JP2004319741A - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
JP2004319741A
JP2004319741A JP2003111237A JP2003111237A JP2004319741A JP 2004319741 A JP2004319741 A JP 2004319741A JP 2003111237 A JP2003111237 A JP 2003111237A JP 2003111237 A JP2003111237 A JP 2003111237A JP 2004319741 A JP2004319741 A JP 2004319741A
Authority
JP
Japan
Prior art keywords
region
trench
conductivity type
diffusion
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003111237A
Other languages
Japanese (ja)
Other versions
JP4423460B2 (en
Inventor
Mutsumi Kitamura
睦美 北村
Naoto Fujishima
直人 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2003111237A priority Critical patent/JP4423460B2/en
Publication of JP2004319741A publication Critical patent/JP2004319741A/en
Application granted granted Critical
Publication of JP4423460B2 publication Critical patent/JP4423460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device high in withstand voltage by preventing a punch-through at a trench corner. <P>SOLUTION: The length (L1) of an n-body region 4 is increased by not forming a p-offset region 5 at the tip C of a trench 3, so that a punch-through is prevented which may otherwise occur when the depletion layer reaches the p-offset region 5 at a corner A upon application of a voltage across a p-source region 6 and a p-drain region 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明はスイッチング電源用IC、自動車パワー系駆動用IC、フラットパネルディスプレー駆動用ICなど、高耐圧・大電流を制御する集積回路に適する低オン抵抗のパワーMOSFETなどの半導体装置、特に、半導体基板表面を掘り下げたトレンチ内にゲート電極を設けたトレンチ型ラテラルパワーMOSFET(TLPM)などの半導体装置に関する。
【0002】
【従来の技術】
携帯機器の急速な普及、通信技術の高度化などに伴い、パワーMOSFETを内蔵したパワーICの重要性は高まっている。従来のパワーMOSFET単体と制御駆動回路との組み合わせに対し、横型パワーMOSFETを制御回路に集積することにより、小型化、低消費電力化、高信頼性化、低コスト化などが期待されているため、CMOSプロセスをベースにした高性能横型MOSFETの開発が精力的に進められている。従来のプレーナ構造の横型パワーMOSFETを改良したトレンチ型の横型パワーMOSFETが提案されている(例えば、特許文献1参照)。
【0003】
図5は、従来のトレンチ構造の横型パワーMOSFETの要部平面図である。p基板50にストライプ状に複数のトレンチ51を形成し、これらトレンチ51を横断するようにゲートポリシリコン52を形成し、基板表面にゲート電極53、櫛歯状のソース電極54および櫛歯状のドレイン電極55を形成した構成となっている。
ゲートポリシリコン52はコンタクト部56を介してゲート電極53に電気的に接続される。ソース電極54は、図1において図示省略するが、コンタクト部を介してトレンチ51の底のソース領域となるn拡散領域に電気的に接続される。また、ドレイン電極55はコンタクト部57を介してドレイン領域となるn拡散に電気的に接続される。
【0004】
つぎに、MOSFETとして電流を起動する活性領域における断面構造について説明する。図6は、図5のI−Iにおける縦断面図であり、活性領域に於ける構成を示している。ゲート酸化膜59はトレンチ51の側面に沿って均一な厚さで形成されている。このゲート酸化膜59はトレンチ51の底面も被覆している。第1の導体であるゲートポリシリコン52は、ゲート酸化膜59の内側に沿ってトレンチ51の上から下まで形成される。
トレンチ51の上半部の外側領域は、nドリフト領域となるn拡散領域60となっており、そのn拡散領域60内にドレイン領域となる前記n拡散領域58が設けられている。また、トレンチ51の底には、ソース領域となるn拡散領域61、およびn拡散領域61を囲むpベース領域62が形成される。
【0005】
拡散領域61(ソース領域)はトレンチ51内に設けられた第2の導電体であるポリシリコン63およびコンタクト部64を介してソース電極54に電気的に接続されている。このポリシリコン63は、トレンチ51内において層間絶縁膜65によりゲートポリシリコン52から絶縁されている。この層間絶縁膜65は、前記n拡散領域(nドリフト領域)および前記n拡散領域58(ドレイン領域)の表面も被覆しており、その上にはさらに層間絶縁膜66が積層されている。前記コンタクト部64はこの層間絶縁膜66を貫通して設けられる。また、ドレインに対する前記コンタクト部57はこの層間絶縁膜66とその下の層間絶縁膜を貫通して設けられる。このようにして、従来のトレンチ構造の横型パワーMOSFET100は製作される。
【0006】
図7は、別の従来のトレンチ構造の横型パワーMOSFETであり、同図(a)は要部断面図、同図(b)は同図(a)のトレンチ底部の斜視図である。このMOSFETはpチャネルMOSFETである。
図6と違うのは、p基板71(図6の50に相当)上にnウェル領域72(図6にはなし)を形成し、このnウェル領域72内にトレンチ73(図6の51の導電形を逆にしたものに相当)を形成し、トレンチ73の底部にnボディ領域74(図6の62の導電形を逆にしたものに相当)を形成し、このnボディ領域74の内にpオフセット領域75(図6にはなし)を形成し、このpオフセット領域74の表面層にpソース領域76(図6の61の導電形を逆にしたものに相当)を形成し、nウェル領域72表面にpオフセット領域79(図6の60の導電形を逆にしたものに相当)とpドレイン領域80(図6の58の導電形を逆にしたものに相当)を形成したpチャネルMOSFETとした点である。トレンチ73の側壁のnボディ領域74表面にpチャネルが形成される。前記のnボディ領域74を形成することで、空乏層の伸びが抑制され、図6より高耐圧化することができる。
【0007】
pオフセット領域75とnボディ領域74は、トレンチ73の底部にp形不純物とn形不純物をイオン注入し、これを拡散源74a、75aとして、熱拡散して形成される。そのため、図7に示すように、nボディ領域74とpオフセット領域75の角部Aでの不純物濃度は直線部Bより低くなり、拡散深さは直線部Bより浅くなる。それは、トレンチ73の角部Aでは、角の一点から三次元的にp基板71内やnウェル領域72内へ拡散が進むためである。
【0008】
【特許文献1】
特開2002−280549号公報 図1、図2
【0009】
【発明が解決しようとする課題】
その結果、図7のnボディ領域74とpオフセット領域75は、トレンチの角部Aでその不純物濃度は低くなり、nボディ領域の長さL3は短くなり、さらに、円筒部(直線部B)より球状殻部(角部A)の方がnボディ領域74への空乏層幅も大きくなるため、パンチスルーが角部Aで生じ易くなり、ドレイン・ソース間耐圧が低下する。
この発明の目的は、前記の課題を解決して、トレンチの角部でのパンチスルーを防止して、高い耐圧を確保できる半導体装置を提供することにある。
【0010】
【課題を解決するための手段】
前記の目的を達成するために、第1導電形の半導体領域の第1主面に形成されたトレンチと、前記トレンチと接して前記半導体基板の第1主面に形成された第2導電形の第1領域と、前記トレンチの底面から拡散により前記トレンチ底面から前記トレンチ側壁部に渡って形成された第1導電形の第2領域と、前記第2領域内に、拡散により前記トレンチ底面から前記トレンチ側壁部に渡って形成された第2導電形の第3領域と、前記第1領域と前記第3領域とに挟まれた前記トレンチ側壁上に絶縁膜を介して形成された制御電極とを有する半導体装置において、前記トレンチ底面で内角が180度未満の角部において前記第3領域が前記トレンチ底面にのみ形成する構成とする。
【0011】
また、 前記半導体領域は、第2導電形の半導体基板上に形成されるとよい。
また、第1導電形の半導体領域の第1主面にトレンチを形成する工程と、前記半導体領域の表面に第2導電形の第1拡散源を配置し、該第1拡散源から不純物を拡散して前記トレンチに隣接して前記半導体領域の表面層に第2導電形の第1領域を形成する工程と、前記トレンチの底面に第1導電形の第2拡散源を配置して該第2拡散源から不純物を拡散して前記トレンチの底面から側壁に渡って第1導電形の第2領域を形成する工程と、前記トレンチの底面で内角が180度未満の角部から所定の距離離れた箇所に前記トレンチの底面に第2導電形の第3拡散源を配置し、該第3拡散源から不純物を拡散して、前記角部に達することなく前記第2領域内に前記トレンチの底面から前記トレンチ側壁部に渡って第2導電形の第3領域を形成する工程とを有する製造方法とする。
【0012】
また、前記第1領域を形成する工程と前記第3領域を形成する工程を同時に行うとよい。
また、前記第3拡散源は、前記角部を形成する一方の辺から所定の距離離れた箇所に配置され、前記第3領域は、該第3拡散源から不純物を拡散して、前記一方の辺に達することなく前記第2領域内に前記トレンチの底面から前記角部を形成する他方の辺方向の前記トレンチ側壁部に渡って形成すると製造方法とするとよい。
【0013】
【発明の実施の形態】
〔実施例1〕
図1は、この発明の第1実施例の半導体装置の構成図で、同図(a)は要部断面図、同図(b)は同図(a)のトレンチの底部の斜視図である。同図(a)はpチャネルトレンチ横型パワーMOSFETのソース領域が底面にあるタイプの横型MOSFET(TLPM/S)の活性領域の断面図である。また、同図(b)では同図(a)のnボディ領域4とpオフセット領域5のみ示した。
同図(a)において、p基板1上にnウェル領域2を形成し、このnウェル領域2内にトレンチ3を形成し、トレンチ3の底部にnボディ領域4を形成し、このnボディ領域4の内にpオフセット領域5を形成し、また、nウェル領域2の表面層にpオフセット領域9を形成する。
【0014】
トレンチ3内壁にゲート酸化膜7を形成し、このゲート酸化膜7を介して、トレンチ3側壁上にゲート電極8を形成する。トレンチ3を層間絶縁膜11で充填し、層間絶縁膜11に開口部を形成し、pソース領域6上とpドレイン領域10を形成し、該pソース領域6上とpドレイン領域10上にチタン/窒化チタン(Ti/TiN)などのバリアメタル12を形成し、開口部にタングステン13を充填し、表面を平坦化して、その上にアルミニウム膜を形成してソース電極14とドレイン電極15をそれぞれ形成する。
同図(b)において、このトレンチ3の底部に形成されるnボディ領域4は、トレンチの底面3aの全面にn形不純物をイオン注入し、これを拡散源4aとして、熱拡散して形成する。そのため、ストライプ状のトレンチ3の角部Aでのnボディ領域4の不純物濃度はストレート部Bより低く、拡散深さは浅くなる。
【0015】
図2は、各領域を形成するためマスクを重ねて描いた図である。21は、nウエル領域2形成用マスクの開口部で、22は、トレンチ形成用マスクの開口部で、23はpオフセット領域5、9を形成する際のマスクを示す。
まず、開口部21にn形不純物をイオン注入し、熱拡散してnウエル領域2を形成する。その後、開口部22にトレンチ3を形成し、さらに同じマスクを用いトレンチ底部3a全面にn形不純物をイオン注入し、熱拡散してnボディ領域4を形成する。その後、トレンチを埋めるようにレジストを形成し、マスク23にのみレジストを残し、マスク23により、ストライプ状のトレンチ3のの先端部Cをマスクして、p形不純物をトレンチ3の底面3aにイオン注入し、これを拡散源5aとし、また同時にnウェル領域2の表面にもイオン注入し、これを図示しない拡散源として、熱拡散して、pオフセット領域5、9をそれぞれ形成する。尚、pオフセット領域5、9はそれぞれ別々の工程で形成しても構わない。
【0016】
このように、トレンチ3の先端部Cにpオフセット領域5を形成しないことで、nボディ領域4の長さ(L1)が長くなり、pソース領域6を高電位、pドレイン領域10をグランド電位にして電圧を印加した場合、空乏層がpオフセット領域5に達するパンチスルー現象を防止することができて、高耐圧化(ソース・ドレイン耐圧が30V以上)を図ることができる。また、トレンチ3の先端Cに、上側のpオフセット領域9も下側のオフセット領域も形成しないために、上側のpオフセット領域9から伸びた空乏層は下側のpオフセット領域5に達し難くなり、トレンチの先端部Cでのパンチスルーは防止しされて、高耐圧化を図ることができる。
【0017】
また、このようにトレンチの先端部Cにpオフセット領域5を形成しないことで、この箇所での電界強度を他の箇所より小さくすることができる。そのため、耐圧低下を引き起こす箇所をこの箇所以外にすることができる。
また、pオフセット領域5が形成されない箇所の面積は全体の活性領域の面積と比べて極めて小さいために、電流駆動能力の低下は殆ど起こらず、オン抵抗の増大は殆どない。
また、前記の拡散源4aがトレンチ3の先端部Cに形成しない場合も、拡散で形成されるnボディ領域4が図1のようにトレンチ3の先端部からはみ出して形成されるときは、前記した効果が得られる。また、拡散源5aをトレンチの底面3aの外周部を除いて配置し、pオフセット領域5をトレンチの底面3aの下に形成した場合も前記した効果が得られる。
【0018】
尚、基板を含めて各領域の導電形を逆にし、nチャネルMOSFETとした場合も同様の効果が得られる。また、トレンチ3の先端部Cにはチャネルが必ずしも形成されなくても構わない。それは、チャネル形成領域の全面積に対して先端部Cのチャネル形成領域の面積が極めて小さく、オン抵抗に与える影響が小さいためである。
〔実施例2〕
図3は、この発明の第2実施例の半導体装置の構成図で、同図(a)は要部断面図、同図(b)は同図(a)のトレンチの底部の斜視図である。同図(a)はnチャネルトレンチ横型パワーMOSFETのソース領域が底面にあるタイプの横型MOSFET(TLPM/S)の活性領域の断面図を示である。また、同図(b)では同図(a)のpボディ領域34とnオフセット領域35のみ示した。
【0019】
図1との違いは、p基板31上に形成するnウェル領域2をpウェル領域32に代え、各領域の導電形を逆にして、pチャネルMOSFETをnチャネルMOSFETに代えた点である。この場合も第1実施例と同様にコーナー部Aでのパンチスルーが防止されて高耐圧を確保できる。尚、図中の36はnソース領域、37はゲート絶縁膜、38はゲート電極、39はnオフセット領域、40はnドレイン領域、41は層間絶縁膜、42はバリアメタル、43はタングステン、44はソース電極、45はドレイン電極、L2はpボディ領域の長さである。
〔実施例3〕
図4は、この発明の第3実施例の半導体装置の要部平断面図で、図1(a)の半導体装置に対応するものであり、便宜上nウェル領域2、トレンチ3およびpオフセット領域5のみを記載したものである。
【0020】
同図(a)、同図(b)、同図(c)はいずれも、トレンチ3によりnウェル領域2が島状に形成されたものである。
同図(a)は、トレンチ3の外周の両端にマスクを形成して不純物を導入し拡散することで、角部Aにpオフセット領域5を形成しないようにしたものである。
同図(b)は、角部Aの周囲にマスクを形成し、角部Aにpオフセット領域5を形成しないようにしたものである。
同図(c)は、トレンチ3に凸部Dを形成し、この凸部Dの先端部分にマスクを形成して不純物を導入し、該不純物を拡散して、角部Aにpオフセット領域5を形成しないようしたものである。
【0021】
【発明の効果】
この発明によれば、トレンチの先端部にオフセット領域を形成しないことで、パンチスルーによる耐圧低下を防止できる。
また、トレンチの先端部にオフセット領域を形成しない面積は極めて小さいため、電流駆動力の低下は殆どない。
【図面の簡単な説明】
【図1】この発明の第1実施例の半導体装置の構成図で、(a)は要部断面図、(b)は(a)のトレンチの底部の斜視図
【図2】各領域を形成するためのマスクを重ねて描いた図
【図3】この発明の第2実施例の半導体装置の構成図で、(a)は要部断面図、(b)は(a)のトレンチの底部の斜視図
【図4】この発明の第2実施例の半導体装置の構成図で、(a)、(b)、(c)はいずれもトレンチによりnウェル領域を島状に形成した図
【図5】従来のトレンチ構造の横型パワーMOSFETの要部平面図
【図6】図4のII−IIにおける縦断面図
【図7】別の従来のトレンチ構造の横型パワーMOSFETであり、(a)は要部断面図、(b)は(a)のトレンチ底部の斜視図
【符号の説明】
1、31 p基板
2 nウェル領域
3、33 トレンチ
3a、33a 底面
4 nボディ領域
4a 拡散源(nボディ領域)
5 pオフセット領域
5a 拡散源(pオフセット領域)
6 pソース領域
7、37 ゲート絶縁膜
8、38 ゲート電極
9 pオフセット領域
10 pドレイン領域
11、41 層間絶縁膜
12、42 バリアメタル
13、43 タングステン
14、44 ソース電極
15、45 ドレイン電極
32 pウェル領域
34 pボディ領域
34a 拡散源(pボディ領域)
35 nオフセット領域
35a 拡散源(nオフセット領域)
36 nソース領域
39 nオフセット領域
40 nドレイン領域
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device such as a power MOSFET having a low on-resistance suitable for an integrated circuit for controlling a high withstand voltage and a large current, such as an IC for driving a switching power supply, an IC for driving a vehicle power system, and an IC for driving a flat panel display. The present invention relates to a semiconductor device such as a trench-type lateral power MOSFET (TLPM) having a gate electrode provided in a trench whose surface is dug down.
[0002]
[Prior art]
With the rapid spread of portable devices and the advancement of communication technology, the importance of power ICs with built-in power MOSFETs is increasing. Compared to the combination of a conventional power MOSFET and a control drive circuit, the integration of a lateral power MOSFET into the control circuit is expected to reduce size, reduce power consumption, increase reliability, and reduce costs. The development of high performance lateral MOSFETs based on the CMOS process has been energetically advanced. There has been proposed a trench-type lateral power MOSFET in which a conventional planar-type lateral power MOSFET is improved (for example, see Patent Document 1).
[0003]
FIG. 5 is a plan view of a main part of a conventional lateral power MOSFET having a trench structure. A plurality of trenches 51 are formed in a p - substrate 50 in a stripe shape, a gate polysilicon 52 is formed so as to cross these trenches 51, and a gate electrode 53, a comb-shaped source electrode 54 and a comb-shaped Is formed.
Gate polysilicon 52 is electrically connected to gate electrode 53 via contact portion 56. Although not shown in FIG. 1, the source electrode 54 is electrically connected to an n + diffusion region serving as a source region at the bottom of the trench 51 via a contact portion. Further, the drain electrode 55 is electrically connected to an n + diffusion serving as a drain region via a contact portion 57.
[0004]
Next, a cross-sectional structure in an active region that starts current as a MOSFET will be described. FIG. 6 is a vertical cross-sectional view taken along the line II of FIG. 5, and shows the configuration in the active region. Gate oxide film 59 is formed with a uniform thickness along the side surface of trench 51. The gate oxide film 59 also covers the bottom of the trench 51. The gate polysilicon 52 as the first conductor is formed from the top to the bottom of the trench 51 along the inside of the gate oxide film 59.
The outer region of the upper half of the trench 51, n - the drift region n - has a diffusion region 60, the n - wherein n + diffusion region 58 serving as the drain region is provided on the diffusion region 60 . At the bottom of trench 51, an n + diffusion region 61 serving as a source region and ap base region 62 surrounding n + diffusion region 61 are formed.
[0005]
The n + diffusion region 61 (source region) is electrically connected to a source electrode 54 via a polysilicon 63 serving as a second conductor provided in the trench 51 and a contact portion 64. This polysilicon 63 is insulated from gate polysilicon 52 by interlayer insulating film 65 in trench 51. This interlayer insulating film 65 also covers the surface of the n diffusion region (n drift region) and the surface of the n + diffusion region 58 (drain region), and an interlayer insulating film 66 is further laminated thereon. I have. The contact portion 64 is provided through the interlayer insulating film 66. The contact portion 57 for the drain is provided to penetrate the interlayer insulating film 66 and the interlayer insulating film thereunder. Thus, the conventional lateral power MOSFET 100 having the trench structure is manufactured.
[0006]
7A and 7B show another conventional lateral power MOSFET having a trench structure. FIG. 7A is a cross-sectional view of a main part, and FIG. 7B is a perspective view of the bottom of the trench in FIG. This MOSFET is a p-channel MOSFET.
6 is different from FIG. 6 in that an n-well region 72 (not shown in FIG. 6) is formed on a p-substrate 71 (corresponding to 50 in FIG. 6), and a trench 73 (conductivity of 51 in FIG. 6) is formed in the n-well region 72. An n-body region 74 (corresponding to an inverted conductivity type of 62 in FIG. 6) is formed at the bottom of the trench 73, and an n-body region 74 is formed in the n-body region 74. A p-offset region 75 (not shown in FIG. 6) is formed, a p-source region 76 (corresponding to the conductivity type 61 in FIG. 6) is formed on the surface layer of the p-offset region 74, and an n-well region is formed. A p-channel MOSFET in which a p-offset region 79 (corresponding to the conductivity type of 60 in FIG. 6) and a p-drain region 80 (corresponding to the conductivity type of 58 in FIG. 6) are formed on the surface 72. The point is. A p-channel is formed on the surface of n-body region 74 on the side wall of trench 73. By forming the n body region 74, the extension of the depletion layer is suppressed, and the breakdown voltage can be made higher than in FIG.
[0007]
The p-offset region 75 and the n-body region 74 are formed by ion-implanting a p-type impurity and an n-type impurity into the bottom of the trench 73 and using the implanted ions as diffusion sources 74a and 75a. Therefore, as shown in FIG. 7, the impurity concentration at corner A of n body region 74 and p offset region 75 is lower than linear portion B, and the diffusion depth is smaller than linear portion B. This is because, at the corner A of the trench 73, diffusion proceeds three-dimensionally from one point of the corner into the p substrate 71 and into the n-well region 72.
[0008]
[Patent Document 1]
JP, 2002-280549, A FIG. 1, FIG.
[0009]
[Problems to be solved by the invention]
As a result, the impurity concentration of the n-body region 74 and the p-offset region 75 in FIG. 7 decreases at the corner A of the trench, the length L3 of the n-body region decreases, and further, the cylindrical portion (linear portion B) Since the width of the depletion layer to the n-body region 74 becomes larger in the spherical shell portion (corner portion A), punch-through is more likely to occur in the corner portion A, and the drain-source breakdown voltage decreases.
An object of the present invention is to solve the above-mentioned problems and to provide a semiconductor device capable of preventing punch-through at a corner of a trench and securing a high withstand voltage.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a trench formed on a first main surface of a semiconductor region of a first conductivity type and a second conductivity type formed on a first main surface of the semiconductor substrate in contact with the trench are provided. A first region, a second region of a first conductivity type formed from the bottom surface of the trench to the side wall of the trench by diffusion from the bottom surface of the trench, and A third region of the second conductivity type formed over the trench sidewall, and a control electrode formed on the trench sidewall sandwiched between the first region and the third region via an insulating film. In the semiconductor device having the above structure, the third region is formed only on the bottom surface of the trench at a corner having an inner angle of less than 180 degrees on the bottom surface of the trench.
[0011]
The semiconductor region may be formed on a semiconductor substrate of the second conductivity type.
Forming a trench in the first main surface of the semiconductor region of the first conductivity type; disposing a first diffusion source of the second conductivity type on the surface of the semiconductor region; and diffusing impurities from the first diffusion source. Forming a first region of a second conductivity type in a surface layer of the semiconductor region adjacent to the trench, and disposing a second diffusion source of a first conductivity type on a bottom surface of the trench to form the second region. Diffusing an impurity from a diffusion source to form a second region of the first conductivity type from the bottom surface of the trench to the side wall; and disposing a predetermined distance from a corner having an inner angle of less than 180 degrees at the bottom surface of the trench. A third diffusion source of the second conductivity type is disposed at a location on the bottom of the trench, and an impurity is diffused from the third diffusion source to reach the second region from the bottom of the trench without reaching the corner. Forming a third region of the second conductivity type over the sidewall of the trench; A manufacturing method and a degree.
[0012]
Further, the step of forming the first region and the step of forming the third region may be performed simultaneously.
Further, the third diffusion source is disposed at a location separated by a predetermined distance from one side forming the corner, and the third region diffuses impurities from the third diffusion source to form the one side. A manufacturing method may be adopted in which the trench is formed in the second region from the bottom surface of the trench to the corner in the second region without reaching the side.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
[Example 1]
1A and 1B are configuration diagrams of a semiconductor device according to a first embodiment of the present invention. FIG. 1A is a sectional view of a main part, and FIG. 1B is a perspective view of the bottom of the trench in FIG. . FIG. 2A is a cross-sectional view of an active region of a lateral MOSFET (TLPM / S) of a type in which a source region of a lateral p-channel trench power MOSFET has a bottom surface. FIG. 2B shows only the n-body region 4 and the p-offset region 5 in FIG.
1A, an n-well region 2 is formed on a p-substrate 1, a trench 3 is formed in the n-well region 2, an n-body region 4 is formed at the bottom of the trench 3, and an n-body region 4 is formed. 4, a p-offset region 5 is formed, and a p-offset region 9 is formed in the surface layer of the n-well region 2.
[0014]
A gate oxide film 7 is formed on the inner wall of the trench 3, and a gate electrode 8 is formed on the side wall of the trench 3 via the gate oxide film 7. The trench 3 is filled with an interlayer insulating film 11, an opening is formed in the interlayer insulating film 11, a p source region 6 and a p drain region 10 are formed, and titanium is formed on the p source region 6 and the p drain region 10. / A barrier metal 12 such as titanium nitride (Ti / TiN) is formed, an opening is filled with tungsten 13, the surface is flattened, and an aluminum film is formed thereon to form a source electrode 14 and a drain electrode 15, respectively. Form.
In FIG. 1B, an n-body region 4 formed at the bottom of the trench 3 is formed by ion-implanting an n-type impurity into the entire bottom surface 3a of the trench and thermally diffusing the impurity as a diffusion source 4a. . Therefore, the impurity concentration of the n-body region 4 at the corner A of the striped trench 3 is lower than that of the straight portion B, and the diffusion depth becomes shallower.
[0015]
FIG. 2 is a diagram in which masks are drawn so as to form each region. Reference numeral 21 denotes an opening of the mask for forming the n-well region 2, reference numeral 22 denotes an opening of the mask for forming the trench, and reference numeral 23 denotes a mask for forming the p-offset regions 5 and 9.
First, an n-type impurity is ion-implanted into the opening 21 and thermally diffused to form the n-well region 2. Thereafter, trench 3 is formed in opening 22, and an n-type impurity is ion-implanted into the entire surface of trench bottom 3a using the same mask and thermally diffused to form n-body region 4. After that, a resist is formed so as to fill the trench, the resist is left only on the mask 23, the tip 23 of the stripe-shaped trench 3 is masked by the mask 23, and p-type impurities are ion-implanted on the bottom surface 3 a of the trench 3. Implantation is performed as a diffusion source 5a, and at the same time, ions are implanted into the surface of the n-well region 2 and thermal diffusion is performed using the ion implantation as a diffusion source (not shown) to form p offset regions 5 and 9, respectively. The p-offset regions 5 and 9 may be formed in separate steps.
[0016]
By not forming the p-offset region 5 at the tip C of the trench 3, the length (L1) of the n-body region 4 is increased, the p-source region 6 is at a high potential, and the p-drain region 10 is at the ground potential. When the voltage is applied in such a manner, the punch-through phenomenon in which the depletion layer reaches the p-offset region 5 can be prevented, and the breakdown voltage can be increased (the source / drain breakdown voltage is 30 V or more). Since neither the upper p-offset region 9 nor the lower offset region is formed at the tip C of the trench 3, the depletion layer extending from the upper p-offset region 9 hardly reaches the lower p-offset region 5. In addition, punch-through at the tip C of the trench is prevented, and a high breakdown voltage can be achieved.
[0017]
By not forming the p offset region 5 at the tip C of the trench in this manner, the electric field intensity at this location can be made smaller than at other locations. For this reason, a portion that causes a decrease in the withstand voltage can be set to other than this portion.
Further, since the area where the p-offset region 5 is not formed is extremely smaller than the area of the entire active region, the current driving capability hardly decreases and the on-resistance hardly increases.
Also, when the diffusion source 4a is not formed at the tip C of the trench 3, when the n-body region 4 formed by diffusion is formed to protrude from the tip of the trench 3 as shown in FIG. The effect obtained is as follows. The above-described effect can also be obtained when the diffusion source 5a is arranged except for the outer peripheral portion of the bottom surface 3a of the trench and the p-offset region 5 is formed below the bottom surface 3a of the trench.
[0018]
Note that the same effect can be obtained when the conductivity type of each region including the substrate is reversed and an n-channel MOSFET is used. In addition, a channel may not necessarily be formed at the tip C of the trench 3. This is because the area of the channel forming region at the tip end portion C is extremely small with respect to the entire area of the channel forming region, and the influence on the on-resistance is small.
[Example 2]
3A and 3B are configuration diagrams of a semiconductor device according to a second embodiment of the present invention. FIG. 3A is a sectional view of a main part, and FIG. 3B is a perspective view of the bottom of the trench in FIG. . FIG. 1A is a cross-sectional view of an active region of a lateral MOSFET (TLPM / S) of a type in which a source region of an n-channel trench lateral power MOSFET has a bottom surface. FIG. 2B shows only the p body region 34 and the n offset region 35 in FIG.
[0019]
The difference from FIG. 1 is that the n-well region 2 formed on the p-substrate 31 is replaced with a p-well region 32, the conductivity type of each region is reversed, and the p-channel MOSFET is replaced with an n-channel MOSFET. Also in this case, similarly to the first embodiment, punch-through at the corner portion A is prevented, and a high breakdown voltage can be secured. In the figure, 36 is an n source region, 37 is a gate insulating film, 38 is a gate electrode, 39 is an n offset region, 40 is an n drain region, 41 is an interlayer insulating film, 42 is a barrier metal, 43 is tungsten, 44 Is a source electrode, 45 is a drain electrode, and L2 is the length of the p body region.
[Example 3]
FIG. 4 is a plan sectional view of a main part of a semiconductor device according to a third embodiment of the present invention, which corresponds to the semiconductor device of FIG. 1A. For convenience, an n-well region 2, a trench 3, and a p-offset region 5 are shown. Only one is described.
[0020]
1A, 1B, and 1C, the n-well region 2 is formed in an island shape by the trench 3.
FIG. 2A shows a configuration in which a p-offset region 5 is not formed at the corner A by forming a mask at both ends of the outer periphery of the trench 3 and introducing and diffusing impurities.
In FIG. 2B, a mask is formed around the corner A, and the p offset region 5 is not formed at the corner A.
FIG. 3C shows that a protrusion D is formed in the trench 3, a mask is formed at the tip of the protrusion D, impurities are introduced, the impurity is diffused, and the p-offset region 5 is formed in the corner A. Is not formed.
[0021]
【The invention's effect】
According to the present invention, since the offset region is not formed at the tip of the trench, a decrease in breakdown voltage due to punch-through can be prevented.
Further, since the area where the offset region is not formed at the tip of the trench is extremely small, there is almost no reduction in the current driving force.
[Brief description of the drawings]
1A and 1B are configuration diagrams of a semiconductor device according to a first embodiment of the present invention, in which FIG. 1A is a cross-sectional view of a main part, and FIG. 1B is a perspective view of the bottom of a trench in FIG. FIGS. 3A and 3B are configuration diagrams of a semiconductor device according to a second embodiment of the present invention, in which FIG. 3A is a cross-sectional view of a main part, and FIG. 3B is a sectional view of the bottom of the trench in FIG. FIG. 4 is a structural view of a semiconductor device according to a second embodiment of the present invention, in which (a), (b) and (c) are figures in which an n-well region is formed in an island shape by a trench. FIG. 6 is a plan view of a main part of a conventional lateral power MOSFET having a trench structure. FIG. 6 is a longitudinal sectional view taken along line II-II of FIG. 4. FIG. 7 is another horizontal power MOSFET having a conventional trench structure. Partial sectional view, (b) is a perspective view of the trench bottom of (a).
1, 31 p substrate 2 n well region 3, 33 trench 3a, 33a bottom surface 4 n body region 4a diffusion source (n body region)
5 P offset region 5a Diffusion source (p offset region)
6 p source region 7, 37 gate insulating film 8, 38 gate electrode 9 p offset region 10 p drain region 11, 41 interlayer insulating film 12, 42 barrier metal 13, 43 tungsten 14, 44 source electrode 15, 45 drain electrode 32 p Well region 34 P body region 34a Diffusion source (p body region)
35 n offset region 35a Diffusion source (n offset region)
36 n source region 39 n offset region 40 n drain region

Claims (5)

第1導電形の半導体領域の第1主面に形成されたトレンチと、前記トレンチと接して前記半導体基板の第1主面に形成された第2導電形の第1領域と、前記トレンチの底面から拡散により前記トレンチ底面から前記トレンチ側壁部に渡って形成された第1導電形の第2領域と、
前記第2領域内に、拡散により前記トレンチ底面から前記トレンチ側壁部に渡って形成された第2導電形の第3領域と、
前記第1領域と前記第3領域とに挟まれた前記トレンチ側壁上に絶縁膜を介して形成された制御電極とを有する半導体装置において、
前記トレンチ底面で内角が180度未満の角部において前記第3領域が前記トレンチ底面にのみ形成されることを特徴とする半導体装置。
A trench formed on a first main surface of a semiconductor region of a first conductivity type; a first region of a second conductivity type formed on a first main surface of the semiconductor substrate in contact with the trench; and a bottom surface of the trench A second region of the first conductivity type formed from the bottom of the trench to the side wall of the trench by diffusion from
A third region of a second conductivity type formed from the bottom surface of the trench to the side wall of the trench by diffusion in the second region;
A semiconductor device having a control electrode formed on a side wall of the trench interposed between the first region and the third region via an insulating film,
The semiconductor device according to claim 1, wherein the third region is formed only on the bottom of the trench at a corner having an inner angle of less than 180 degrees on the bottom of the trench.
前記半導体領域は、第2導電形の半導体基板上に形成されることを特徴とする請求項1に記載の半導体装置。The semiconductor device according to claim 1, wherein the semiconductor region is formed on a semiconductor substrate of a second conductivity type. 第1導電形の半導体領域の第1主面にトレンチを形成する工程と、
前記半導体領域の表面に第2導電形の第1拡散源を配置し、該第1拡散源から不純物を拡散して前記トレンチに隣接して前記半導体領域の表面層に第2導電形の第1領域を形成する工程と、
前記トレンチの底面に第1導電形の第2拡散源を配置して該第2拡散源から不純物を拡散して前記トレンチの底面から側壁に渡って第1導電形の第2領域を形成する工程と、
前記トレンチの底面で内角が180度未満の角部から所定の距離離れた箇所に前記トレンチの底面に第2導電形の第3拡散源を配置し、該第3拡散源から不純物を拡散して、前記角部に達することなく前記第2領域内に前記トレンチの底面から前記トレンチ側壁部に渡って第2導電形の第3領域を形成する工程と、を有することを特徴とする半導体装置の製造方法。
Forming a trench in the first main surface of the semiconductor region of the first conductivity type;
A first diffusion source of a second conductivity type is disposed on a surface of the semiconductor region, and an impurity is diffused from the first diffusion source to form a first diffusion source of a second conductivity type on a surface layer of the semiconductor region adjacent to the trench. Forming a region;
Disposing a second diffusion source of a first conductivity type on the bottom surface of the trench and diffusing impurities from the second diffusion source to form a second region of the first conductivity type from the bottom surface of the trench to a side wall; When,
A third diffusion source of the second conductivity type is disposed on the bottom surface of the trench at a predetermined distance from a corner having an inner angle of less than 180 degrees on the bottom surface of the trench, and an impurity is diffused from the third diffusion source. Forming a third region of the second conductivity type from the bottom surface of the trench to the side wall of the trench in the second region without reaching the corner. Production method.
前記第1領域を形成する工程と前記第3領域を形成する工程を同時に行うことを特徴とする請求項3に記載の半導体装置の製造方法。4. The method according to claim 3, wherein the step of forming the first region and the step of forming the third region are performed simultaneously. 前記第3拡散源は、前記角部を形成する一方の辺から所定の距離離れた箇所に配置され、前記第3領域は、該第3拡散源から不純物を拡散して、前記一方の辺に達することなく前記第2領域内に前記トレンチの底面から前記角部を形成する他方の辺方向の前記トレンチ側壁部に渡って形成することを特徴とする請求項3に記載の半導体装置の製造方法。The third diffusion source is disposed at a position separated by a predetermined distance from one side forming the corner, and the third region diffuses an impurity from the third diffusion source, and 4. The method according to claim 3, wherein the trench is formed in the second region from the bottom surface of the trench to the other side of the trench forming the corner portion without reaching the trench. 5. .
JP2003111237A 2003-04-16 2003-04-16 Manufacturing method of semiconductor device Expired - Fee Related JP4423460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111237A JP4423460B2 (en) 2003-04-16 2003-04-16 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111237A JP4423460B2 (en) 2003-04-16 2003-04-16 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2004319741A true JP2004319741A (en) 2004-11-11
JP4423460B2 JP4423460B2 (en) 2010-03-03

Family

ID=33471848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111237A Expired - Fee Related JP4423460B2 (en) 2003-04-16 2003-04-16 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4423460B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8502306B2 (en) 2011-09-22 2013-08-06 Kabushiki Kaisha Toshiba Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174273A (en) * 1998-12-10 2000-06-23 Matsushita Electronics Industry Corp Semiconductor device
JP2002184980A (en) * 2000-10-05 2002-06-28 Fuji Electric Co Ltd Trench lateral mosfet and manufacturing method thereof
JP2002280549A (en) * 2001-03-21 2002-09-27 Fuji Electric Co Ltd Semiconductor device and its manufacturing method
JP2002353446A (en) * 2001-05-30 2002-12-06 Fuji Electric Co Ltd Trench-type semiconductor device and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174273A (en) * 1998-12-10 2000-06-23 Matsushita Electronics Industry Corp Semiconductor device
JP2002184980A (en) * 2000-10-05 2002-06-28 Fuji Electric Co Ltd Trench lateral mosfet and manufacturing method thereof
JP2002280549A (en) * 2001-03-21 2002-09-27 Fuji Electric Co Ltd Semiconductor device and its manufacturing method
JP2002353446A (en) * 2001-05-30 2002-12-06 Fuji Electric Co Ltd Trench-type semiconductor device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8502306B2 (en) 2011-09-22 2013-08-06 Kabushiki Kaisha Toshiba Semiconductor device

Also Published As

Publication number Publication date
JP4423460B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
US8080858B2 (en) Semiconductor component having a space saving edge structure
JP3395473B2 (en) Horizontal trench MISFET and manufacturing method thereof
KR101296984B1 (en) Charge balance field effect transistor
TWI395294B (en) Trench-gate field effect transistors and methods of forming the same
US7550352B2 (en) MOS transistor having a recessed gate electrode and fabrication method thereof
US8174066B2 (en) Semiconductor device and method of manufacturing semiconductor device
US7919374B2 (en) Method for manufacturing a semiconductor device
US20060001110A1 (en) Lateral trench MOSFET
JPH0897411A (en) Lateral trench mos fet having high withstanding voltage and its manufacture
US7652327B2 (en) Semiconductor device and manufacturing method for semiconductor device
JP2005005438A (en) Semiconductor device and its manufacturing method
KR101520951B1 (en) LDMOS with self aligned vertical LDD and backside drain
US20060160310A1 (en) Semiconductor device and method for fabricating the same
US7008865B2 (en) Method of manufacturing a semiconductor device having a high breakdown voltage and low on-resistance
JP2850852B2 (en) Semiconductor device
JP2005101334A (en) Semiconductor device and its manufacturing method
JP5027362B2 (en) High voltage element and method for manufacturing the same
JP2010118622A (en) Semiconductor device and method of manufacturing the same
JP2004022769A (en) Lateral high breakdown voltage semiconductor device
US9112016B2 (en) Semiconductor device and method of fabricating the same
US7271441B2 (en) Semiconductor device and method for fabricating the same
JPH03205832A (en) Insulated-gate semiconductor device and manufacture thereof
JP4423460B2 (en) Manufacturing method of semiconductor device
JP2007115791A (en) Semiconductor device and method of manufacturing same
JP2004031386A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees