜いた後、バルブを閉じ、100℃で3時間加熱し、乾燥させた。この容器を冷却後、IPA50Kgを投入し、投入口より下部払い出し弁を開き、IPAを抜き取った。このIPA中の水酸化ナトリウム量は、ナトリウム原子として1.5質量ppmであった。(他の例では、IPAの投入量、アルカリの種類を変えることにより、IPA中のアルカリ化合物の量を調整した。)
【0028】
次に、ビス(β−ヒドロキシエチル)テレフタレート及びその低重合体の存在するエステル化反応缶に、TPAとEGとのモル比1/1.6のスラリーを連続的に供給し、温度250℃、圧力500Paの条件で反応させ、滞留時間を8時間としてエステル化反応率95%のPETオリゴマーを連続的に得た。別のエステル化反応缶に、水酸化ナトリウムがナトリウム原子として1.5質量ppm含有するIPA33.2kgとEG37.2Kg(モル比1/3)からなるスラリー、およびリン酸トリエチルを、酸成分1molに対し5×10−4molとなる量(23g)投入し、温度200℃、常圧で5時間エステル化反応を行い、エステル化反応率95%のPEI低重合体を得た。PET低重合体10kgとPEI低重合体40kgとを重縮合反応缶に仕込み、全酸成分1molに対し三酸化アンチモン4×10−4mol(29g)のEG溶液(1.3Kg)を加え、減圧にして、最終的に66.7Pa、280℃で3時間重縮合を行い、PEIT〔ポリエステル(A)〕を得た。得られたポリエステル(A)は、極限粘度が0.85、IPAの共重合割合が79.2mol%、Tgが63℃であった。ポリエステル(A)は、静置の乾燥機で50℃で20時間、減圧度66.7Paで真空乾燥を行ったが、ブロッキング等は特に見られなかった。
【0029】
一方、PETオリゴマー60kgを重縮合反応器に仕込み、TPA成分1molに対し三酸化アンチモンが2×10−4mol(17g)のEG溶液(0.8Kg)を加え、重縮合反応器中を減圧にして、最終的に66.7Pa、280℃で、2時間重縮合を行い、極限粘度0.65のPETを得た。このPETを、回転式固相重合装置に仕込み、70℃で2時間予備乾燥し、続いて130℃で4時間乾燥させた後、温度 220℃、圧力66.7Paで18時間固相重合を行い、極限粘度0.75のPET〔ポリエステル(B)〕を得た。
【0030】
ポリエステル(A)10kg(20重量部)とポリエステル(B)40kg(80重量部)とをブレンドし、シリンダー各部及びノズルの温度280℃、スクリュー回転数100rpm、射出時間8秒、冷却時間22秒、金型温度20℃に設定した射出成形機(日精エーエスビー製ASB−50HT型)でプレフォームを成形した(溶融滞留時間は1分)。次いで、このプレフォームを110℃の雰囲気下、ブロー圧力2MPaで延伸ブロー成形し、胴部平均肉厚250μm、内容積1Lのボトルとし、引き続いて160℃に設定した金型内で圧縮緊張下、10秒間ヒートセットしてボトルを作成した。これらを連続で1000本のボトルを作成したが、成形金型、ボトル表面にオリゴマーによる汚染は認められなかった。また、ボトルの成形性、ガスバリア性、耐熱性ともに良好であった。得られたボトルの評価結果等を表1に示す。
【0031】
実施例2、3、比較例1、3
ポリエステル(A)のIPAの共重合割合、原料IPAアルカリ金属化合物の種類とその含有量、ポリエステル(A)とポリエステル(B)との混合割合を表1に示すように変えた以外には、実施例1に準じた方法でポリエステルを製造し、ボトルを作製した。得られたボトルの評価結果等を表1に示す。
【0032】
実施例4、5、比較例2
ポリエステル(A)の共重合割合、原料IPA中アルカリ金属化合物の種類を表1に示すように変え、ポリエステル(A)を実施例1に準じた方法で固相重合し、ポリエステル(B)を混合せず、ポリエステル(A)のみを成形に供した。表1には、固相重合後のポリエステル(A)の特性値、および得られたボトルの評価結果等を示す。
【0033】
実施例6
実施例1と同様にして、IPAに水酸化ナトリウムをナトリウム原子として1.5質量ppm含有させた。このIPA33.2Kg、テレフタル酸ジメチル(DMT)9.7Kg、BD45.1Kg(IPA、DMTに対してモル比2)を重合反応器に仕込み、触媒として、テトラブチルチタネート(TBT)が酸成分1molに対し1×10−4molとなる量(8.5g)溶解したBD溶液1Kg投入し、常圧下150℃で1時間、および3時間で250℃まで昇温し、エステル化反応、エステル交換反応を行った。得られたエステル化物に、触媒としてリン酸トリエチルを酸成分1molに対し、0.5×10−4molとなる量(23g)投入し、245℃で2時間、減圧下で重縮合反応を行い、ポリエステル(A)を得た。得られたポリエステル(A)は、極限粘度が0.85、IPAの共重合割合が79.2mol%、Tgが66℃であった。ポリエステル(A)は実施例1と同様にして真空乾燥を行ったが、ブロッキング等は特に見られなかった。さらに、実施例1と同様にしてポリエステル(B)を得、ポリエステル(A)とポリエステル(B)とを混合してプレフォームを成形した。さらに実施例1と同様にボトルを作成した。得られたボトルの評価結果等を表1に示す。
【0034】
実施例7、比較例4
ポリエステル(A)のIPAの共重合割合、原料IPAアルカリ金属化合物の種類とその含有量、ポリエステル(A)とポリエステル(B)との混合割合を表1に示すように変えた以外には、実施例6に準じた方法でボトルを作製した。得られたボトルの評価結果等を表1に示す。
【0035】
【表1】

Figure 2004323627
【0036】
実施例1〜7ではいずれも良好なポリエステルが得られ、性能にも問題は生じなかった。
比較例1では、原料IPA中のナトリウム含有量が少なすぎるため、ポリエステル(A)のDEG共重合割合が増加し、Tgが低下したため、このチップを乾燥させたところ、ブロッキングが生じた。また、ボトルの耐熱性が低下した。
比較例2では、ポリエステル(A)のIPAの共重合割合が少なすぎるため、ボトルのガスバリア性が低下した。
比較例3では、原料IPA中のナトリウム含有量が多すぎるため、DEG共重合割合が低くなりすぎ、ボトル成形時にオリゴマーによる成形金型の汚染が発生した。また、ポリエステル(A)の極限粘度がやや低くなったため、ボトル成形不良がやや認められた。
比較例4では、原料IPA中のナトリウム含有量が少なすぎるため、重合時にTHFが多量に発生し、ポリエステル(A)が所望の粘度まで到達しなかったため、ボトル成形不良が多発した。
【0037】
【発明の効果】
本発明の製造方法によれば、オリゴマーによる成形金型の汚染が少なく、かつ、ガスバリア性、耐熱性に優れたポリエステルが得られ、各種のシート、フィルム、容器、特に、炭酸飲料、果汁飲料、液体調味料、食用油、酒、ワイン用などの容器や、医療品用容器等に用いることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a polyester having good operability, less contamination of a molding die by an oligomer, and excellent gas barrier properties and heat resistance.
[0002]
[Prior art]
Polyesters such as polyethylene terephthalate (PET) have excellent mechanical strength, chemical stability and transparency, and are widely used in various sheets, films, containers, etc. because of their light weight and low cost. The use of containers for carbonated drinks, fruit drinks, liquid seasonings, edible oils, liquors, wines and the like has been growing remarkably. In recent years, in the case of containers for beverages such as carbonated beverages and wine, containers for medical products, and the like, gas barrier properties are increasingly required from the viewpoint of preserving the contents. However, containers made of PET have a problem that gas barrier properties are insufficient. To solve this problem, a container such as polyethylene isophthalate (PEI) or poly (ethylene isophthalate / ethylene terephthalate) (PEIT) is used. A material comprising a polymerized polyester has been proposed (for example, Patent Document 1).
[0003]
However, such a copolymerized polyester resin produces a large amount of oligomers (DEI) such as ethylene isophthalate cyclic dimer as a by-product during the polymerization, so that these contaminate the molding die during molding and may cause foreign matters to the molded product. There was a problem that it was easily mixed. As a method for suppressing the generation amount of the cyclic oligomer, for example, Patent Document 2 proposes a method using a proton acid catalyst. However, in this method, the copolymerization ratio of diethylene glycol (DEG) in PEI or PEIT is excessively increased, and the glass transition point (Tg) of PEI or PEIT is reduced. There has been a problem that blocking occurs, handling becomes poor, and operability decreases. Another problem is that sufficient heat resistance cannot be obtained when a molded article is formed. On the other hand, in the case of polybutylene isophthalate (PBI) -based polyester, when a proton acid catalyst is used, a large amount of tetrahydrofuran (THF) is generated, the polymerization reaction does not proceed, and a polymer having a high degree of polymerization cannot be obtained. was there.
[0004]
As a method for achieving both gas barrier properties and heat resistance, Patent Document 3 proposes a method of copolymerizing 1,3-bis (2-hydroxyethoxy) benzene with PEIT. However, in this method, oligomers caused by 1,3-bis (2-hydroxyethoxy) benzene are generated, which may contaminate a molding die and the like, and thus cannot always be said to be an excellent method.
[0005]
[Patent Document 1]
JP-A-59-64624 [Patent Document 2]
JP-A-59-64625 [Patent Document 3]
JP 2001-342334 A
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a polyester which solves the above problems, has good operability, has low contamination of a molding die by oligomers, and has excellent gas barrier properties and heat resistance. Is what you do.
[0007]
[Means for Solving the Problems]
Means for Solving the Problems As a result of intensive studies, the present inventors have found that the above problems can be solved by using isophthalic acid containing a specific amount of an alkali metal compound as a raw material of polyester, and have reached the present invention.
[0008]
That is, the gist of the present invention is as follows.
1. When producing a polyester containing 4 mol% or more of isophthalic acid as an acid component and ethylene glycol or 1,4-butanediol as a main glycol component, an alkali metal compound is contained as a raw material in an amount of 1 to 10 ppm by mass as an alkali metal atom. A method for producing a polyester, comprising using isophthalic acid.
2. 2. The method for producing a polyester according to 1, wherein a phosphorus compound is added as a catalyst in the esterification reaction step or the polycondensation step.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0010]
The polyester produced according to the present invention contains 4 mol% or more of isophthalic acid (IPA) as an acid component. If the content of IPA is less than 4 mol%, the gas barrier property is undesirably reduced.
[0011]
Other acid components constituting the polyester include terephthalic acid (TPA), phthalic acid, adipic acid, sebacic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, parahydroxybenzoic acid, 1,4- Naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid, dodecane diacid, hexadecane diacid, eicosane diacid, lactic acid, succinic acid, dimer acid, 2- (9,10-dihydro-9- Oxa-10-oxide-10-phosphaphenanthrene-10-yl) methylsuccinic acid, bis- (2-hydroxyethyl) -ester, 3-methylphosphinicopropionic acid, ε-caprolactone, δ-valerolactone and the like. Among them, terephthalic acid is preferably used.
[0012]
On the other hand, the main glycol component of polyester is ethylene glycol (EG) or 1,4-butanediol (BD). If the amount is small, other glycol components such as neopentyl glycol, 1,3-propylene glycol, 1,4-cyclohexanedimethanol, 2-methyl-1,3-propanediol, tricyclodecanedimethanol, diethylene glycol, Aliphatic glycols such as triethylene glycol, 1,6-hexanediol, 1,9-nanonediol, polyethylene glycol and polytetramethylene glycol may be used. Glycol may be used in combination.
[0013]
In the production method of the present invention, in producing the above polyester, it is necessary to use, as a raw material, IPA containing 1 to 10 ppm of an alkali metal compound as an alkali metal atom. When the alkali metal compound contained in the raw material IPA is less than 1 mass ppm as an alkali metal atom, when the main glycol constituting the polyester is EG, the esterification reaction between IPA and EG and the polycondensation reaction In some cases, a large amount of DEG is produced as a by-product, resulting in a polyester with a large amount of DEG. When the copolymerization ratio of DEG increases, Tg decreases, chips are blocked during drying of resin pellets, handling becomes poor, and operability decreases, which is not preferable. In addition, when a molded article is formed, sufficient heat resistance cannot be obtained, which is not preferable. Further, when the main glycol is BD, a large amount of THF is generated, and the ratio of acid / glycol changes, so that the polymerization reaction does not proceed, which is not preferable.
[0014]
When the alkali metal compound contained in the raw material IPA exceeds 10 ppm by mass as an alkali metal atom, when the main glycol is EG, the amount of by-products of DEG decreases, and a large amount of oligomers such as DEI are produced as by-products. However, it is not preferable because it contaminates a molding die and the like. Further, irrespective of the kind of the aliphatic glycol, a polyester having a desired intrinsic viscosity cannot be obtained, and the strength properties of the polyester may be reduced.
[0015]
As the kind of the element of the alkali metal compound, Na, K, Li, or the like is preferable, and these elements are preferably contained in IPA as a hydroxide, an acetate, or a carbonate.
[0016]
As a method for incorporating an alkali metal compound into IPA, a method in which an IPA powder is charged into a container, water in which the alkali metal compound is dissolved is added, and the IPA is immersed, dehydrated, and dried, A method in which an alkali metal compound is adhered to the inner wall of a container by contacting with an aqueous solution of the compound, IPA is charged into the container, and the alkali metal compound is transferred into the IPA. is not.
[0017]
When IPA containing such an alkali metal compound is reacted with EG, a slurry composed of EG having a molar ratio of 1.1 to 4.0 with respect to IPA is charged into an esterification reactor, and nitrogen gas is supplied. The esterification reaction is performed at a temperature of 180 to 200 ° C. for 5 to 7 hours under control to obtain a low PEI polymer. Further, in order to increase the degree of polymerization, a polymerization catalyst is added to the PEI low polymer, and the intrinsic viscosity is 0.5 or more at a temperature of 250 to 280 ° C. under a reduced pressure of 0.01 to 13.3 hPa and a temperature of 250 to 280 ° C. The polycondensation reaction can be performed until the reaction is completed.
[0018]
When terephthalic acid (TPA) is copolymerized, bis- (β-hydroxyethyl) terephthalate and / or bis- (β-hydroxyethyl) terephthalate is mixed with the PEI low polymer obtained by the above method at a temperature of 230 to 250 ° C. under nitrogen gas control. To the esterification reaction tank where the low polymer is present, a slurry of EG and TPA at a molar ratio of 1.1 to 2.0 times the amount of TPA was added, and the mixture was allowed to react at normal pressure for a residence time of 7 to 8 hours. The obtained PET low polymer having a conversion of 95% is transferred to a polymerization reactor in a predetermined amount, a polymerization catalyst is added, and the temperature is 250 to 280 ° C. under a reduced pressure of 0.01 to 13.3 hPa. It can be produced by performing a polycondensation reaction until the viscosity becomes 0.5 or more.
[0019]
When IPA containing an alkali metal compound is reacted with BD, a slurry composed of BD having a molar ratio of 1.1 to 4.0 with respect to IPA is charged into an esterification reactor, and nitrogen gas is suppressed. An esterification reaction is performed at a temperature of 180 to 200 ° C. for 5 to 7 hours to obtain a low PBI polymer. In order to increase the degree of polymerization, a polymerization catalyst is added to the PBI low polymer, and the intrinsic viscosity is 0.5 or more at a temperature of 250 to 280 ° C. under a reduced pressure of 0.01 to 13.3 hPa. The PBI can be obtained by performing polycondensation until it is no more.
[0020]
Further, in the case of copolymerizing TPA with PBI, a BD having a molar ratio of 1.1 to 2.0 with respect to dimethyl terephthalate (DMT) and DMT is introduced into the esterification reaction vessel under a nitrogen gas control at a temperature of 150 ° C. After adding a polymerization catalyst and reacting under normal pressure for a residence time of 1 to 2 hours, an esterified product of BD and TPA can be obtained by raising the temperature to 230 to 250 ° C. over 2 to 5 hours. . The esterified product and the PBI obtained by the above-mentioned method are respectively transferred to a polymerization reactor in a predetermined amount, a polymerization catalyst is added thereto, and at a temperature of 230 to 260 ° C. under a reduced pressure of 0.01 to 13.3 hPa, the intrinsic viscosity is increased. Is 0.5 or more by performing a polycondensation reaction.
Further, the copolyester of TPA, IPA and BD can be produced by the following method. That is, a BD and a polymerization catalyst having a molar ratio of 1.1 to 2.0 with respect to IPA and DMT are added to a polymerization reactor in which IPA and DMT are present under nitrogen gas control, and the mixture is heated at a temperature of 150 ° C. for 1 to 2 hours. After the reaction, the temperature is raised to 230 to 250 ° C. over 2 to 5 hours to obtain an esterified product of BD, TPA, and IPA. Then, the weight is further increased at 230 to 260 ° C. until the intrinsic viscosity becomes 0.5 or more. Perform a condensation reaction.
[0021]
Further, as long as the effect of the present invention is not impaired, an antioxidant such as a hindered phenol compound, a cobalt compound, a fluorescent agent, a color tone improver such as a dye, a pigment such as titanium dioxide and a cerium oxide may be used. Additives such as light stabilizers may be included.
[0022]
In the method for producing a polyester resin of the present invention, it is preferable to add a phosphorus compound as a catalyst before the esterification reaction or before the polycondensation reaction. The type of the phosphorus compound is not particularly limited, and examples thereof include phosphoric acid, trimethyl phosphate, and triethyl phosphate. Triethyl phosphate is preferred.
[0023]
The amount of the phosphorus compound to be added is preferably in the range of 0.2 × 10 −4 to 200 × 10 −4 mol, and in the range of 0.3 × 10 −4 to 100 × 10 −4 mol, per 1 mol of the acid component. Is more preferable, and the range of 0.4 × 10 −4 to 50 × 10 −4 mol is most preferable. When the added amount of the phosphorus compound exceeds 200 × 10 −4 mol per 1 mol of the acid component, in the esterification reaction step or the polycondensation step, when glycol is EG, the by-product amount of DEG increases, and When the glycol is BD, a large amount of THF is generated, and any case is not preferable. Further, when the addition amount of the phosphorus compound is less than 0.2 × 10 −4 mol per 1 mol of the acid component, in the esterification reaction step or the polycondensation step, the by-product amount of an ether such as DEG decreases, It is not preferable because a large amount of oligomers such as DEI are by-produced and contaminate a molding die and the like.
[0024]
The polyester obtained by copolymerizing the IPA acid component obtained by the production method of the present invention may be used as a mixture with another polyester. For example, a polyester having a relatively high IPA copolymerization amount can be diluted with PET or PBT and used after adjusting heat resistance, barrier properties, processability, etc. according to the purpose.
[0025]
[Action]
In ether condensates such as DEG and THF, the carboxyl group of the oligomer mainly acts as a kind of acid catalyst, and is formed as a by-product by the glycol being ether-bonded. Since the alkali metal compound contained in the raw material IPA acts as a base, when the content of the alkali metal compound is large, when glycol is EG, the by-product amount of DEG decreases, and the Presumed to cause oligomer generation. In addition, regardless of the type of glycol, the alkali metal compound has an action of inhibiting the esterification reaction, so that the reaction time becomes longer, the operability is reduced, or a desired degree of polymerization, that is, a polyester having a strength characteristic is obtained. May not be possible. On the other hand, if the content of the alkali metal compound is too small, the amount of by-products of ethers such as DEG and THF becomes extremely large, lowering the glass transition temperature and deteriorating the working environment. When the glycol is EG, it is possible to effectively utilize DEG produced as a by-product at the time of polymerization and to control the copolymerization ratio, and to relatively easily operate the oligomer without lowering the operability and the heat resistance of the polyester. Can be achieved.
[0026]
【Example】
Next, the present invention will be described specifically with reference to examples. The method of measuring and evaluating the characteristic values and the like is as follows.
(A) Intrinsic viscosity Measurement was carried out at a temperature of 20.0 ° C. using an equal weight mixture of phenol and ethane tetrachloride as a solvent.
(B) IPA, DEG and other copolymerization ratios Polyester was dissolved in a mixed solvent of deuterated hexafluoroisopropanol and deuterated chloroform at a volume ratio of 1/25, and was analyzed using a LA-400 type NMR apparatus manufactured by JEOL Ltd. 1 H-NMR was measured, and the copolymerization ratio was determined from the integrated intensity of the proton peak of each copolymer component in the obtained chart.
(C) Glass transition temperature (Tg)
Using a differential thermal scanning calorimeter DSC-7 manufactured by Perkin Elmer Co., Ltd., the temperature was measured at a heating rate of 20 ° C./min in the range of 25 ° C. to 280 ° C., and Tg was determined from the chart at the time of reheating.
(D) Gas barrier properties (carbon dioxide permeability coefficient) [unit: ml · mm / m2 · day · atm]
The section of the bottle was determined from the volume of permeated carbon dioxide using a GPM-250 measuring device manufactured by GL Sciences. The lower the value, the better. If the value is less than 8.0, it was judged as acceptable.
(E) Heat Resistance of Bottle The bottle obtained by stretch blow molding was filled with hot water at 70 ° C., and the presence or absence of a volume change after standing for 30 minutes was visually examined.
:: No change in volume (pass).
×: Volume change (fail).
(F) Metal content 5 g of a sample is weighed into a platinum crucible, 2 ml of concentrated sulfuric acid is added, and the mixture is ashed in an electric furnace. The ash in the crucible was dissolved in a dilute hydrochloric acid aqueous solution and quantified using an ICP analyzer ARIS-AP manufactured by Nippon Jarrell Ash.
(G) Presence / absence of bottle molding defect The preform and the bottle were visually checked, and an appearance inspection such as a shape defect and a crack was conducted.
○: No defect (passed)
△: Some defective products (10% or less) (fail)
×: Frequent defective products (more than 10%) (fail)
[0027]
Example 1
20 L of a 1N aqueous sodium hydroxide solution was charged into a 100-L stainless steel container through an upper charging port, and after draining the aqueous solution from a lower drain valve, the valve was closed, heated at 100 ° C. for 3 hours, and dried. After cooling the container, 50 kg of IPA was charged, the lower discharge valve was opened from the inlet, and IPA was withdrawn. The amount of sodium hydroxide in this IPA was 1.5 mass ppm as sodium atoms. (In another example, the amount of the alkali compound in the IPA was adjusted by changing the input amount of IPA and the type of alkali.)
[0028]
Next, a slurry of TPA and EG having a molar ratio of 1 / 1.6 was continuously supplied to an esterification reactor in which bis (β-hydroxyethyl) terephthalate and a low polymer thereof were present. The reaction was carried out under the condition of a pressure of 500 Pa, and the residence time was 8 hours, whereby a PET oligomer having an esterification reaction rate of 95% was continuously obtained. In another esterification reactor, a slurry composed of 33.2 kg of IPA containing 1.5 mass ppm of sodium hydroxide as sodium atoms and 37.2 kg of EG (molar ratio 1/3), and triethyl phosphate were added to 1 mol of the acid component. On the other hand, an amount (23 g) of 5 × 10 −4 mol was added, and the esterification reaction was carried out at a temperature of 200 ° C. and normal pressure for 5 hours to obtain a PEI low polymer having an esterification reaction rate of 95%. 10 kg of PET low polymer and 40 kg of PEI low polymer were charged into a polycondensation reactor, and an EG solution (1.3 kg) of 4 × 10 −4 mol (29 g) of antimony trioxide per 1 mol of all acid components was added. Finally, polycondensation was performed at 66.7 Pa and 280 ° C. for 3 hours to obtain PEIT [polyester (A)]. The obtained polyester (A) had an intrinsic viscosity of 0.85, a copolymerization ratio of IPA of 79.2 mol%, and a Tg of 63 ° C. The polyester (A) was vacuum dried at 50 ° C. for 20 hours at a reduced pressure of 66.7 Pa using a stationary dryer, but no blocking or the like was observed.
[0029]
On the other hand, 60 kg of the PET oligomer was charged into a polycondensation reactor, and an EG solution (0.8 kg) of 2 × 10 −4 mol (17 g) of antimony trioxide per 1 mol of the TPA component was added. Finally, polycondensation was performed at 66.7 Pa and 280 ° C. for 2 hours to obtain PET having an intrinsic viscosity of 0.65. This PET was charged into a rotary solid-state polymerization apparatus, preliminarily dried at 70 ° C. for 2 hours, then dried at 130 ° C. for 4 hours, and then subjected to solid-state polymerization at a temperature of 220 ° C. and a pressure of 66.7 Pa for 18 hours. And a PET [polyester (B)] having an intrinsic viscosity of 0.75.
[0030]
10 kg (20 parts by weight) of polyester (A) and 40 kg (80 parts by weight) of polyester (B) are blended, the temperature of each part of the cylinder and the nozzle is 280 ° C., the screw rotation speed is 100 rpm, the injection time is 8 seconds, the cooling time is 22 seconds, The preform was molded with an injection molding machine (ASB-50HT type manufactured by Nissei ASB) set at a mold temperature of 20 ° C. (melting residence time is 1 minute). Next, this preform was stretch-blow molded at a blow pressure of 2 MPa in an atmosphere of 110 ° C. to form a bottle having an average body thickness of 250 μm and an internal volume of 1 L. Subsequently, the bottle was compressed under tension in a mold set at 160 ° C. Heat set for 10 seconds to make a bottle. These were continuously made into 1000 bottles, but no contamination by oligomers was observed on the molding die and the bottle surface. The moldability, gas barrier properties and heat resistance of the bottle were all good. Table 1 shows the evaluation results and the like of the obtained bottles.
[0031]
Examples 2 and 3, Comparative Examples 1 and 3
Except that the copolymerization ratio of IPA of the polyester (A), the type and content of the raw material IPA alkali metal compound, and the mixing ratio of the polyester (A) and the polyester (B) were changed as shown in Table 1, Polyester was produced in the same manner as in Example 1 to produce a bottle. Table 1 shows the evaluation results and the like of the obtained bottles.
[0032]
Examples 4 and 5, Comparative Example 2
The copolymerization ratio of the polyester (A) and the type of the alkali metal compound in the raw material IPA were changed as shown in Table 1, and the polyester (A) was subjected to solid-phase polymerization in the same manner as in Example 1, and the polyester (B) was mixed. Instead, only the polyester (A) was used for molding. Table 1 shows the characteristic values of the polyester (A) after the solid phase polymerization, the evaluation results of the obtained bottles, and the like.
[0033]
Example 6
In the same manner as in Example 1, IPA contained 1.5 mass ppm of sodium hydroxide as a sodium atom. 33.2 Kg of this IPA, 9.7 Kg of dimethyl terephthalate (DMT), and 45.1 Kg of BD (molar ratio of 2 to IPA, DMT) were charged into a polymerization reactor, and tetrabutyl titanate (TBT) was used as a catalyst in 1 mol of an acid component. On the other hand, 1 kg of a BD solution dissolved in an amount of 1 × 10 −4 mol (8.5 g) was introduced, and the temperature was raised to 250 ° C. at 150 ° C. for 1 hour and 3 hours under normal pressure, and the esterification reaction and transesterification reaction were performed. went. To the obtained esterified product, triethyl phosphate as a catalyst was added in an amount (23 g) of 0.5 × 10 −4 mol per 1 mol of the acid component, and a polycondensation reaction was performed at 245 ° C. for 2 hours under reduced pressure. And polyester (A). The obtained polyester (A) had an intrinsic viscosity of 0.85, a copolymerization ratio of IPA of 79.2 mol%, and a Tg of 66 ° C. The polyester (A) was subjected to vacuum drying in the same manner as in Example 1, but no particular blocking was observed. Further, polyester (B) was obtained in the same manner as in Example 1, and polyester (A) and polyester (B) were mixed to form a preform. Further, a bottle was prepared in the same manner as in Example 1. Table 1 shows the evaluation results and the like of the obtained bottles.
[0034]
Example 7, Comparative Example 4
Except that the copolymerization ratio of the IPA of the polyester (A), the kind and the content of the raw material IPA alkali metal compound, and the mixing ratio of the polyester (A) and the polyester (B) were changed as shown in Table 1, A bottle was produced in the same manner as in Example 6. Table 1 shows the evaluation results and the like of the obtained bottles.
[0035]
[Table 1]
Figure 2004323627
[0036]
In Examples 1 to 7, good polyesters were obtained in all cases, and there was no problem in performance.
In Comparative Example 1, since the sodium content in the raw material IPA was too small, the DEG copolymerization ratio of the polyester (A) was increased, and the Tg was lowered. Thus, when the chip was dried, blocking occurred. Also, the heat resistance of the bottle was reduced.
In Comparative Example 2, since the copolymerization ratio of IPA of the polyester (A) was too small, the gas barrier property of the bottle was reduced.
In Comparative Example 3, since the sodium content in the raw material IPA was too large, the DEG copolymerization ratio was too low, and contamination of the molding die by the oligomer occurred during bottle molding. In addition, since the intrinsic viscosity of the polyester (A) was slightly lowered, a bottle molding defect was slightly recognized.
In Comparative Example 4, since the sodium content in the raw material IPA was too small, a large amount of THF was generated at the time of polymerization, and the polyester (A) did not reach the desired viscosity.
[0037]
【The invention's effect】
According to the production method of the present invention, the contamination of the molding die by the oligomer is small, and a gas barrier property, a polyester excellent in heat resistance can be obtained, and various sheets, films, containers, particularly, carbonated beverages, fruit juices, It can be used for containers for liquid seasonings, edible oils, sake, wine, etc., containers for medical products and the like.

Claims (2)

酸成分としてイソフタル酸を4mol%以上含有し、エチレングリコールまたは1,4−ブタンジオールを主たるグリコール成分とするポリエステルを製造するに際し、原料としてアルカリ金属化合物をアルカリ金属原子として1〜10質量ppm含有するイソフタル酸を用いることを特徴とするポリエステルの製造方法。When producing a polyester containing 4 mol% or more of isophthalic acid as an acid component and ethylene glycol or 1,4-butanediol as a main glycol component, an alkali metal compound is contained as a raw material in an amount of 1 to 10 ppm by mass as an alkali metal atom. A method for producing a polyester, comprising using isophthalic acid. エステル化反応工程または重縮合工程において、触媒としてリン化合物を添加することを特徴とする請求項1記載のポリエステルの製造方法。The method for producing a polyester according to claim 1, wherein a phosphorus compound is added as a catalyst in the esterification reaction step or the polycondensation step.
JP2003118439A 2003-04-23 2003-04-23 Method for polyester production Pending JP2004323627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003118439A JP2004323627A (en) 2003-04-23 2003-04-23 Method for polyester production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003118439A JP2004323627A (en) 2003-04-23 2003-04-23 Method for polyester production

Publications (1)

Publication Number Publication Date
JP2004323627A true JP2004323627A (en) 2004-11-18

Family

ID=33497979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003118439A Pending JP2004323627A (en) 2003-04-23 2003-04-23 Method for polyester production

Country Status (1)

Country Link
JP (1) JP2004323627A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7655746B2 (en) 2005-09-16 2010-02-02 Eastman Chemical Company Phosphorus containing compounds for reducing acetaldehyde in polyesters polymers
US7709595B2 (en) 2006-07-28 2010-05-04 Eastman Chemical Company Non-precipitating alkali/alkaline earth metal and aluminum solutions made with polyhydroxyl ether solvents
US7709593B2 (en) 2006-07-28 2010-05-04 Eastman Chemical Company Multiple feeds of catalyst metals to a polyester production process
US7745368B2 (en) 2006-07-28 2010-06-29 Eastman Chemical Company Non-precipitating alkali/alkaline earth metal and aluminum compositions made with organic hydroxyacids
US7838596B2 (en) 2005-09-16 2010-11-23 Eastman Chemical Company Late addition to effect compositional modifications in condensation polymers
US7932345B2 (en) 2005-09-16 2011-04-26 Grupo Petrotemex, S.A. De C.V. Aluminum containing polyester polymers having low acetaldehyde generation rates
US8431202B2 (en) 2005-09-16 2013-04-30 Grupo Petrotemex, S.A. De C.V. Aluminum/alkaline or alkali/titanium containing polyesters having improved reheat, color and clarity
US8557950B2 (en) 2005-06-16 2013-10-15 Grupo Petrotemex, S.A. De C.V. High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates
US8563677B2 (en) 2006-12-08 2013-10-22 Grupo Petrotemex, S.A. De C.V. Non-precipitating alkali/alkaline earth metal and aluminum solutions made with diols having at least two primary hydroxyl groups
US9267007B2 (en) 2005-09-16 2016-02-23 Grupo Petrotemex, S.A. De C.V. Method for addition of additives into a polymer melt
US11827803B2 (en) * 2020-06-03 2023-11-28 Swimc Llc Coating compositions including a polyester, articles, and methods of coating

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8987408B2 (en) 2005-06-16 2015-03-24 Grupo Petrotemex, S.A. De C.V. High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates
US8557950B2 (en) 2005-06-16 2013-10-15 Grupo Petrotemex, S.A. De C.V. High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates
US8791187B2 (en) 2005-09-16 2014-07-29 Grupo Petrotemex, S.A. De C.V. Aluminum/alkyline or alkali/titanium containing polyesters having improved reheat, color and clarity
US9267007B2 (en) 2005-09-16 2016-02-23 Grupo Petrotemex, S.A. De C.V. Method for addition of additives into a polymer melt
US7655746B2 (en) 2005-09-16 2010-02-02 Eastman Chemical Company Phosphorus containing compounds for reducing acetaldehyde in polyesters polymers
US7799891B2 (en) 2005-09-16 2010-09-21 Eastman Chemical Company Phosphorus containing compounds for reducing acetaldehyde in polyesters polymers
US7838596B2 (en) 2005-09-16 2010-11-23 Eastman Chemical Company Late addition to effect compositional modifications in condensation polymers
US7932345B2 (en) 2005-09-16 2011-04-26 Grupo Petrotemex, S.A. De C.V. Aluminum containing polyester polymers having low acetaldehyde generation rates
US8431202B2 (en) 2005-09-16 2013-04-30 Grupo Petrotemex, S.A. De C.V. Aluminum/alkaline or alkali/titanium containing polyesters having improved reheat, color and clarity
US7745368B2 (en) 2006-07-28 2010-06-29 Eastman Chemical Company Non-precipitating alkali/alkaline earth metal and aluminum compositions made with organic hydroxyacids
US7709593B2 (en) 2006-07-28 2010-05-04 Eastman Chemical Company Multiple feeds of catalyst metals to a polyester production process
US7709595B2 (en) 2006-07-28 2010-05-04 Eastman Chemical Company Non-precipitating alkali/alkaline earth metal and aluminum solutions made with polyhydroxyl ether solvents
US8563677B2 (en) 2006-12-08 2013-10-22 Grupo Petrotemex, S.A. De C.V. Non-precipitating alkali/alkaline earth metal and aluminum solutions made with diols having at least two primary hydroxyl groups
US11827803B2 (en) * 2020-06-03 2023-11-28 Swimc Llc Coating compositions including a polyester, articles, and methods of coating

Similar Documents

Publication Publication Date Title
KR20170037588A (en) Polyester resin copolymerized with isosorbide and 1,4- cyclohexane dimethanol and preparing method thereof
JP2004323627A (en) Method for polyester production
CN100436506C (en) Aromatic polyester composition for making stretch blow molded containers
TWI791969B (en) Polymerization catalyst for the production of polyester and method of producing polyester using the same
EP0492999B1 (en) Copolyester and hollow container and oriented film comprising the copolyester
JP5598162B2 (en) Copolyester molded product
JP2011068880A (en) Molded article made of copolymerized polyester
JP3983636B2 (en) Modified polyester resin and molded body comprising the same
JP2009511677A (en) Articles with improved gas barrier properties
JP2863570B2 (en) Copolymerized polyethylene terephthalate and its use
WO2022131220A1 (en) Polyester resin
JP2002220442A (en) Copolymer polyester and its molded article
JP5251789B2 (en) Copolyester
JP2007002240A (en) Stretch blow molded polyester article and method for producing the same
US20120126454A1 (en) Block copolymers comprising poly(1,3-trimethylene terephthalate) and poly(1,3-trimethylene 2,6-naphthalate)
JP2006188676A (en) Polyester composition and polyester molded product composed of the same
JPH05155992A (en) Copolyester, and hollow container and oriented film thereof
JPH0977858A (en) Polyester-made hollow container
JPH11130851A (en) Polyethylene-2,6-naphthalenedicarboxylate resin for bottle and molded product made therefrom
JP2023150538A (en) Polyalkylene ether glycol copolyester and molding
JP3192290B2 (en) Polyester heat-resistant bottle
KR20230028875A (en) Polyester copolymer and molded article comprising the same
KR20210067082A (en) Polyester with improved transparency and thermal properties and manufacturing method the same
JP3742505B2 (en) Polyester and hollow molded container comprising the same
JP2000256448A (en) Copolymer polyester