JP2004321875A - Ultrasonic cleaning method and semiconductor device production method - Google Patents

Ultrasonic cleaning method and semiconductor device production method Download PDF

Info

Publication number
JP2004321875A
JP2004321875A JP2003117012A JP2003117012A JP2004321875A JP 2004321875 A JP2004321875 A JP 2004321875A JP 2003117012 A JP2003117012 A JP 2003117012A JP 2003117012 A JP2003117012 A JP 2003117012A JP 2004321875 A JP2004321875 A JP 2004321875A
Authority
JP
Japan
Prior art keywords
cleaning
cleaning liquid
sound pressure
ultrasonic
cleaned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003117012A
Other languages
Japanese (ja)
Other versions
JP4587646B2 (en
JP2004321875A5 (en
Inventor
Tomokazu Kawamoto
智一 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003117012A priority Critical patent/JP4587646B2/en
Publication of JP2004321875A publication Critical patent/JP2004321875A/en
Publication of JP2004321875A5 publication Critical patent/JP2004321875A5/ja
Application granted granted Critical
Publication of JP4587646B2 publication Critical patent/JP4587646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic cleaning method having a high removal effect on fine particles. <P>SOLUTION: An object to be cleaned is immersed in a cleaning liquid. The object is cleaned by applying thereto ultrasonic waves under conditions that the sound pressure of the ultrasonic waves propagating in the cleaning liquid is higher then 5 mV and not higher than 50 mV. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、超音波洗浄方法及び半導体装置の製造方法に関し、特に除去すべきパーティクルの寸法が小さい場合に適した超音波洗浄方法及びその洗浄方法を用いた半導体装置の製造方法に関する。
【0002】
【従来の技術】
洗浄液中に超音波を発生させて被洗浄物を洗浄する超音波洗浄において、洗浄液中の溶存気体量を低減させることによって洗浄効果を高めることができる(特許文献1、特許文献4)。また、洗浄液中を伝搬する超音波の音圧を高めることにより、洗浄効果を高めることができる(特許文献2)。また、所望の洗浄効果を得るために、音圧の最適化が必要であることが知られている(特許文献3)。
【0003】
【特許文献1】
特開平7−96258号公報
【特許文献2】
特開平10−22246号公報
【特許文献3】
特開平9−231561号公報
【特許文献4】
特開平7−100445号公報
【0004】
【発明が解決しようとする課題】
半導体集積回路装置のパターンの微細化が進むと、従来は問題とされなかった微細なパーティクルが信頼性低下の要因になる。従来の超音波洗浄方法では、このような微細なパーティクルを除去することが十分ではなかった。
【0005】
本発明の目的は、微細なパーティクルの除去効果の高い超音波洗浄方法を提供することである。
本発明の他の目的は、上述の超音波洗浄方法を用いた半導体装置の製造方法を提供することである。
【0006】
【課題を解決するための手段】
本発明の一観点によると、洗浄液中に、被洗浄物を浸漬させる工程と、前記洗浄液中を伝搬する超音波の音圧が5mVよりも高く、50mV以下になるように、該洗浄液に超音波を付与し、前記被洗浄物を洗浄する工程とを有する超音波洗浄方法が提供される。
【0007】
本発明の他の観点によると、シリコン基板を、洗浄液中に浸漬させる工程と、前記洗浄液中を伝搬する超音波の音圧が5mVよりも高く、50mV以下になるように、該洗浄液に超音波を付与し、前記シリコン基板を洗浄する工程と、洗浄された前記シリコン基板の表層部を酸化して、酸化シリコン膜を形成する工程とを有する半導体装置の製造方法が提供される。
【0008】
上記条件で超音波洗浄を行うと、極微細なパーティクルを効率よく除去することができる。
【0009】
【発明の実施の形態】
図1(A)〜図2(E)に、実施例による半導体装置の製造途中の基板の断面図を示し、図2(F)に、実施例による方法で作製した半導体装置の断面図を示す。
【0010】
図1(A)に示すように、シリコンからなる半導体基板1の表層部に、シャロートレンチアイソレーション(STI)による素子分離絶縁領域2を形成し、活性領域A1〜A4を画定する。必要に応じて、ウェル形成を行い、閾値調整用のイオン注入を行う。
【0011】
イオン注入後、半導体基板1の表面洗浄を行う。以下、この表面洗浄の手順を詳細に説明する。まず、洗浄液として過酸化水素水とアンモニア水とを純水で希釈したものを用い、超音波洗浄を行う。この処理をSC−1処理と呼ぶ。基板を水洗した後、希釈弗酸を用いて基板表面を洗浄する。この処理をDHF処理と呼ぶ。水洗した後、塩酸と過酸化水素水とを純水で希釈した洗浄液を用いて、表面洗浄を行う。この処理をSC−2処理と呼ぶ。SC−2処理後、水洗及び乾燥を行う。なお、DHF処理及びSC−2処理においては、超音波洗浄は用いられない。
【0012】
図1(B)に示すように、乾燥酸素雰囲気中において熱処理を行い、基板1の表面に厚さ5nmの酸化シリコン膜3を形成する。
図1(C)に示すように、レジスト膜を形成して、露光、現像を行うことにより、活性領域A1及びA2を覆い、活性領域A3及びA4を露出させるレジストパターン4を形成する。
【0013】
図2(D)に示すように、図1(C)に示したレジストパターン4をエッチングマスクとして酸化シリコン膜3を、弗酸を用いてエッチングする。エッチング後、レジストパターン4を除去する。活性領域A1及びA2の上に酸化シリコン膜3が残り、活性領域A3及びA4においては、半導体基板1のシリコン表面が露出する。
【0014】
レジストパターン4を除去した後、図1(B)に示した酸化工程の前に行った表面洗浄と同様の洗浄を行う。
図2(E)に示すように、乾燥酸素雰囲気中で熱処理を行い、図1(B)に示した酸化工程と同様の条件で、半導体基板1の表面を酸化する。これにより酸化シリコン膜5が形成される。活性領域A1及びA2においては、残っていた酸化シリコン膜3を通してシリコン表面が酸化され、より厚い酸化シリコン膜3及び5が形成される。図においては、理解の容易のために、酸化シリコン膜3と5とを明確に分けて表しているが、実際には両者を区別することはできず、1層の酸化シリコン膜となる。
【0015】
活性領域A3及びA4の表面には、厚さ5nmの酸化シリコン膜5が形成される。活性領域A1及びA2の上に形成された酸化シリコン膜3及び5の合計の厚さは7.5nmになる。
【0016】
図2(F)に示すように、活性領域A1及びA3に、それぞれPMOSトランジスタQP1及びQP2を形成し、活性領域A2及びA4に、それぞれNMOSトランジスタQN1及びQN2を形成する。これらのトランジスタは、周知の成膜、フォトリソグラフィ、エッチング、イオン注入等の技術を用いて形成することができる。
【0017】
活性領域A1及びA2に形成されたPMOSトランジスタQP1及びNMOSトランジスタQN1のゲート絶縁膜の厚さは7.5nmである。活性領域A3及びA4に形成されたPMOSトランジスタQP2及びNMOSトランジスタQN2のゲート絶縁膜の厚さは5nmである。このように、ゲート絶縁膜の厚さの異なる複数のMOSトランジスタを形成することができる。
【0018】
以下、上述の製造工程のうち、図1(A)の状態及び図2(D)の状態で、酸化工程前に行われる超音波洗浄処理について、詳細に説明する。
図3に、超音波洗浄装置の概略断面図を示す。外槽10内に処理槽11が配置されている。外槽10と処理槽11との間に伝播水12が満たされている。外槽10の底に複数の高周波振動子13が取り付けられている。処理槽11内に洗浄液15が満たされ、その中に洗浄すべき複数の半導体ウエハ16が浸漬される。例えば、50枚の半導体ウエハ16が、一定の間隔で並ぶようにホルダに保持され、洗浄液15に浸漬される。
【0019】
SC−1処理で用いた洗浄液中の溶存気体量を2ppmとし、洗浄液中に発生する超音波の音圧を変えて洗浄を行った。
図4(A)に、音圧が5〜50mVの条件で洗浄したウエハの、0.09μm以上のパーティクルの検出結果を示す。図4(B)に、音圧が100〜150mVの条件で洗浄したウエハの、0.09μm以上のパーティクルの検出結果を示す。なお、音圧は、本多電子株式会社製の超音波音圧計HUS−5またはHUS−7を用い、図3の超音波洗浄装置の洗浄液15に浸漬されたウエハ16の上端よりも7cm深い位置で測定された。洗浄液15の液面からウエハ16の上端までの深さは約3cmである。すなわち、音圧測定点までの深さは約10cmである。ウエハを浸漬させていない状態の音圧の測定値と、50枚のウエハのうち中央の10枚のウエハを取り除き、ウエハを取り除いた部分の音圧を測定した結果とは、ほぼ同一であった。
【0020】
一般的には、音圧が高くなればパーティクル除去能力も高くなると考えられる。ところが、寸法0.09μm程度の極微細なパーティクルまでを考慮すると、音圧を高くすればパーティクル除去能力も高くなるとはいえないことが分かる。パーティクル除去効果を高めるために、好適な音圧の範囲があると考えられる。さらに、音圧の範囲が5〜50mVを示せば、パーティクル除去効果がウエハサイズに依存することもない。
【0021】
図5に、図3に示した超音波洗浄器のメガソニックパワーと、SC−1処理を行った場合のパーティクル除去率との関係を示す。横軸はメガソニックパワーを単位「W」で表し、縦軸はパーティクル除去率を単位「%」で表す。なお、検出対象としたパーティクルは、寸法0.16μm以上のものである。メガソニックパワーを増加させると、約100Wにおいてパーティクル除去率が極大値を示し、約430Wにおいて極小値を示す。パーティクル除去率を高めるためには、メガソニックパワーを増加させればよいというものではないことがわかる。
【0022】
図6に、メガソニックパワーと音圧との関係を示す。横軸はメガソニックパワーを単位「W」で表し、縦軸は音圧を単位「mV」で表す。この音圧は、本多電子株式会社製の超音波音圧計HUB−5またはHUB−7で測定された結果である。図5からわかるように、パーティクル除去率を高めるためには、メガソニックパワーを100W程度にすればよい。また、メガソニックパワーを300Wまで増加させると、パーティクル除去率が低下してしまう。
【0023】
この結果と、図6に示した関係から、高いパーティクル除去率を確保するためには、音圧を50mV以下にすることが好ましいと考えられる。また、音圧が低すぎると、パーティクルを除去することができなくなる。このため、音圧を5mVよりも高くすることが好ましい。
【0024】
図7に、図2(E)の活性領域A1及びA2に形成されている厚さ約7.5nmの酸化シリコン膜3、4のQbd寿命試験の結果を示す。横軸は酸化シリコン膜中を移動した累積電荷量を対数目盛で表し、左縦軸はワイブル値を表す。なお、右縦軸に、左縦軸のワイブル値に相当する累積不良率を単位「%」で示している。図中のアスタリスク記号及びプラス記号は、それぞれSC−1処理時に、音圧を20mV及び100mVとして超音波洗浄を行った試料のワイブル値を示す。
【0025】
音圧20mVの条件で洗浄して形成した酸化シリコン膜の方が、信頼性が高いことが分かる。
洗浄後に多くのパーティクルが残っていた領域と、Qbd寿命試験において早期に絶縁破壊が発生した測定点とは、必ずしも一致しなかった。このことから、酸化シリコン膜の耐圧の低下は、洗浄後に残存するパーティクルに起因するのみではなく、耐圧低下の要因が他にもあると考えられる。例えば、超音波洗浄時の音圧を高くすると、酸化シリコン膜の不均質な箇所へのキャビティの集中が生じてダメージを与えるとも考えられる。超音波洗浄時の音圧を5mVよりも高く、50mV以下にすることにより、信頼性の高い酸化シリコン膜を形成することができる。
【0026】
上記実施例では、洗浄液中の溶存気体量を2ppmとした。溶存気体量が多くなると、超音波の音圧を高めることができなくなる。このため、溶存気体量を5ppm以下とすることが好ましい。また、上記実施例では、洗浄液として過酸化水素水とアンモニア水と水との混合液を用いたが、他の洗浄液を用いる場合にも、音圧の好適な範囲は変わらないであろう。
【0027】
以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
【0028】
【発明の効果】
以上説明したように、本発明によれば、超音波洗浄時の音圧を5mVよりも高く、かつ50mV以下にすることにより、パーティクルの除去効果を高めることができる。
【図面の簡単な説明】
【図1】実施例による半導体装置の製造方法を説明するための、製造途中の装置の断面図である。
【図2】(D)及び(E)は、実施例による半導体装置の製造方法を説明するための、製造途中の装置の断面図であり、(F)は実施例による方法で作製した半導体装置の断面図である。
【図3】超音波洗浄装置の概略断面図である。
【図4】洗浄後のウエハのパーティクル付着状況を示す図である。
【図5】メガソニックパワーとパーティクル除去率との関係を示すグラフである。
【図6】メガソニックパワーと音圧との関係を示すグラフである。
【図7】実施例及び比較例による方法で作製した酸化シリコン膜のQbd寿命試験結果を示すグラフである。
【符号の説明】
1 半導体基板
2 素子分離絶縁領域
3、5 酸化シリコン膜
4 レジストパターン
10 外槽
11 処理槽
12 伝播水
13 高周波振動子
15 洗浄液
16 ウエハ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic cleaning method and a semiconductor device manufacturing method, and more particularly to an ultrasonic cleaning method suitable for a case where particles to be removed are small in size and a semiconductor device manufacturing method using the cleaning method.
[0002]
[Prior art]
In ultrasonic cleaning in which an object is cleaned by generating ultrasonic waves in the cleaning liquid, the cleaning effect can be enhanced by reducing the amount of dissolved gas in the cleaning liquid (Patent Documents 1 and 4). Further, the cleaning effect can be enhanced by increasing the sound pressure of the ultrasonic wave propagating in the cleaning liquid (Patent Document 2). It is known that sound pressure needs to be optimized in order to obtain a desired cleaning effect (Patent Document 3).
[0003]
[Patent Document 1]
JP-A-7-96258 [Patent Document 2]
JP-A-10-22246 [Patent Document 3]
JP-A-9-231561 [Patent Document 4]
Japanese Patent Application Laid-Open No. Hei 7-100445
[Problems to be solved by the invention]
As the pattern of a semiconductor integrated circuit device becomes finer, fine particles, which have not been a problem in the past, cause a decrease in reliability. In the conventional ultrasonic cleaning method, it was not sufficient to remove such fine particles.
[0005]
An object of the present invention is to provide an ultrasonic cleaning method having a high effect of removing fine particles.
Another object of the present invention is to provide a method for manufacturing a semiconductor device using the above-described ultrasonic cleaning method.
[0006]
[Means for Solving the Problems]
According to one aspect of the present invention, a step of immersing an object to be cleaned in a cleaning liquid and an ultrasonic wave applied to the cleaning liquid so that the sound pressure of the ultrasonic wave propagating in the cleaning liquid is higher than 5 mV and 50 mV or less. And a step of cleaning the object to be cleaned.
[0007]
According to another aspect of the present invention, a step of immersing the silicon substrate in the cleaning liquid, and applying an ultrasonic wave to the cleaning liquid so that the sound pressure of the ultrasonic wave propagating in the cleaning liquid is higher than 5 mV and 50 mV or less. And a step of cleaning the silicon substrate, and oxidizing a surface portion of the cleaned silicon substrate to form a silicon oxide film.
[0008]
When ultrasonic cleaning is performed under the above conditions, extremely fine particles can be efficiently removed.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
1A to 2E are cross-sectional views of a substrate in the process of manufacturing a semiconductor device according to an embodiment, and FIG. 2F is a cross-sectional view of a semiconductor device manufactured by a method according to the embodiment. .
[0010]
As shown in FIG. 1A, an element isolation insulating region 2 is formed in a surface layer portion of a semiconductor substrate 1 made of silicon by shallow trench isolation (STI) to define active regions A1 to A4. If necessary, a well is formed and ion implantation for threshold adjustment is performed.
[0011]
After the ion implantation, the surface of the semiconductor substrate 1 is cleaned. Hereinafter, this surface cleaning procedure will be described in detail. First, ultrasonic cleaning is performed using a cleaning solution obtained by diluting hydrogen peroxide solution and ammonia water with pure water. This processing is called SC-1 processing. After washing the substrate with water, the substrate surface is washed with diluted hydrofluoric acid. This processing is called DHF processing. After washing with water, the surface is washed using a washing solution obtained by diluting hydrochloric acid and aqueous hydrogen peroxide with pure water. This processing is called SC-2 processing. After the SC-2 treatment, washing and drying are performed. Note that ultrasonic cleaning is not used in the DHF processing and the SC-2 processing.
[0012]
As shown in FIG. 1B, a heat treatment is performed in a dry oxygen atmosphere to form a 5-nm-thick silicon oxide film 3 on the surface of the substrate 1.
As shown in FIG. 1C, a resist film is formed, and exposure and development are performed to form a resist pattern 4 that covers the active regions A1 and A2 and exposes the active regions A3 and A4.
[0013]
As shown in FIG. 2D, the silicon oxide film 3 is etched using hydrofluoric acid using the resist pattern 4 shown in FIG. 1C as an etching mask. After the etching, the resist pattern 4 is removed. The silicon oxide film 3 remains on the active regions A1 and A2, and the silicon surface of the semiconductor substrate 1 is exposed in the active regions A3 and A4.
[0014]
After removing the resist pattern 4, the same cleaning as the surface cleaning performed before the oxidation step shown in FIG. 1B is performed.
As shown in FIG. 2E, heat treatment is performed in a dry oxygen atmosphere, and the surface of the semiconductor substrate 1 is oxidized under the same conditions as in the oxidation step shown in FIG. Thus, a silicon oxide film 5 is formed. In the active regions A1 and A2, the silicon surface is oxidized through the remaining silicon oxide film 3, and thicker silicon oxide films 3 and 5 are formed. In the figure, the silicon oxide films 3 and 5 are clearly shown for easy understanding. However, in practice, the two cannot be distinguished from each other, and the silicon oxide films are formed as a single-layer silicon oxide film.
[0015]
A silicon oxide film 5 having a thickness of 5 nm is formed on the surfaces of the active regions A3 and A4. The total thickness of the silicon oxide films 3 and 5 formed on the active regions A1 and A2 is 7.5 nm.
[0016]
As shown in FIG. 2F, PMOS transistors QP1 and QP2 are formed in the active regions A1 and A3, respectively, and NMOS transistors QN1 and QN2 are formed in the active regions A2 and A4, respectively. These transistors can be formed using well-known techniques such as film formation, photolithography, etching, and ion implantation.
[0017]
The gate insulating films of the PMOS transistor QP1 and the NMOS transistor QN1 formed in the active regions A1 and A2 have a thickness of 7.5 nm. The thicknesses of the gate insulating films of the PMOS transistor QP2 and the NMOS transistor QN2 formed in the active regions A3 and A4 are 5 nm. Thus, a plurality of MOS transistors having different gate insulating film thicknesses can be formed.
[0018]
Hereinafter, of the above manufacturing steps, the ultrasonic cleaning process performed before the oxidation step in the state of FIG. 1A and the state of FIG. 2D will be described in detail.
FIG. 3 shows a schematic sectional view of the ultrasonic cleaning apparatus. A processing tank 11 is arranged in the outer tank 10. The propagation water 12 is filled between the outer tank 10 and the processing tank 11. A plurality of high-frequency vibrators 13 are attached to the bottom of the outer tub 10. The processing bath 11 is filled with a cleaning liquid 15 and a plurality of semiconductor wafers 16 to be cleaned are immersed therein. For example, 50 semiconductor wafers 16 are held by a holder so as to be arranged at regular intervals, and are immersed in the cleaning liquid 15.
[0019]
Cleaning was performed by changing the amount of dissolved gas in the cleaning liquid used in the SC-1 treatment to 2 ppm and changing the sound pressure of ultrasonic waves generated in the cleaning liquid.
FIG. 4A shows a detection result of 0.09 μm or more particles of the wafer cleaned under the condition that the sound pressure is 5 to 50 mV. FIG. 4B shows a detection result of 0.09 μm or more particles of the wafer cleaned under the condition that the sound pressure is 100 to 150 mV. The sound pressure was measured at a position 7 cm deeper than the upper end of the wafer 16 immersed in the cleaning solution 15 of the ultrasonic cleaning apparatus of FIG. 3 using an ultrasonic sound pressure meter HUS-5 or HUS-7 manufactured by Honda Electronics Co., Ltd. Was measured. The depth from the level of the cleaning liquid 15 to the upper end of the wafer 16 is about 3 cm. That is, the depth to the sound pressure measurement point is about 10 cm. The measured value of the sound pressure in the state where the wafer was not immersed was almost the same as the result of measuring the sound pressure of the portion where the wafer was removed by removing the central 10 wafers out of the 50 wafers. .
[0020]
Generally, it is considered that the higher the sound pressure, the higher the particle removal ability. However, in consideration of extremely fine particles having a size of about 0.09 μm, it can be understood that if the sound pressure is increased, the particle removing ability cannot be said to be increased. It is considered that there is a suitable range of sound pressure in order to enhance the particle removing effect. Furthermore, if the range of the sound pressure is 5 to 50 mV, the particle removing effect does not depend on the wafer size.
[0021]
FIG. 5 shows the relationship between the megasonic power of the ultrasonic cleaner shown in FIG. 3 and the particle removal rate when performing the SC-1 process. The horizontal axis represents megasonic power in units of “W”, and the vertical axis represents particle removal rates in units of “%”. The particles to be detected have a size of 0.16 μm or more. When the megasonic power is increased, the particle removal rate shows a maximum value at about 100 W, and shows a minimum value at about 430 W. It can be seen that increasing the megasonic power is not the only way to increase the particle removal rate.
[0022]
FIG. 6 shows the relationship between megasonic power and sound pressure. The horizontal axis represents megasonic power in units of “W”, and the vertical axis represents sound pressure in units of “mV”. This sound pressure is a result measured by an ultrasonic sound pressure meter HUB-5 or HUB-7 manufactured by Honda Electronics Co., Ltd. As can be seen from FIG. 5, the megasonic power may be set to about 100 W in order to increase the particle removal rate. Also, when the megasonic power is increased to 300 W, the particle removal rate decreases.
[0023]
From this result and the relationship shown in FIG. 6, it is considered that the sound pressure is preferably set to 50 mV or less in order to secure a high particle removal rate. On the other hand, if the sound pressure is too low, particles cannot be removed. For this reason, it is preferable that the sound pressure be higher than 5 mV.
[0024]
FIG. 7 shows the results of a Qbd life test of the silicon oxide films 3 and 4 having a thickness of about 7.5 nm formed in the active regions A1 and A2 in FIG. The horizontal axis represents the accumulated charge amount moved in the silicon oxide film on a logarithmic scale, and the left vertical axis represents the Weibull value. The right vertical axis indicates the cumulative failure rate corresponding to the Weibull value on the left vertical axis in units of “%”. The asterisk symbol and the plus symbol in the figure indicate the Weibull value of the sample subjected to ultrasonic cleaning with the sound pressure set to 20 mV and 100 mV, respectively, during the SC-1 treatment.
[0025]
It can be seen that the silicon oxide film formed by cleaning under the condition of a sound pressure of 20 mV has higher reliability.
The area where many particles remained after the cleaning did not always coincide with the measurement point where the dielectric breakdown occurred early in the Qbd life test. From this, it is considered that the decrease in the breakdown voltage of the silicon oxide film is caused not only by the particles remaining after the cleaning, but also by other factors. For example, if the sound pressure at the time of ultrasonic cleaning is increased, it is considered that cavities are concentrated on a non-uniform portion of the silicon oxide film, causing damage. By setting the sound pressure at the time of ultrasonic cleaning to be higher than 5 mV and equal to or lower than 50 mV, a highly reliable silicon oxide film can be formed.
[0026]
In the above example, the dissolved gas amount in the cleaning liquid was 2 ppm. When the amount of dissolved gas increases, the sound pressure of the ultrasonic wave cannot be increased. Therefore, the dissolved gas amount is preferably set to 5 ppm or less. Further, in the above embodiment, a mixed solution of hydrogen peroxide solution, aqueous ammonia and water is used as the cleaning liquid, but the preferred range of the sound pressure will not change even when another cleaning liquid is used.
[0027]
Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. For example, it will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.
[0028]
【The invention's effect】
As described above, according to the present invention, the effect of removing particles can be enhanced by setting the sound pressure during ultrasonic cleaning to be higher than 5 mV and equal to or lower than 50 mV.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a device in the process of manufacturing, for explaining a method of manufacturing a semiconductor device according to an embodiment.
FIGS. 2D and 2E are cross-sectional views of a device in the course of manufacture for explaining a method of manufacturing a semiconductor device according to an example; FIG. FIG.
FIG. 3 is a schematic sectional view of an ultrasonic cleaning device.
FIG. 4 is a diagram showing a state of particle attachment to a wafer after cleaning.
FIG. 5 is a graph showing a relationship between megasonic power and a particle removal rate.
FIG. 6 is a graph showing the relationship between megasonic power and sound pressure.
FIG. 7 is a graph showing Qbd life test results of silicon oxide films manufactured by methods according to the examples and the comparative examples.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 semiconductor substrate 2 element isolation insulating region 3, 5 silicon oxide film 4 resist pattern 10 outer tank 11 processing tank 12 propagation water 13 high frequency oscillator 15 cleaning liquid 16 wafer

Claims (5)

洗浄液中に、被洗浄物を浸漬させる工程と、
前記洗浄液中を伝搬する超音波の音圧が5mVよりも高く、50mV以下になるように、該洗浄液に超音波を付与し、前記被洗浄物を洗浄する工程と
を有する超音波洗浄方法。
A step of immersing the object to be cleaned in a cleaning liquid,
Applying an ultrasonic wave to the cleaning liquid so that the sound pressure of the ultrasonic wave propagating in the cleaning liquid is higher than 5 mV and equal to or lower than 50 mV, and cleaning the object to be cleaned.
前記洗浄液中の全溶存気体量が5ppm以下である請求項1に記載の超音波洗浄方法。The ultrasonic cleaning method according to claim 1, wherein a total dissolved gas amount in the cleaning liquid is 5 ppm or less. シリコン基板を、洗浄液中に浸漬させる工程と、
前記洗浄液中を伝搬する超音波の音圧が5mVよりも高く、50mV以下になるように、該洗浄液に超音波を付与し、前記シリコン基板を洗浄する工程と
洗浄された前記シリコン基板の表層部を酸化して、酸化シリコン膜を形成する工程と
を有する半導体装置の製造方法。
A step of immersing the silicon substrate in a cleaning solution,
Cleaning the silicon substrate by applying ultrasonic waves to the cleaning liquid so that the sound pressure of the ultrasonic wave propagating in the cleaning liquid is higher than 5 mV and equal to or lower than 50 mV; and the surface layer portion of the cleaned silicon substrate. Oxidizing to form a silicon oxide film.
前記洗浄液中の全溶存気体量が5ppm以下である請求項3に記載の半導体装置の製造方法。4. The method according to claim 3, wherein a total dissolved gas amount in the cleaning liquid is 5 ppm or less. 前記洗浄液が、過酸化水素水とアンモニア水とを含む請求項3または4に記載の半導体装置の製造方法。The method of manufacturing a semiconductor device according to claim 3, wherein the cleaning liquid includes a hydrogen peroxide solution and an aqueous ammonia.
JP2003117012A 2003-04-22 2003-04-22 Manufacturing method of semiconductor device Expired - Fee Related JP4587646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003117012A JP4587646B2 (en) 2003-04-22 2003-04-22 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003117012A JP4587646B2 (en) 2003-04-22 2003-04-22 Manufacturing method of semiconductor device

Publications (3)

Publication Number Publication Date
JP2004321875A true JP2004321875A (en) 2004-11-18
JP2004321875A5 JP2004321875A5 (en) 2006-06-08
JP4587646B2 JP4587646B2 (en) 2010-11-24

Family

ID=33497050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117012A Expired - Fee Related JP4587646B2 (en) 2003-04-22 2003-04-22 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4587646B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125762A (en) * 2009-12-15 2011-06-30 Nhk Spring Co Ltd Method and apparatus for measuring strength of ultrasonic wave
CN109635421A (en) * 2018-08-28 2019-04-16 李涛 A kind of general purpose pressure gauge detection cycle dynamic optimization method based on Weibull model
CN115709196A (en) * 2022-10-17 2023-02-24 杭州中欣晶圆半导体股份有限公司 Apparatus for improving particle contamination after final cleaning and method for controlling the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529293A (en) * 1991-07-18 1993-02-05 Fujitsu Ltd Pre-treatment method of semiconductor substrate
JPH07302775A (en) * 1994-05-10 1995-11-14 Toshiba Corp Manufacture of semiconductor device
JPH1022246A (en) * 1996-07-04 1998-01-23 Tadahiro Omi Cleaning method
JPH1034097A (en) * 1996-07-25 1998-02-10 Aqua Kagaku Kk Washing device
JPH1071375A (en) * 1996-07-05 1998-03-17 Toshiba Corp Washing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529293A (en) * 1991-07-18 1993-02-05 Fujitsu Ltd Pre-treatment method of semiconductor substrate
JPH07302775A (en) * 1994-05-10 1995-11-14 Toshiba Corp Manufacture of semiconductor device
JPH1022246A (en) * 1996-07-04 1998-01-23 Tadahiro Omi Cleaning method
JPH1071375A (en) * 1996-07-05 1998-03-17 Toshiba Corp Washing method
JPH1034097A (en) * 1996-07-25 1998-02-10 Aqua Kagaku Kk Washing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125762A (en) * 2009-12-15 2011-06-30 Nhk Spring Co Ltd Method and apparatus for measuring strength of ultrasonic wave
US8662093B2 (en) 2009-12-15 2014-03-04 Nhk Spring Co., Ltd. Method of and apparatus for measuring strength of ultrasonic waves
US9234788B2 (en) 2009-12-15 2016-01-12 Nhk Spring Co., Ltd. Method of and apparatus for measuring strength of ultrasonic waves
CN109635421A (en) * 2018-08-28 2019-04-16 李涛 A kind of general purpose pressure gauge detection cycle dynamic optimization method based on Weibull model
CN109635421B (en) * 2018-08-28 2023-02-24 李涛 Weibull model-based dynamic optimization method for detection period of general pressure gauge
CN115709196A (en) * 2022-10-17 2023-02-24 杭州中欣晶圆半导体股份有限公司 Apparatus for improving particle contamination after final cleaning and method for controlling the same

Also Published As

Publication number Publication date
JP4587646B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
JP5622791B2 (en) Semiconductor substrate surface treatment equipment
JP2004128463A (en) Manufacturing method of semiconductor element
JP2005203508A (en) Method for manufacturing semiconductor device
JP2007173840A (en) Dual gate forming method of semiconductor device
KR100338764B1 (en) Cleaning solution for removing contaminants from surface of semiconductor substrate and cleaning method using thereof
JP3415549B2 (en) Method for cleaning electronic device and method for manufacturing the same
JP4587646B2 (en) Manufacturing method of semiconductor device
US6232241B1 (en) Pre-oxidation cleaning method for reducing leakage current of ultra-thin gate oxide
US5858861A (en) Reducing nitride residue by changing the nitride film surface property
JPH04355921A (en) Manufacture of semiconductor device
CN112652518B (en) Method for forming semiconductor device
KR100801744B1 (en) Method for fabricating metal gate in semicondutor device
KR100702126B1 (en) Forming process for isolation layer of semiconductor device
US7132368B2 (en) Method for repairing plasma damage after spacer formation for integrated circuit devices
JP4699691B2 (en) Method for forming trench in semiconductor device
JP2007234760A (en) Method of manufacturing semiconductor device
JP6196094B2 (en) Manufacturing method of semiconductor device
US8932958B2 (en) Device manufacturing and cleaning method
JP2001107081A (en) Cleaning agent for semiconductor device and production of semiconductor device
KR100584498B1 (en) Method for removing photoresist pattern
JP2009135137A (en) Cleaning method and cleaning device
KR100713343B1 (en) Method for detecting and removing a small particle in a process of forming isolated layer
JP2004095625A (en) Method of washing electronic device and method of manufacturing the same
KR960013781B1 (en) Manufacturing method of field oxide
JP2006228849A (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100907

R150 Certificate of patent or registration of utility model

Ref document number: 4587646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees