JP2004320282A - Mount structure for solid state imaging element - Google Patents

Mount structure for solid state imaging element Download PDF

Info

Publication number
JP2004320282A
JP2004320282A JP2003109860A JP2003109860A JP2004320282A JP 2004320282 A JP2004320282 A JP 2004320282A JP 2003109860 A JP2003109860 A JP 2003109860A JP 2003109860 A JP2003109860 A JP 2003109860A JP 2004320282 A JP2004320282 A JP 2004320282A
Authority
JP
Japan
Prior art keywords
support plate
solid
state imaging
imaging device
mounting structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003109860A
Other languages
Japanese (ja)
Other versions
JP3809426B2 (en
Inventor
Makoto Kamijo
誠 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP2003109860A priority Critical patent/JP3809426B2/en
Publication of JP2004320282A publication Critical patent/JP2004320282A/en
Application granted granted Critical
Publication of JP3809426B2 publication Critical patent/JP3809426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mount structure for a solid state imaging element whereby swing and tilt can easily be adjusted and entire two-dimensional sensor areas can be focused with high accuracy. <P>SOLUTION: The mount structure for the solid-state imaging element includes: a first support plate 1 for supporting the solid-state imaging element 106; a third support plate 3 for fixing an imaging optical section 12 including an imaging lens 102; and a second support plate 2 interposed between the first and third support plates 1, 3, and engaging with a fulcrum provided in a diagonal line direction to any of the respective support plates and an imaging face 106A of the imaging element 106. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、CCDに代表されるような固体撮像素子を用いた撮像装置、特に固体撮像素子と撮像用レンズ部との機械的結合構造に関するものである。
【0002】
【従来の技術】
2次元センサである固体撮像素子により、撮像レンズを介して被写体を撮像し、電気的画像信号を得る撮像装置が従来より広く一般に用いられている。
その一例を図5及び図6に示す。図5において、101は被写体、102はレンズ群で構成された撮像レンズ、103は撮像レンズ102を支持するレンズベース、104はベース、105はリング、106は固体撮像素子、107はセンサベース、108はスペーサである。
【0003】
ここでレンズベース103、ベース104、リング105はすべて略円筒形状であり、図5はこれらを軸方向に沿って切断した断面を表わしたものである。また固体撮像素子106は直方体であり、撮像面106Aを法線の方向つまり被写体側から見ると図6で示すような長方形となる。
【0004】
図6において固体撮像素子106の撮像面106Aには画素数(例えば数十万個から数百万個)分のセンサが面状に並んでいる。また、固体撮像素子106はセンサベース107に固定されており、センサベース107にはスペーサ108を介してベース104にねじ止めするための穴107Aが穿設されている。
【0005】
また図5で示すように、リング105には半径方向に複数のねじ穴105Bが穿設されており、先端がテーパ状のねじ109がねじ穴105Bに螺着されている。さらに、このねじ109のテーパ状の先端はベース104の外周に凹設された溝104Aに係合している。
【0006】
ここで、図5で示すように光軸の中心線方向(撮像レンズ102の中心軸方向)をZ軸とし、図6で示すように固体撮像素子106の撮像面106Aの中心点106Bは前記Z軸上にあるものとする。また、中心点106Bを含みZ軸と直交する2次元座表面をX軸とY軸で表わす。
【0007】
加えて、ベース104は図示しない撮像装置の構造体に固定されており、被写体101と撮像装置との位置関係が変化しない限り、被写体101とベース104との位置関係は変化しない。
【0008】
このような従来の個体撮像素子の取付構造においては、まずリング105をZ軸回りに回転させて撮像レンズ102のZ軸方向の位置を調整する。ここで、ねじ109の先端が溝104Aに係合しているため、リング105は回転させてもZ軸方向に不動である。また、円筒形状のリング105の内面には雌ねじ105Aが形成されており、レンズベース103から突出したフランジ部103Aの先端に形成された雄ねじ103Bと螺合している。
【0009】
さらにレンズベース103は、突起103Cがベース104の内面に形成されたZ軸方向の溝104Bに係合しているため、Z軸回りの回転が阻止されている。したがって、リング105を正逆回転させることで、リングベース103に固定された撮像レンズ102はZ軸方向に移動し、撮像レンズ102を通過した被写体101の像が結像する焦点の位置を固体撮像素子106の主面106Aに調整することができる。
【0010】
このような構成にしているので、固体撮像素子106と撮像レンズ102とのZ軸方向の距離関係において焦点合わせが可能となっているが、近年の画像の高精細化に伴いより精度の高い焦点合わせが必要となったことから、実際の固体撮像素子106の撮像面106Aと、光軸中心線であるZ軸によって幾何学的に限定されるX−Y平面との角度差を補正する調整、いわゆるあおり調整が必要となってきた。
【0011】
なぜならば、個体撮像素子106の撮像面106Aとセンサベース107の主面との平行度のばらつき、あるいは他の構造体の寸法的ばらつきによって生ずる撮像面106Aと前記X−Y平面との角度差が原因となり、撮像面106Aの中心106Bに焦点が合っていても、撮像面106Aの周縁近傍における焦点とのずれが無視できないものとなり、これが大きな問題となってきた。
【0012】
そこで特許文献1で開示された技術では、前記問題を解決するための工夫がなされている。図7で示すようにセンサベース110を3点支持とし、3個所の支持点111のZ軸方向の位置が夫々独立で調整できるようにしたので、レンズ鏡筒112で得られる光軸に対する固体撮像素子113のあおり調整を可能としている。
【0013】
また特許文献2で開示された技術では、図8で示すように個体撮像素子120を支持するセンサベース121の裏面に、凸状の半球面121Aを形成し、さらにこれに対向する凹状の半球面122Aが形成された受け部材122を設けている。
【0014】
図8(b)及び図8(c)は図8(a)で示すア−ア断面を示したものであるが、X軸回りの角度調整ツマミ123を回すことで、センサベース121は半球面状の接触面121A、122Aにガイドされ、個体撮像素子120のX軸回りの角度が調整可能となる。またY軸回りの角度調整ツマミ124を回すことで、同様に個体撮像素子120のY軸回りの角度が調整可能となる。
【0015】
このとき、前記半球面状の接触面121A、122Aはその曲率の中心が個体撮像素子120の撮像面の中心に設定してあるので、前述した角度調整を行ってもこの中心は位置ずれしない。いわゆるゴニオステージと原理的に同一である。
【0016】
【特許文献1】特開2003−69886号公報
【特許文献2】特開2002−77699号公報
【0017】
【発明が解決しようとする課題】
しかしながら、前述した特許文献1で開示された従来技術は、センサベース110上の3個所の支持点111を個々に調整するものであり、ある1個所を調整すると撮像面全体の光軸方向の位置がずれてしまい、調整が極めて困難となり実用に耐えない。
【0018】
また特許文献2で開示された従来技術によれば、X軸回りの角度調整ツマミ123あるいはY軸回りの角度調整ツマミ124を回しても個体撮像素子120の主面の中心位置はずれないが、個体撮像素子120の撮像面の角部を焦点に合わせる場合には、X軸回りの角度調整ツマミ123とY軸回りの角度調整ツマミ124との両方をを回して調整しなければならない。
【0019】
特に個体撮像素子の撮像面の角度調整においては、撮像面の中心から離れた位置ほど角度変化に対する光軸方向の位置変化が大きくなる。したがって特許文献2で開示された従来技術のように、個体撮像素子120の主面の角部を焦点に精度良く合わせるのに、夫々が同一の角部に影響する2つのツマミで調整するのは非常に困難である。また、凸状の半球面と凹状の半球面を形成して面接触させる構造は精度の高い加工が必要となりコスト高になる。
【0020】
本発明は前記課題を解決するためになされたもので、個体撮像素子の撮像面の角部であっても焦点調整が容易であり、大掛りな機構を必要としないあおり調整機構を有した個体撮像素子の取付構造を実現することを目的とする。
【0021】
【課題を解決するための手段】
本発明は第1の態様として、4角形の撮像面を備えた個体撮像素子を支持する第1の支持板と、前記撮像面の2本の対角線を光軸の中心線方向から見た場合の、一方の対角線の両端の延長線上に支点を設けて前記第1の支持板と係合する第2の支持板と、前記2本の対角線を光軸の中心線方向から見た場合の、他方の対角線の両端の延長線上に支点を設けて前記第2の支持板と係合する第3の支持板とを有し、前記第3の支持板が撮像レンズを含む撮像光学部に固定されることを特徴とする個体撮像素子の取付構造を提供する。
【0022】
また第2の態様として、前記第1の支持板と第2の支持板との係合に係る支点と前記第2の支持板と第3の支持板との係合に係る支点は、係合し合う両支持板の何れかに突設された一対の突起により構成されることを特徴とする第1の態様として記載の個体撮像素子の取付構造を提供する。
【0023】
さらに第3の態様として、前記突起の先端は略半円若しくは略半球形状であり、係合する支持板の前記先端が当接する位置には、前記半円若しくは半球の半径より小さい半径の円形開口部が設けられることを特徴とする第1あるいは第2の態様として記載の個体撮像素子の取付構造を提供する。
【0024】
【発明の実施の形態】
図1は本発明の一実施形態を示す個体撮像素子の取付構造の側面図である。本図において、符号1は第1の支持板、2は第2の支持板、3は第3の支持板、12は撮像光学部である。また本図において、従来技術の説明に用いたものと同等の構造・機能を有する要素は共通の符号で表わす。なお、ここでも図5と同様に光軸の中心線をZ軸と定義する。
【0025】
また図2は本発明の1実施形態を示す分解斜視図である。本図において撮像光学部12は分解せずに表わす。また本図では撮像光学部12と第3の支持板3との取付構造を省略する。ここで、2Aは第1の支持板1と第2の支持板2との係合に係る一対の突起、2Bは第2の支持板2と第3の支持板3との係合に係る一対の突起、1Aは一対の突起2Aの先端が当接する円形開口部、3Aは一対の突起2Bが当接する円形開口部、4および5はスペーサ、6および7は圧縮コイルばねである。
【0026】
次に個体撮像素子106を取り付けた後の調整方法を説明する。まず撮像面106Aの中心106Bの焦点合わせを行う。この焦点を合わせるためには、リング105を回転させ、撮像レンズ102をZ軸方向に移動させて行う。この動作説明の詳細は従来技術の説明において図5に基づいて説明したので省略する。
【0027】
焦点合わせは、被写体として焦点合わせ用のチャートを用い、これを実際に個体撮像素子で撮像し、出力映像の画面を見ながら行うのが一般であり、画像のあらゆる位置の焦点合わせを確認するには有効な手段である。前記チャートには焦点合わせ用に適した画像パターンが印刷されている。
【0028】
撮像面106Aの中心106Bの焦点合わせが完了すると、次にあおり調整が行われる。本発明によるあおり調整は2方向の角度調整を順に行うもので、これら各方向の調整の順序は問わないが、説明の便宜上ある一方から順に調整するように記載する。
【0029】
あおりを調整するにはまず、図2で示す調整ねじ9を回す。このとき第2の支持板2にある一対の突起2Bの先端付近が第3の支持板3の円形開口部3Aに当接しており、なお且つ圧縮コイルばね6と押えねじ8により第2の支持板2の一端は第3の支持板3の方向に付勢されている。
【0030】
したがって調整ねじ9を回すことにより第2の支持板2は一対の突起2Bの先端付近を支点として角度を変化させる。これをZ軸方向から見て説明すると、図3で示すように一対の突起2Bが当接する円形開口部3Aは、個体撮像素子106の撮像面106Aの一方の対角線の延長線上に位置している。
【0031】
そのため調整ねじ9を回すと図3で見て撮像面106Aの左下と右上の領域の焦点合わせを行うことができるが、このとき撮像面106Aの左上の角部から右下の角部へかけた対角線上の部分のZ軸位置は変化しない。
【0032】
次に図1および図2で示す調整ねじ11を回す。このとき第2の支持板にある一対の突起2Aの先端付近が第1の支持板1の円形開口部1Aに当接しており、なお且つ圧縮コイルばね7と押えねじ10により第1の支持板1の一端は第2の支持板2の方向に付勢されている。
【0033】
したがって調整ねじ11を回すことにより第1の支持板1は一対の突起2Aの先端付近を支点として角度を変化させる。これをZ軸方向から見て説明すると、図3で示すように一対の突起2Aが当接する円形開口部1Aは、個体撮像素子106の撮像面106Aの他方の対角線の延長線上に位置している。
【0034】
そのため調整ねじ11を回すと図3で見て撮像面106Aの左上と右下の領域の焦点合わせを行うことができるが、このとき既に調整済みの撮像面106Aの左下の角部から右上の角部へかけた対角線上の部分のZ軸位置は変化しない。
【0035】
ここで、図4に基づいて突起2A及び2Bと円形開口部1A及び3Aとの関係を詳細に説明する。本実施例による突起2A及び2Bは鋼板を打ち抜いて形成した第2の支持板2から引き起こして形成したものであり。この引き起こされた鋼板の主面から見た場合、図4(a)のように先端が半円形状になっている。
【0036】
このとき円形開口部1A、3Aの半径は突起2A、2Bの半径よりも小さいので、突起先端が開口部に嵌入することはない。この状態で前述した角度調整が行われた場合、突起先端の半円形状の円弧状のエッジと円形開口部1A、3Aの上端のエッジが擦れ合い、突起は前記半円形状の半径の中心を支点にして傾斜する。したがって角度調整のために突起が傾斜しても位置ずれを起こさない。
【0037】
位置ずれを起こさないようにするのであれば図4(b)で示すよう尖端形状の突起にしても良いが、尖端であるためにつぶれやすく、その場合位置ずれを起こしてしまう。これに対して図4(a)の構成であれば、前記エッジが多少摩耗したとしても位置ずれを起こす心配がない。
【0038】
また、図4(a)で示した実施例は鋼板を打ち抜いて半円形状の先端を形成しているが、図4(c)で示すように先端が半球形状である円柱状の突起を配設し、これを前記半球形状の半径よりも小さな半径の円形開口部に当接させるようにしても良い。加えて円形開口部を形成するには、貫通孔を穿設しても有底の凹所を形成してもよい。
【0039】
【発明の効果】
本発明によれば、個体撮像素子の2本の対角線を基準にした夫々2方向の独立した角度調整が可能となり、一方の対角方向の調整が他の一方の対角方向の調整に影響を与えないため、撮像面全域の精度の高い焦点合わせが容易に行える。
【0040】
したがって、従来の技術では特に弊害であった四角形の撮像面における角部の焦点合わせの困難性が解消される。また、容易に低いコストでこの効果が得られ、量産性を妨げる要素もない。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す個体撮像素子の取付構造の側面図
【図2】本発明の一実施形態を示す個体撮像素子の取付構造の分解斜視図
【図3】本発明の一実施形態を示す個体撮像素子の取付構造の撮像面の正面図
【図4】本発明の一実施形態を示す個体撮像素子の取付構造の突起の詳細図
【図5】従来の個体撮像素子の取付構造を示す側面図
【図6】従来の個体撮像素子の取付構造の撮像面の正面図
【図7】他の従来の個体撮像素子の取付構造を示す斜視図
【図8】さらに他の従来の個体撮像素子の取付構造を示す図
【符号の説明】
1 第1の支持板
2 第2の支持板
3 第3の支持板
4、5 スペーサ
6、7 圧縮コイルばね
8、10 押えねじ
9、11 調整ねじ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an imaging device using a solid-state imaging device represented by a CCD, and more particularly to a mechanical coupling structure between a solid-state imaging device and an imaging lens unit.
[0002]
[Prior art]
2. Description of the Related Art An imaging apparatus that captures an image of a subject through an imaging lens using a solid-state imaging element that is a two-dimensional sensor and obtains an electrical image signal has been more widely used than before.
One example is shown in FIGS. 5, reference numeral 101 denotes a subject, 102 denotes an imaging lens constituted by a lens group, 103 denotes a lens base that supports the imaging lens 102, 104 denotes a base, 105 denotes a ring, 106 denotes a solid-state imaging device, 107 denotes a sensor base, and 108 denotes a solid-state imaging device. Is a spacer.
[0003]
Here, the lens base 103, the base 104, and the ring 105 are all substantially cylindrical, and FIG. 5 shows a cross section obtained by cutting them along the axial direction. The solid-state imaging device 106 is a rectangular parallelepiped, and has a rectangular shape as shown in FIG. 6 when the imaging surface 106A is viewed from the normal direction, that is, from the subject side.
[0004]
6, sensors for the number of pixels (for example, several hundred thousand to several million) are arranged in a plane on an imaging surface 106A of the solid-state imaging device 106. The solid-state imaging element 106 is fixed to a sensor base 107, and a hole 107A for screwing the sensor base 107 to the base 104 via a spacer 108 is formed.
[0005]
Further, as shown in FIG. 5, a plurality of screw holes 105B are formed in the ring 105 in the radial direction, and a screw 109 having a tapered tip is screwed into the screw hole 105B. Further, the tapered tip of the screw 109 is engaged with a groove 104 </ b> A formed in the outer periphery of the base 104.
[0006]
Here, as shown in FIG. 5, the center line direction of the optical axis (the direction of the center axis of the imaging lens 102) is the Z axis, and as shown in FIG. 6, the center point 106B of the imaging surface 106A of the solid-state imaging device 106 is the Z axis. It is assumed to be on the axis. The two-dimensional seat surface including the center point 106B and orthogonal to the Z axis is represented by the X axis and the Y axis.
[0007]
In addition, the base 104 is fixed to a structure of the imaging device (not shown), and the positional relationship between the subject 101 and the base 104 does not change unless the positional relationship between the subject 101 and the imaging device changes.
[0008]
In such a conventional solid-state image sensor mounting structure, first, the ring 105 is rotated around the Z-axis to adjust the position of the imaging lens 102 in the Z-axis direction. Here, since the tip of the screw 109 is engaged with the groove 104A, the ring 105 does not move in the Z-axis direction even when rotated. A female screw 105A is formed on the inner surface of the cylindrical ring 105, and is engaged with a male screw 103B formed at the tip of a flange 103A protruding from the lens base 103.
[0009]
Further, since the protrusion 103C of the lens base 103 is engaged with the groove 104B in the Z-axis direction formed on the inner surface of the base 104, rotation around the Z-axis is prevented. Therefore, by rotating the ring 105 forward and backward, the imaging lens 102 fixed to the ring base 103 moves in the Z-axis direction, and the position of the focal point at which the image of the subject 101 passing through the imaging lens 102 is formed is solid-state imaging. It can be adjusted to the main surface 106A of the element 106.
[0010]
With such a configuration, focusing can be performed in the Z axis direction distance relationship between the solid-state imaging device 106 and the imaging lens 102. However, with the recent increase in definition of images, more accurate focusing is achieved. Since the alignment is required, an adjustment for correcting an angular difference between the actual imaging surface 106A of the solid-state imaging device 106 and the XY plane geometrically limited by the Z axis which is the optical axis center line, So-called tilt adjustment has become necessary.
[0011]
This is because the difference in the degree of parallelism between the imaging surface 106A of the solid-state imaging device 106 and the main surface of the sensor base 107 or the difference in angle between the imaging surface 106A and the XY plane caused by the dimensional variation of other structures. As a cause, even if the center 106B of the imaging surface 106A is in focus, the deviation from the focus near the periphery of the imaging surface 106A cannot be ignored, and this has become a serious problem.
[0012]
Therefore, in the technique disclosed in Patent Document 1, a device for solving the above problem is devised. As shown in FIG. 7, the sensor base 110 is supported at three points, and the positions of the three support points 111 in the Z-axis direction can be independently adjusted. Therefore, solid-state imaging with respect to the optical axis obtained by the lens barrel 112 is performed. The tilt of the element 113 can be adjusted.
[0013]
In the technique disclosed in Patent Document 2, as shown in FIG. 8, a convex hemisphere 121A is formed on the back surface of a sensor base 121 that supports a solid-state imaging device 120, and a concave hemisphere opposing the convex hemisphere 121A. A receiving member 122 on which 122A is formed is provided.
[0014]
FIGS. 8B and 8C show the cross sections of the air shown in FIG. 8A. By turning the angle adjustment knob 123 about the X axis, the sensor base 121 becomes hemispherical. Guided by the contact surfaces 121A and 122A, the angle of the solid-state imaging device 120 around the X axis can be adjusted. By turning the angle adjustment knob 124 about the Y axis, the angle of the solid-state imaging device 120 about the Y axis can be similarly adjusted.
[0015]
At this time, since the center of curvature of the hemispherical contact surfaces 121A and 122A is set to the center of the imaging surface of the solid-state imaging device 120, the centers do not shift even if the above-described angle adjustment is performed. It is basically the same as a so-called goniometer stage.
[0016]
[Patent Document 1] JP-A-2003-69886 [Patent Document 2] JP-A-2002-77699
[Problems to be solved by the invention]
However, the prior art disclosed in Patent Document 1 described above adjusts three support points 111 on the sensor base 110 individually. If one certain point is adjusted, the position of the entire imaging surface in the optical axis direction is adjusted. Is displaced, making the adjustment extremely difficult and not practical.
[0018]
According to the related art disclosed in Patent Document 2, even if the angle adjustment knob 123 around the X axis or the angle adjustment knob 124 around the Y axis is turned, the center position of the main surface of the solid-state imaging device 120 does not deviate. When the corner of the imaging surface of the imaging device 120 is focused, it is necessary to turn both the angle adjustment knob 123 around the X axis and the angle adjustment knob 124 around the Y axis.
[0019]
In particular, in the angle adjustment of the imaging surface of the solid-state imaging device, the position change in the optical axis direction with respect to the angle change increases as the position becomes farther from the center of the imaging surface. Therefore, in order to accurately adjust the corner of the main surface of the solid-state imaging device 120 to the focus as in the related art disclosed in Patent Literature 2, it is necessary to perform adjustment using two knobs each of which affects the same corner. Very difficult. In addition, a structure in which a convex hemispheric surface and a concave hemispheric surface are formed and brought into surface contact requires high-precision processing and increases costs.
[0020]
The present invention has been made in order to solve the above-mentioned problem, and has a tilt adjustment mechanism that can easily adjust a focus even at a corner of an imaging surface of an individual imaging element and does not require a large-scale mechanism. It is an object of the present invention to realize a mounting structure for an image sensor.
[0021]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a first support plate that supports a solid-state imaging device having a quadrangular imaging surface, and a case where two diagonals of the imaging surface are viewed from a center line direction of an optical axis. A second support plate that is provided with a fulcrum on an extension of both ends of one diagonal line and engages with the first support plate, and the other when the two diagonals are viewed from the center line direction of the optical axis. And a third support plate provided with a fulcrum on an extension of both ends of the diagonal of the third support plate and engaged with the second support plate, and the third support plate is fixed to an imaging optical unit including an imaging lens. A mounting structure for a solid-state imaging device is provided.
[0022]
Further, as a second aspect, a fulcrum related to the engagement between the first support plate and the second support plate and a fulcrum related to the engagement between the second support plate and the third support plate are engaged with each other. According to a first aspect, there is provided a mounting structure for a solid-state imaging device, wherein the mounting structure includes a pair of protrusions protruding from any of both supporting plates.
[0023]
Further, as a third aspect, the tip of the projection is substantially semicircular or substantially hemispherical, and a circular opening having a radius smaller than the radius of the semicircle or hemisphere is provided at a position where the tip of the engaging support plate abuts. The mounting structure of the solid-state imaging device according to the first or second aspect, wherein the mounting portion is provided.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a side view of a mounting structure of a solid-state imaging device showing one embodiment of the present invention. In the figure, reference numeral 1 denotes a first support plate, 2 denotes a second support plate, 3 denotes a third support plate, and 12 denotes an imaging optical unit. In this figure, elements having the same structure and function as those used in the description of the related art are denoted by common reference numerals. Here, the center line of the optical axis is defined as the Z axis, as in FIG.
[0025]
FIG. 2 is an exploded perspective view showing one embodiment of the present invention. In this drawing, the imaging optical unit 12 is shown without being disassembled. In this figure, the structure for mounting the imaging optical unit 12 and the third support plate 3 is omitted. Here, 2A is a pair of protrusions related to the engagement between the first support plate 1 and the second support plate 2, and 2B is a pair of protrusions related to the engagement between the second support plate 2 and the third support plate 3. 1A are circular openings where the tips of a pair of projections 2A abut, 3A is a circular opening where a pair of projections 2B abut, 4 and 5 are spacers, and 6 and 7 are compression coil springs.
[0026]
Next, an adjustment method after the individual imaging element 106 is attached will be described. First, focusing is performed on the center 106B of the imaging surface 106A. This focusing is performed by rotating the ring 105 and moving the imaging lens 102 in the Z-axis direction. The details of this operation have been described with reference to FIG.
[0027]
Focusing is generally performed by using a chart for focusing as a subject, actually capturing the image with a solid-state image sensor, and looking at the screen of an output video. Is an effective means. An image pattern suitable for focusing is printed on the chart.
[0028]
When the focusing of the center 106B of the imaging surface 106A is completed, the tilt adjustment is performed next. In the tilt adjustment according to the present invention, the angle adjustment in two directions is performed in order, and the order of adjustment in each of these directions does not matter.
[0029]
To adjust the tilt, first, the adjustment screw 9 shown in FIG. 2 is turned. At this time, the vicinity of the tips of the pair of projections 2B on the second support plate 2 is in contact with the circular opening 3A of the third support plate 3, and the second support is formed by the compression coil spring 6 and the holding screw 8. One end of the plate 2 is biased in the direction of the third support plate 3.
[0030]
Therefore, turning the adjustment screw 9 changes the angle of the second support plate 2 with the vicinity of the tips of the pair of projections 2B as a fulcrum. Explaining this from the Z-axis direction, as shown in FIG. 3, the circular opening 3A with which the pair of protrusions 2B abuts is located on an extension of one diagonal of the imaging surface 106A of the solid-state imaging device 106. .
[0031]
Therefore, turning the adjustment screw 9 can focus on the lower left and upper right regions of the imaging surface 106A as shown in FIG. 3, but at this time, the focus is applied from the upper left corner to the lower right corner of the imaging surface 106A. The Z-axis position of the diagonal portion does not change.
[0032]
Next, the adjustment screw 11 shown in FIGS. 1 and 2 is turned. At this time, the vicinity of the tip of the pair of projections 2A on the second support plate is in contact with the circular opening 1A of the first support plate 1, and the first support plate is compressed by the compression coil spring 7 and the holding screw 10. One end of 1 is urged in the direction of the second support plate 2.
[0033]
Therefore, turning the adjustment screw 11 changes the angle of the first support plate 1 with the vicinity of the tips of the pair of projections 2A as a fulcrum. Explaining this from the Z-axis direction, as shown in FIG. 3, the circular opening 1A with which the pair of projections 2A abuts is located on an extension of the other diagonal of the imaging surface 106A of the solid-state imaging device 106. .
[0034]
Therefore, turning the adjustment screw 11 can focus on the upper left and lower right regions of the imaging surface 106A as shown in FIG. 3, but at this time, the lower left corner to the upper right corner of the already adjusted imaging surface 106A have been adjusted. The Z-axis position of the portion on the diagonal line over the portion does not change.
[0035]
Here, the relationship between the projections 2A and 2B and the circular openings 1A and 3A will be described in detail with reference to FIG. The protrusions 2A and 2B according to the present embodiment are formed by raising the second support plate 2 formed by punching a steel plate. When viewed from the main surface of the raised steel sheet, the tip has a semicircular shape as shown in FIG.
[0036]
At this time, since the radius of the circular openings 1A and 3A is smaller than the radius of the projections 2A and 2B, the tips of the projections do not fit into the openings. When the above-described angle adjustment is performed in this state, the semicircular arc-shaped edge at the tip of the protrusion and the edge at the upper end of the circular openings 1A and 3A rub against each other, and the protrusion is positioned at the center of the radius of the semicircle. Incline with the fulcrum. Therefore, no displacement occurs even if the projection is inclined for angle adjustment.
[0037]
In order to prevent the displacement, a projection having a pointed shape may be used as shown in FIG. 4B. However, since the projection is sharp, the projection is easily crushed, and in that case, the position is shifted. On the other hand, according to the configuration shown in FIG. 4A, there is no risk of displacement even if the edge is slightly worn.
[0038]
In the embodiment shown in FIG. 4 (a), a steel plate is punched to form a semicircular tip, but as shown in FIG. 4 (c), a cylindrical projection having a hemispherical tip is provided. This may be made to abut on a circular opening having a radius smaller than the radius of the hemispherical shape. In addition, in order to form a circular opening, a through-hole may be formed or a recess with a bottom may be formed.
[0039]
【The invention's effect】
According to the present invention, independent angle adjustment in each of two directions based on two diagonal lines of the solid-state imaging device can be performed, and adjustment in one diagonal direction affects adjustment in the other diagonal direction. Since this is not provided, highly accurate focusing over the entire imaging surface can be easily performed.
[0040]
Therefore, it is possible to eliminate the difficulty of focusing on the corners on the rectangular imaging surface, which is particularly bad in the related art. Further, this effect can be easily obtained at low cost, and there is no element that hinders mass productivity.
[Brief description of the drawings]
FIG. 1 is a side view of a mounting structure of a solid-state imaging device showing one embodiment of the present invention. FIG. 2 is an exploded perspective view of a mounting structure of a solid-state imaging device showing one embodiment of the present invention. FIG. 4 is a front view of an imaging surface of a mounting structure of the solid-state imaging device showing one embodiment. FIG. 4 is a detailed view of a projection of a mounting structure of the solid-state imaging device showing one embodiment of the present invention. FIG. 6 is a front view of an imaging surface of a conventional solid-state image sensor mounting structure. FIG. 7 is a perspective view showing another conventional solid-state image sensor mounting structure. FIG. Figure showing the mounting structure of the solid state imaging device
DESCRIPTION OF SYMBOLS 1 1st support plate 2 2nd support plate 3 3rd support plate 4, 5 Spacer 6, 7 Compression coil spring 8, 10 Holding screw 9, 11 Adjustment screw

Claims (3)

撮像装置における個体撮像素子の取付構造であって、
4角形の撮像面を備えた個体撮像素子を支持する第1の支持板と、
前記撮像面の2本の対角線を光軸の中心線方向から見た場合の、一方の対角線の両端の延長線上に支点を設けて前記第1の支持板と係合する第2の支持板と、
前記2本の対角線を光軸の中心線方向から見た場合の、他方の対角線の両端の延長線上に支点を設けて前記第2の支持板と係合する第3の支持板とを有し、
前記第3の支持板が撮像レンズを含む撮像光学部に固定されることを特徴とする個体撮像素子の取付構造。
An attachment structure of the solid-state imaging device in the imaging device,
A first support plate that supports a solid-state imaging device having a quadrangular imaging surface;
A second support plate that engages with the first support plate by providing a fulcrum on an extension of both ends of one diagonal when two diagonals of the imaging surface are viewed from the center line direction of the optical axis; ,
And a third support plate that engages with the second support plate by providing a fulcrum on an extension of both ends of the other diagonal when the two diagonals are viewed from the center line direction of the optical axis. ,
A mounting structure for a solid-state imaging device, wherein the third support plate is fixed to an imaging optical unit including an imaging lens.
前記第1の支持板と第2の支持板との係合に係る支点と前記第2の支持板と第3の支持板との係合に係る支点は、係合し合う両支持板の何れかに突設された一対の突起により構成されることを特徴とする請求項1に記載の個体撮像素子の取付構造。The fulcrum related to the engagement between the first support plate and the second support plate and the fulcrum related to the engagement between the second support plate and the third support plate may be any one of the two support plates engaged with each other. The mounting structure of the solid-state imaging device according to claim 1, wherein the mounting structure includes a pair of protrusions protruding from the crab. 前記突起の先端は略半円若しくは略半球形状であり、係合する支持板の前記先端が当接する位置には、前記半円若しくは半球の半径より小さい半径の円形開口部が設けられることを特徴とする請求項1あるいは請求項2に記載の個体撮像素子の取付構造。The tip of the projection has a substantially semicircular or substantially hemispherical shape, and a circular opening having a radius smaller than the radius of the semicircle or hemisphere is provided at a position where the tip of the supporting plate to be engaged is in contact. The mounting structure of the solid-state imaging device according to claim 1 or 2.
JP2003109860A 2003-04-15 2003-04-15 Mounting structure of solid-state image sensor Expired - Fee Related JP3809426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003109860A JP3809426B2 (en) 2003-04-15 2003-04-15 Mounting structure of solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003109860A JP3809426B2 (en) 2003-04-15 2003-04-15 Mounting structure of solid-state image sensor

Publications (2)

Publication Number Publication Date
JP2004320282A true JP2004320282A (en) 2004-11-11
JP3809426B2 JP3809426B2 (en) 2006-08-16

Family

ID=33470868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003109860A Expired - Fee Related JP3809426B2 (en) 2003-04-15 2003-04-15 Mounting structure of solid-state image sensor

Country Status (1)

Country Link
JP (1) JP3809426B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187284A (en) * 2007-01-26 2008-08-14 Fujitsu General Ltd Camera device
JP2010154105A (en) * 2008-12-24 2010-07-08 Toshiba Teli Corp Camera assembly structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165314A (en) * 1990-10-30 1992-06-11 Sony Corp Lens-barrel
JPH08195923A (en) * 1994-11-16 1996-07-30 Sony Corp Projector
JPH10155101A (en) * 1996-09-27 1998-06-09 Matsushita Electric Ind Co Ltd Optical system equipment for television camera
JP2000184262A (en) * 1998-12-18 2000-06-30 Toa Corp Back focus adjustment mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165314A (en) * 1990-10-30 1992-06-11 Sony Corp Lens-barrel
JPH08195923A (en) * 1994-11-16 1996-07-30 Sony Corp Projector
JPH10155101A (en) * 1996-09-27 1998-06-09 Matsushita Electric Ind Co Ltd Optical system equipment for television camera
JP2000184262A (en) * 1998-12-18 2000-06-30 Toa Corp Back focus adjustment mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187284A (en) * 2007-01-26 2008-08-14 Fujitsu General Ltd Camera device
JP2010154105A (en) * 2008-12-24 2010-07-08 Toshiba Teli Corp Camera assembly structure

Also Published As

Publication number Publication date
JP3809426B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
US8218032B2 (en) Imaging apparatus and method for producing the same, portable equipment, and imaging sensor and method for producing the same
US8203644B2 (en) Imaging system with improved image quality and associated methods
JP6580666B2 (en) Apparatus and method for detecting a region of interest
CN100419485C (en) Imaging device
JP2006267391A (en) Imaging apparatus
EP3425437B1 (en) Patterned light irradiation apparatus and method
JP2008219190A (en) Image projection system and image projection method
JP2012042765A (en) Scanning exposure apparatus using microlens array
JP3706159B2 (en) Color overlay error correction method and apparatus
JP2004320282A (en) Mount structure for solid state imaging element
JP2010197816A (en) Camera module
JP2003101733A (en) Image-reading apparatus
JP2007148020A (en) Apparatus for adjusting position of imaging device and camera
JP2017032650A (en) Projection type display device and projection type display system
JP2001223931A (en) Image pickup device and image system
JP2007065151A (en) Imaging lens
JP6646964B2 (en) Projection display device and projection display system
CN101165809B (en) Display device
JP6155924B2 (en) Dimension measuring apparatus and dimension measuring method
JP2005167815A (en) Imaging apparatus
JP2015219397A (en) Lens array unit and method for manufacturing the same
KR101590814B1 (en) Method for arranging microlens array and device for measuring wavefront having improved performance by using thereof
JPH05324897A (en) Photographing range display device for bar code reader
JP2001264868A (en) Supporting plate to support optical path refracting plate rotatably in multiple directions and image processor equipped the same
JP4236865B2 (en) Imaging inspection equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees