JP2004320949A - Voltage drop compensating device - Google Patents

Voltage drop compensating device Download PDF

Info

Publication number
JP2004320949A
JP2004320949A JP2003114305A JP2003114305A JP2004320949A JP 2004320949 A JP2004320949 A JP 2004320949A JP 2003114305 A JP2003114305 A JP 2003114305A JP 2003114305 A JP2003114305 A JP 2003114305A JP 2004320949 A JP2004320949 A JP 2004320949A
Authority
JP
Japan
Prior art keywords
load
power
voltage
reactor
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003114305A
Other languages
Japanese (ja)
Inventor
Akio Suzuki
明夫 鈴木
Kazuo Nakamura
一夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2003114305A priority Critical patent/JP2004320949A/en
Publication of JP2004320949A publication Critical patent/JP2004320949A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the capacity of an inverter that is connected in parallel with another AC power supply that backs up a voltage drop of an electric power system, and to restrain the voltage of a load from dropping while being interlocked with the voltage drop of the electric power system. <P>SOLUTION: A power supply switch 31, which opens a circuit if a voltage V<SB>s</SB>of the electric power system 2 drops, is connected to the electric power system 2. A reactor 32 is connected to the power supply switch 31, a load 33 is connected to the reactor 32, and an AC generator 34 that functions as another AC power supply and an electric motor 35 that drives the AC generator 34 are provided on the load side of the reactor 32. Furthermore, an inverter 36 having a capacitor 37 is connected to the DC side, or a transformer 42 is connected in place of the reactor 32. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、電力系統の電圧が低下した場合でも、負荷へ電力の供給を継続することができる電圧低下補償装置に関する。
【0002】
【従来の技術】
図3は電圧低下補償装置の第1従来例を示した主回路接続図である。この図3に図示の第1従来例回路において、系統電源2にはサイリスタで構成した第1交流スイッチ5を介して負荷1を接続すると共に、この第1交流スイッチ5の負荷側には第2交流スイッチ6を介してインバータ4を接続しているが、このインバータ4の直流側には直流エネルギーを蓄積するための大容量のコンデンサ3を接続し、その交流側にはリアクトル7とコンデンサ8とでなるフィルタを接続している。
【0003】
系統電源2の電圧Vは、コンデンサ12と抵抗13で分圧して検出し、これを制御回路11へ入力している。系統電圧Vが正常のときは、制御回路11から第1交流スイッチ5へオン指令が与えられるから、系統電源2から負荷1へ交流電力が供給されている。このときインバータ4は制御回路11からの指令に基づく動作により、負荷1の無効電力分や高調波成分を吸収して系統電源2の力率を1に維持する。
ここで系統電源2の電圧Vが所定の不足電圧設定値まで低下したことを検出すると、制御回路11は第1交流スイッチ5をオフにする指令を与えて負荷1を系統電源2から切り離すと共に、インバータ4はコンデンサ3に蓄積していた電荷を交流電力に変換し、この交流電力を系統電源2の代わりに負荷1へ供給する指令を発するので、負荷1は系統電源2の停電時でも運転を継続することができる(例えば、特許文献1参照。)。
【0004】
図4は電圧低下補償装置の第2従来例を示した主回路接続図である。この第2従来例回路において、双方向変換器23とマイクロタービン発電機24と負荷25との並列接続回路が、商用電源20から遮断器21と高速度スイッチ22を経て接続されている。商用電源20はマイクロタービン発電機24と共に負荷25へ交流電力を供給しており、双方向変換器23はこのときに生じる無効電力分や高調波成分を補償するのであるが、商用電源20とマイクロタービン発電機24が停止した場合には高速度スイッチ22をオフとし、双方向変換器23の直流側に接続しているコンデンサ26に蓄積していた電荷を、当該双方向変換器23が交流電力に変換して負荷25へ供給するから、負荷25は停電により運転を中断するのを回避できる(例えば、特許文献2参照。)。
【0005】
【特許文献1】
特開2002−101576号公報
【特許文献2】
特開2001−275256号公報
【0006】
【発明が解決しようとする課題】
図3に図示の第1従来例回路では、系統電源2の電圧Vが正常のときは第1交流スイッチ5をオンにして負荷1へ電力を供給する。このとき第2交流スイッチ6はオンで、整流器として作用するインバータ4がコンデンサ3を充電する。ここで電圧Vが低下すれば制御回路11が動作して第1交流スイッチ5をオフとし、インバータ4はコンデンサ3の蓄積エネルギーを交流電力に変換して負荷1へ供給する。しかしこのときインバータ4は負荷1の全容量に相当する電力を供給できるように大容量のものを設置する必要があるから、当該インバータ4が大形化する不具合がある。更に、系統電源2の電圧低下状態が長時間続く場合は、コンデンサ3もその時間に比例してその容量をますます大きくしなければならなくなる不具合もある。更に、系統電源2の電圧が低下した場合は、インバータ4の出力電圧が確立するまでの期間は、負荷1への印加電圧が系統電源2の電圧に連動して低下してしまう不具合もある。
【0007】
図4に図示の第2従来例回路も、商用電源20とマイクロタービン発電機24が共に停止した場合に、双方向変換器23は負荷25の全容量を賄える大きさを必要とするし、この双方向変換器23の出力電圧が確立するまでの期間は、負荷25の印加電圧が系統電源2の電圧に連動して低下してしまう不具合を生じるのは、第1従来例回路の場合と同様である。
そこでこの発明の目的は、電力系統の電圧低下をバックアップする別途の交流電源に並列接続するインバータの容量を縮小すると共に、負荷の電圧が電力系統の電圧低下に連動して低下するのを抑制することにある。
【0008】
【課題を解決するための手段】
前記の目的を達成するために、この発明の電圧低下補償装置は、
電力系統に、この電力系統の電圧が低下すれば開路する電源開閉器を接続し、該電源開閉器にリアクトルを接続し、該リアクトルに負荷を接続し、このリアクトルの負荷側に別途の交流電源と、直流側にコンデンサを有するインバータとを接続する。
または前記リアクトルの代わりに変圧器を接続する。
【0009】
【発明の実施の形態】
図1は本発明の第1実施例を表した主回路接続図である。この第1実施例回路において、電力系統30からは電源開閉器31とリアクトル32を経て交流電力を負荷33へ供給している。このときリアクトル32の負荷側には別途の交流電源としての交流発電機34とインバータ36とが接続されており、交流発電機34は電動機35により駆動されて無負荷運転している。インバータ36の直流側にはコンデンサ37が接続されており、このインバータ36が負荷33の無効電力分や高調波成分を吸収することにより、電力系統30は力率1で運転することができる。
【0010】
電力系統30の電圧が低下したことを図示していない電圧検出器が検出すれば、電源開閉器31をオフにすることで、無負荷運転していた交流発電機34が電力系統30の代わりに負荷33へ電力を供給するから、負荷33は運転を継続することができる。このとき、インバータ36は電源開閉器31がオンしていたときと同様に負荷33の無効電力分や高調波成分を吸収するように動作するから、交流発電機34は力率1で運転することができる。よってインバータ36は、前述したように負荷33の無効電力分や高調波成分を吸収できる容量を備えていれば良いことから、従来のように負荷33の全容量を賄うことができる大きさを備える必要は無いし、コンデンサ37も同様にその容量を減少させることができる。また、交流発電機34は力率1での運転となることから、当該交流発電機34とこれを駆動する電動機35とは、負荷33の有効電力分を賄える容量を備えていれば十分である。
【0011】
更に、電力系統30の電圧が低下した場合に、従来は負荷33に印加される電圧もこれに連動して低下してしまっていたが、本発明ではリアクトル32を挿入することで、電力系統30の電圧が低下しても交流発電機34は従前の電圧を維持することができ、これら両者の差電圧は当該リアクトル32が分担する。それ故、電力系統30の電圧が低下してから電源開閉器31がオフとなるまでの期間に負荷33の印加電圧が電力系統30の電圧と共に低下する恐れを回避することができる。
なお、電力系統30の電圧が低下している期間が短い場合は、交流発電機34には電動機35の代わりに蓄勢輪(フライホィール)を結合しておき、通常は交流発電機34が電動機となって蓄勢輪にエネルギーを蓄積しているが、電力系統30の電圧が低下したときにこの蓄勢輪が交流発電機34を駆動する構成にすることもできる。
【0012】
図2は本発明の第2実施例を表した主回路接続図であるが、この第2実施例回路では、リアクトル32の代わりに変圧器42を使用するところが図1で既述の第1実施例回路と異なっているが、これ以外は同じであるから、同じ部分の説明は省略する。すなわち第1実施例回路におけるリアクトル32のインピーダンスが変圧器42のインピーダンスに変わっている。
【0013】
【発明の効果】
従来の電圧低下補償装置は、負荷の全容量を賄うことができる大きさのインバータとコンデンサを備えていたことから、装置が大形化してしまう欠点があったし、電力系統の電圧が低下し始めてから電圧低下補償装置がその動作を確立するまでの期間は、負荷に印加される電圧が、電力系統の電圧低下に連動して下降してしまう不具合があった。これに対して本発明では、インバータとコンデンサの容量は負荷の無効電力分に相当する大きさであれば良いことから、従来よりも大幅にその容量と寸法を縮小することができる効果が得られるし、別途の交流電源は負荷の有効電力分に相当する大きさ出よいことから、その容量と寸法を縮小することができる。更に、主回路にリアクトルを挿入することで、電力系統の電圧が低下した場合でも、負荷に印加される電圧がこれに連動して低下するのを抑制できる効果も得られる。
【図面の簡単な説明】
【図1】本発明の第1実施例を表した主回路接続図
【図2】本発明の第2実施例を表した主回路接続図
【図3】電圧低下補償装置の第1従来例を示した主回路接続図
【図4】電圧低下補償装置の第2従来例を示した主回路接続図
【符号の説明】
1,25,33 負荷
2 系統電源
3,26,37 コンデンサ
4,36 インバータ
5 第1交流スイッチ
6 第2交流スイッチ
11 制御回路
20 商用電源
21 遮断器
22 高速度スイッチ
23 双方向変換器
24 マイクロタービン発電機
30 電力系統
31 電源開閉器
32 リアクトル
34 交流発電機
35 電動機
42 変圧器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a voltage drop compensation device that can continue to supply power to a load even when the voltage of a power system drops.
[0002]
[Prior art]
FIG. 3 is a main circuit connection diagram showing a first conventional example of the voltage drop compensating device. In the first prior art circuit shown in FIG. 3, a load 1 is connected to a system power supply 2 via a first AC switch 5 composed of a thyristor, and a second side of the first AC switch 5 is connected to a load side. An inverter 4 is connected via an AC switch 6. A large-capacity capacitor 3 for storing DC energy is connected to the DC side of the inverter 4, and a reactor 7 and a capacitor 8 are connected to the AC side. Is connected.
[0003]
Voltage V S of the system power source 2 is detected by dividing by the capacitor 12 and a resistor 13, and inputs it to the control circuit 11. When the system voltage V S is normal, since the on command is given from the control circuit 11 to the first AC switch 5, the AC power is supplied from the system power supply 2 to the load 1. At this time, the inverter 4 maintains the power factor of the system power supply 2 at 1 by absorbing reactive power and harmonic components of the load 1 by an operation based on a command from the control circuit 11.
Here, if the voltage V S of the system power source 2 is detected to be decreased to a predetermined undervoltage set value, the control circuit 11 loads 1 provides an instruction to turn off the first AC switch 5 with disconnected from the system power supply 2 The inverter 4 converts the electric charge stored in the capacitor 3 into AC power, and issues a command to supply the AC power to the load 1 instead of the system power supply 2, so that the load 1 operates even when the system power supply 2 fails. Can be continued (for example, see Patent Document 1).
[0004]
FIG. 4 is a main circuit connection diagram showing a second conventional example of the voltage drop compensating device. In this second conventional circuit, a parallel connection circuit of a bidirectional converter 23, a microturbine generator 24, and a load 25 is connected from a commercial power supply 20 via a circuit breaker 21 and a high-speed switch 22. The commercial power supply 20 supplies AC power to the load 25 together with the microturbine generator 24, and the bidirectional converter 23 compensates for the reactive power and harmonic components generated at this time. When the turbine generator 24 stops, the high-speed switch 22 is turned off, and the electric charge stored in the capacitor 26 connected to the DC side of the bidirectional converter 23 is transferred to the bidirectional converter 23 by the AC power. And supply to the load 25, the load 25 can be prevented from interrupting the operation due to a power failure (for example, see Patent Document 2).
[0005]
[Patent Document 1]
JP 2002-101576 A [Patent Document 2]
JP 2001-275256 A
[Problems to be solved by the invention]
In the first prior art example circuit shown in Figure 3, when the voltage V S of the system power source 2 is normal to supply power to the load 1 is turned on the first AC switch 5. At this time, the second AC switch 6 is turned on, and the inverter 4 acting as a rectifier charges the capacitor 3. Here the voltage V S off the first AC switch 5 operates the control circuit 11 when lowered, the inverter 4 is supplied to convert stored energy of the capacitor 3 into AC power to the load 1. However, at this time, it is necessary to install a large-capacity inverter 4 so as to be able to supply electric power corresponding to the entire capacity of the load 1, so that there is a problem that the inverter 4 becomes large. Further, when the voltage drop of the system power supply 2 continues for a long time, there is a problem that the capacity of the capacitor 3 must be further increased in proportion to the time. Furthermore, when the voltage of the system power supply 2 decreases, the voltage applied to the load 1 decreases in conjunction with the voltage of the system power supply 2 until the output voltage of the inverter 4 is established.
[0007]
The second conventional circuit shown in FIG. 4 also requires that the bidirectional converter 23 be large enough to cover the full capacity of the load 25 when both the commercial power supply 20 and the microturbine generator 24 are stopped. During the period until the output voltage of the bidirectional converter 23 is established, a problem that the applied voltage of the load 25 decreases in conjunction with the voltage of the system power supply 2 occurs similarly to the first conventional circuit. It is.
Therefore, an object of the present invention is to reduce the capacity of an inverter connected in parallel to a separate AC power supply that backs up a voltage drop in a power system, and to suppress a load voltage from decreasing in conjunction with a voltage drop in a power system. It is in.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a voltage drop compensator according to the present invention includes:
A power switch that opens when the voltage of this power system drops is connected to the power system, a reactor is connected to the power switch, a load is connected to the reactor, and a separate AC power source is connected to the load side of the reactor. And an inverter having a capacitor on the DC side.
Alternatively, a transformer is connected instead of the reactor.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a main circuit connection diagram showing a first embodiment of the present invention. In the circuit of the first embodiment, AC power is supplied from a power system 30 to a load 33 via a power switch 31 and a reactor 32. At this time, an AC generator 34 as an additional AC power supply and an inverter 36 are connected to the load side of the reactor 32, and the AC generator 34 is driven by the electric motor 35 to perform no-load operation. A capacitor 37 is connected to the DC side of the inverter 36, and the inverter 36 absorbs the reactive power and harmonic components of the load 33, so that the power system 30 can be operated at a power factor of 1.
[0010]
When a voltage detector (not shown) detects that the voltage of the power system 30 has dropped, the power generator 31 is turned off, so that the AC generator 34 that has been operating without load replaces the power system 30. Since power is supplied to the load 33, the load 33 can continue operating. At this time, since the inverter 36 operates to absorb the reactive power and the harmonic components of the load 33 in the same manner as when the power switch 31 is turned on, the AC generator 34 must be operated at a power factor of 1. Can be. Therefore, since the inverter 36 only needs to have a capacity capable of absorbing the reactive power and harmonic components of the load 33 as described above, the inverter 36 has a size capable of covering the entire capacity of the load 33 as in the related art. It is not necessary, and the capacity of the capacitor 37 can be similarly reduced. Further, since the AC generator 34 operates at a power factor of 1, the AC generator 34 and the motor 35 for driving the AC generator 34 need only have a capacity capable of covering the active power of the load 33. .
[0011]
Further, when the voltage of the power system 30 is reduced, the voltage applied to the load 33 is conventionally reduced in conjunction with this, but in the present invention, by inserting the reactor 32, The voltage of the AC generator 34 can maintain the previous voltage even if the voltage of the AC power supply decreases, and the reactor 32 shares the difference voltage between the two. Therefore, it is possible to avoid the possibility that the voltage applied to the load 33 decreases together with the voltage of the power system 30 during a period from when the voltage of the power system 30 decreases to when the power switch 31 is turned off.
When the period during which the voltage of the power system 30 is low is short, a power storage wheel (flywheel) is connected to the AC generator 34 instead of the motor 35, and the AC generator 34 is normally connected to the motor. Thus, the energy is stored in the energy storage wheel, but the energy storage wheel may drive the AC generator 34 when the voltage of the power system 30 decreases.
[0012]
FIG. 2 is a main circuit connection diagram showing a second embodiment of the present invention. In the circuit of the second embodiment, a transformer 42 is used instead of the reactor 32 in the first embodiment already described in FIG. Although it is different from the example circuit, it is the same except for this, and the description of the same part is omitted. That is, the impedance of the reactor 32 in the circuit of the first embodiment is changed to the impedance of the transformer 42.
[0013]
【The invention's effect】
The conventional voltage drop compensator had an inverter and a capacitor large enough to cover the entire capacity of the load.Therefore, there was a drawback that the device became larger, and the voltage of the power system decreased. During the period from the start until the voltage drop compensating device establishes its operation, there is a problem that the voltage applied to the load drops in conjunction with the voltage drop of the power system. On the other hand, according to the present invention, since the capacity of the inverter and the capacitor only needs to be large enough to correspond to the reactive power of the load, the effect that the capacity and the size can be significantly reduced as compared with the related art can be obtained. However, the size of the separate AC power supply can be reduced because its size is equivalent to the active power of the load. Further, by inserting the reactor into the main circuit, even when the voltage of the power system is reduced, an effect is obtained that the voltage applied to the load can be prevented from being reduced in conjunction therewith.
[Brief description of the drawings]
FIG. 1 is a main circuit connection diagram showing a first embodiment of the present invention. FIG. 2 is a main circuit connection diagram showing a second embodiment of the present invention. FIG. 3 shows a first conventional example of a voltage drop compensating device. Main circuit connection diagram shown FIG. 4 Main circuit connection diagram showing a second conventional example of the voltage drop compensation device
1, 25, 33 Load 2 System power supply 3, 26, 37 Capacitor 4, 36 Inverter 5 First AC switch 6 Second AC switch 11 Control circuit 20 Commercial power supply 21 Circuit breaker 22 High-speed switch 23 Bidirectional converter 24 Micro turbine Generator 30 Power system 31 Power switch 32 Reactor 34 Alternator 35 Motor 42 Transformer

Claims (2)

電力系統に、この電力系統の電圧が低下すれば開路する電源開閉器を接続し、該電源開閉器にリアクトルを接続し、該リアクトルに負荷を接続し、このリアクトルの負荷側に別途の交流電源と、直流側にコンデンサを有するインバータとを接続することを特徴とする電圧低下補償装置。A power switch that opens when the voltage of this power system drops is connected to the power system, a reactor is connected to the power switch, a load is connected to the reactor, and a separate AC power source is connected to the load side of the reactor. And an inverter having a capacitor on the DC side. 電力系統に、この電力系統の電圧が低下すれば開路する電源開閉器を接続し、該電源開閉器に変圧器を接続し、該変圧器に負荷を接続し、この変圧器の負荷側に別途の交流電源と、直流側にコンデンサを有するインバータとを接続することを特徴とする電圧低下補償装置。A power switch, which is opened when the voltage of the power system drops, is connected to the power system, a transformer is connected to the power switch, a load is connected to the transformer, and a separate load is connected to the load side of the transformer. A voltage drop compensator characterized in that the AC power supply is connected to an inverter having a capacitor on the DC side.
JP2003114305A 2003-04-18 2003-04-18 Voltage drop compensating device Withdrawn JP2004320949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003114305A JP2004320949A (en) 2003-04-18 2003-04-18 Voltage drop compensating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003114305A JP2004320949A (en) 2003-04-18 2003-04-18 Voltage drop compensating device

Publications (1)

Publication Number Publication Date
JP2004320949A true JP2004320949A (en) 2004-11-11

Family

ID=33473945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003114305A Withdrawn JP2004320949A (en) 2003-04-18 2003-04-18 Voltage drop compensating device

Country Status (1)

Country Link
JP (1) JP2004320949A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182775A (en) * 2007-01-23 2008-08-07 Chubu Electric Power Co Inc Power supply system equipped with power failure compensation function
CN107516937A (en) * 2017-09-11 2017-12-26 鞍钢集团工程技术有限公司 A kind of motor control loop power supply mode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182775A (en) * 2007-01-23 2008-08-07 Chubu Electric Power Co Inc Power supply system equipped with power failure compensation function
CN107516937A (en) * 2017-09-11 2017-12-26 鞍钢集团工程技术有限公司 A kind of motor control loop power supply mode

Similar Documents

Publication Publication Date Title
JP4124855B2 (en) Ship power supply
EP2416475B1 (en) Electric power generating system with boost converter/synchronous active filter
US7388353B2 (en) Discharging system for smoothing capacitor
JP3277825B2 (en) Charging device
JPH11178245A (en) Emergency power supply for coping with service interruption
JP2004357377A (en) Distributed power generation system
KR20160128942A (en) Dual Battery Package and Operating Method of the Same
JP4276193B2 (en) Charging method for instantaneous voltage drop compensator
JP5173124B2 (en) Elevator control device
JPH11113191A (en) Uninterruptible power-supply apparatus and its charging control method
JP2001178024A (en) Emergency power supply unit
JPH0787686A (en) Uninterruptible power supply
JP2004320949A (en) Voltage drop compensating device
JP4560657B2 (en) Uninterruptible power system
WO2011013187A1 (en) Self-excited reactive power compensation device
JP3446773B2 (en) Uninterruptible power system
JP2005261149A (en) Power supply with uninterruptible power supply function
JP2867395B2 (en) Uninterruptible power system
JP2002084797A (en) Wind turbine power generating system
JP3608935B2 (en) Uninterruptible power system
KR101961143B1 (en) Power generation system and method for braking generator of power generation system
JP2004189482A (en) Elevator system
JP3873043B2 (en) Uninterruptible power system
JP6509648B2 (en) Generator
JP2003037938A (en) Power conversion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070111