JP2004319560A - Method and apparatus for manufacturing device - Google Patents

Method and apparatus for manufacturing device Download PDF

Info

Publication number
JP2004319560A
JP2004319560A JP2003107422A JP2003107422A JP2004319560A JP 2004319560 A JP2004319560 A JP 2004319560A JP 2003107422 A JP2003107422 A JP 2003107422A JP 2003107422 A JP2003107422 A JP 2003107422A JP 2004319560 A JP2004319560 A JP 2004319560A
Authority
JP
Japan
Prior art keywords
wafer
dielectric layer
energy beam
electron beam
irradiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003107422A
Other languages
Japanese (ja)
Inventor
Mamoru Nakasuji
護 中筋
Masaki Nagayama
真己 長山
Shiyunichi Aiyoshizawa
俊一 相吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003107422A priority Critical patent/JP2004319560A/en
Publication of JP2004319560A publication Critical patent/JP2004319560A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing device by which the dielectric constant of the inter-wiring insulating layer of a multi-level interconnection device can be reduced. <P>SOLUTION: This method of manufacturing device includes (a) a step of forming a dielectric layer 11 on the surface W1 of a wafer, (b) a step of projecting an energy beam 33 upon the surface W1 of the wafer on which the dielectric layer 11 is formed, and (c) a step of measuring the recessed and projecting sections formed on the surface W1 of the wafer irradiated with the energy beam 33. This method also includes (d) a step of additionally projecting the energy beam 33 upon the recessed or projecting sections formed on the surface W1 of the wafer based on the measured values of the recessed and projecting sections formed on the surface W1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ウエーハ上に絶縁層と配線が交互に多数積層される多層配線の半導体デバイス(集積回路)に関する。特に、本発明は、低誘電率の絶縁層を有機材料によって実現し、低誘電率の絶縁層を有する半導体デバイスを製造する方法及び装置に関する。
【0002】
【従来の技術】
従来、多層配線の半導体デバイスは、ウエーハ表面上に第1の絶縁層を化学蒸着法(CVD)等で形成し、第1の絶縁層を化学的機械的研磨装置(CMP装置)で平坦になるよう研磨を行い、第1の絶縁層上に第1のビア(via:層間接続線)及び配線を形成することによって、第1の配線層を形成し、次に第1の配線層上に第2の絶縁層をCVD等で形成し、第2の絶縁層上に第2のビア及び配線を形成することによって、第2の配線層を形成し、その後、第2の配線層と同様の工程によって、必要な数の配線層を形成する方法が取られていた。多層配線層を有する従来の半導体デバイスは、配線間の絶縁層の誘電率を小さくできないため、配線間の静電容量が大きくなり、配線中を通過する電気信号の遅延が大きいという問題があった。
【0003】
【特許文献1】
特開2002−243896号公報
【非特許文献1】
今野茂生、市川修一、「大出力銃の産業への応用」、日本学術振興会荷電粒子ビームの工業への応用第132委員会第144回研究会資料(11.7.23)
【0004】
【発明が解決しようとする課題】
本発明の目的は、ウエーハ表面に絶縁層及び配線から成る配線層を多数積層させた多層配線層デバイスにおいて、絶縁層を有機材料とすることによって低誘電率化することにある。特に本発明は、デバイス製造工程において、エネルギービームを用いて、絶縁層の表面の凹凸を測定し、その測定値に基づきエネルギービームを追加照射することにより絶縁層の厚みを高い精度で均一化させ、絶縁層を低誘電率化した半導体デバイスの製造方法及び装置を提供することである。
【0005】
【課題を解決するための手段】
本発明のデバイス製造方法は、(a)ウエーハ表面に誘電体層を塗布する等により形成するステップ、(b)前記誘電体層を形成されたウエーハ表面にエネルギービームを照射するステップ、(c)前記エネルギービームを照射されたウエーハ表面の凹凸を測定するステップ、(d)前記ウエーハ表面の凹凸の測定値をもとに凹又は凸部分にエネルギービームを追加照射するステップを含む。
【0006】
本発明のデバイス製造方法において、好ましくは、前記ステップ(b)においてウエーハ裏面を静電チャック又は真空チャックの吸着力によってチャックの絶縁基板の平坦な表面へ密着させ平坦にした状態でエネルギービームを照射する。ステップ(b)の粒子線の照射により形成された誘電体層は重合し、その強度が強くなり、ウエーハ表面に強固に接着され、且つ誘電体層の表面が平滑にされる。また、前記ステップ(c)からステップ(d)を、前記凹凸差の測定値が予め決められた値以下になるまで繰り返し行う。粒子線の照射は、例えば非特許文献1に開示される大出力銃を用いて行うことが好適であり、また大気中へ粒子線を取り出すために好適には特許文献1に開示される方法及び装置が用いられる。
【0007】
本発明のデバイス製造方法において、好ましくは、前記エネルギービームは電子線であり、エネルギービームを照射するステップは、電子線を円周にそって移動させながら照射するステップを含む。円周の半径は、変化される。
【0008】
本発明は、上記デバイス製造方法を使用するデバイス製造装置を提供する。本発明のデバイス製造装置において、電子線照射部、基板高さ測定部、又は基板に堆積された膜厚の測定部が同一真空内に配置される。
【0009】
【発明の実施の形態】
図1は、本発明のデバイス製造方法を実施するために使用される電子線照射装置30の概略縦断面図である。電子線照射装置30は、LaBカソード1、ウエーネルト電極2、アノード3を含む電子銃32、電磁レンズ4、5、偏向コイル6及び偏向コア7を含む電磁偏向器34、照射室8の下方に配置される絶縁基板13及び電極14を含む静電チャック36を有する。ウエーハWの裏面が静電チャック36の絶縁基板13の平坦な表面13s上に吸着され平坦にされる。
【0010】
図1の電子線照射装置30において、電子銃32から放出される電子ビーム33は、電磁レンズ4、5で集束され、電磁偏向器34によりウエーハWの片側の全面積を走査可能にされる。またウエーハWの表面W1は、誘電体層11がスピンコートによって一様な厚みでコーティングされている。ウエーハWの裏面W2は、静電チャック36により平坦に固定される。
【0011】
電子線33は、ウエーハWの表面に平行な平面内の半径Rが変化する円周20に沿って矢印38の方向に回転偏向されながら、ウエーハWの表面W1を照射する。円周20の半径Rは、時間の経過と共に変化される。そして、円周20の半径Rと電子線の走査密度Dは、照射量(dose)が一定となるように制御される。この場合、照射量は、ウエーハが単位表面積当たりに受けるクーロン量であり、単位は、クーロン/cmである。また走査密度Dは、半径方向の単位寸法(mm)内の走査本数N(本数)であり、N本/mmで表すことができる。照射量を一定とするため、半径Rが大きいほど走査密度Dは小さく、また半径Rが小さい場所では、走査密度Dが大となるように走査される。走査密度Dを変化させることに変えて、走査密度は一定とし走査速度を半径Rの減少関数となる様に制御することができる。
【0012】
電子線33によるウエーハ表面W1の全体の走査が完了した後、アノード3に加える電圧を低くし、電子線33の発生を一旦止める。この状態において、平坦度測定器により誘電層11の表面の凹凸を測定する。平坦度測定器39は、レーザ照射光源15とレーザ受光器16及び平坦度測定部17を含む。凹凸の測定は、平坦度測定器39のレーザ照射光源15よりレーザ光12を入射窓9を介し誘電層の表面11sへ入射し、且つ出射窓10からレーザ光を出射させて、ウエーハWに塗られた誘電層11の表面11sの凹凸を測定し、コンピュータ18へデータを送る。
【0013】
CPU18は、平坦度測定器39からおくられた凹凸の測定データからどの位置にどの程度の照射量で追加照射を行うかを計算し、その計算に基づき、インターフェイスを通じて偏向器6、7とアノード電極3を制御する。追加照射量と誘電体層の厚み変化の関係は、予め実測してテーブルとし、コンピュータ18内に記憶される。
【0014】
平坦度測定器39は、誘電体表面11sからの反射光のみを強調し、誘電体下面からの反射光を除去するようにされる。このため、コンピュータ18は、入射角度、偏向方向、配線等の下地パターンを検出して配線パターンからの反射光をコンピュータ上で除去するソフトウエアを具備する。
【0015】
図2は、本発明の第2の実施の形態の電子線照射装置30の配置図である。電子線照射装置30は、誘電体層の形成及び測定を行うため、照射室8に隣接して厚み測定部24を有する。照射室8の下方に配置される静電チャック36は、水平のステージ22上のローラ23上に配置され、静電チャック36上に載置されるウエーハを照射室8と厚み測定部24の間で往復移動可能に構成される。測定部24は、測定光学系28を備える。測定光学系28は、誘電体層11の表面と裏面の差、即ち誘電体層11の厚みを測定する。
【0016】
図3は、ウエーハ半径と誘電体層の厚み(測定値)の関係を示すグラフであり、横軸はウエーハ半径(mm)、縦軸はウエーハ及び誘電体層の厚み(μm)を表す。誘電体層の厚みが、図3の実線26で示す分布を有するとき、図3の矢印25で示す個所へ電子線を追加照射し、追加照射を受けた誘電体層の部分の厚みを減少させ、点線27で示す分布となるようにする。誘電体層の最も厚い部分の厚みと誘電体層の最も薄い部分の厚みとの厚み差δが規格値以下となるように、電子線の照射と誘電体層の厚みの測定を繰り返すことにより、誘電体層をその形成後にCMPで研磨することが必要ない程度に平坦化することができる。
【0017】
低誘電体層の材質が決定され、上記の方法で最適の照射量の半径依存性が決定されることにより、その後は、コンピュータに記憶された照射量の半径依存性に従って電子線を照射し、厚み測定を省略することができる。誘電体層の厚みは、材料によっては電子線照射により増加する場合もあり得るが、その場合は、誘電体層の厚みの小さい部分へ電子線を照射することにより、厚み差δが規格値以下、例えばウエーハ表面で0.3μmとすることができる。
【0018】
【発明の効果】
本発明は、以下に記載の作用効果を奏する。
(1)本発明の絶縁層(誘電体層)形成方法によれば、絶縁層の形成後にCMP(化学機械的研磨)により絶縁層の表面を平坦にすることが必要でない、又は必要であっても簡単な研磨で済ませられるので、低誘電体層の材料の強度がCMPを行える程度の強度でない場合においても使用することができ、絶縁層を誘電率のより小さい材料により形成することができる。
【図面の簡単な説明】
【図1】図1は、本発明のデバイス製造方法を実施するために使用される電子線照射装置30の概略縦断面図。
【図2】本発明の第2の実施の形態の電子線照射装置30の配置図。
【図3】ウエーハ半径と誘電体層の厚み(測定値)の関係を示すグラフ
【符号の説明】
1:LaBカソード、2:ウエーネルト電極、3:アノード、4:レンズコイル(電磁レンズ)、5:レンズコア(電磁レンズ)、6:偏向コイル(偏向器)、7:偏向コア(偏向器)、8:照射室、9:入射窓、10:出射窓、11:誘電体層、12:レーザ光、13:絶縁基板、14:電極、15:レーザ照射光源、16:レーザ受光器、17:平坦度測定器、18:コンピュータ、19:インターファイス、20:円周(ビーム軌道の断面)、22:ステージ、23:ローラ、24:測定室、25:追加照射位置、26:厚み分布、28:厚み測定器、30:電子線照射装置、32:電子銃、33:電子線、34:偏向器、36:静電チャック、39:平坦度測定器、D:走査密度、R:半径、W:ウエーハ、W1:ウエーハ表面。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multilayer wiring semiconductor device (integrated circuit) in which a large number of insulating layers and wirings are alternately stacked on a wafer. In particular, the present invention relates to a method and apparatus for manufacturing a semiconductor device having a low dielectric constant insulating layer realized by an organic material.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a semiconductor device having a multilayer wiring, a first insulating layer is formed on a wafer surface by a chemical vapor deposition method (CVD) or the like, and the first insulating layer is flattened by a chemical mechanical polishing apparatus (CMP apparatus). The first wiring layer is formed by performing first polishing (via: interlayer connection line) and wiring on the first insulating layer, and then forming the first via layer on the first wiring layer. Forming a second insulating layer by CVD or the like, forming a second via and a wiring on the second insulating layer to form a second wiring layer, and then performing the same steps as the second wiring layer. Therefore, a method of forming a required number of wiring layers has been adopted. A conventional semiconductor device having a multilayer wiring layer has a problem that the dielectric constant of the insulating layer between the wirings cannot be reduced, so that the capacitance between the wirings increases and the delay of an electric signal passing through the wiring is large. .
[0003]
[Patent Document 1]
JP-A-2002-243896 [Non-Patent Document 1]
Shigeo Konno, Shuichi Ichikawa, "Application of High Power Guns to Industry", Japan Society for the Promotion of Science, Application of Charged Particle Beams to Industry, 132nd Committee, 144th Meeting (11.7.23)
[0004]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to reduce the dielectric constant of a multilayer wiring layer device in which a large number of wiring layers including an insulating layer and wiring are laminated on a wafer surface by using an organic material for the insulating layer. In particular, the present invention uses an energy beam to measure the unevenness of the surface of the insulating layer in the device manufacturing process, and further irradiates the energy beam based on the measured value to make the thickness of the insulating layer uniform with high accuracy. Another object of the present invention is to provide a method and an apparatus for manufacturing a semiconductor device in which an insulating layer has a low dielectric constant.
[0005]
[Means for Solving the Problems]
According to the device manufacturing method of the present invention, (a) a step of forming a dielectric layer on a wafer surface by coating or the like; (b) a step of irradiating an energy beam on the wafer surface on which the dielectric layer is formed; Measuring the unevenness of the wafer surface irradiated with the energy beam; and (d) additionally irradiating the concave or convex portion with the energy beam based on the measured value of the unevenness of the wafer surface.
[0006]
In the device manufacturing method of the present invention, preferably, in the step (b), the back surface of the wafer is brought into close contact with the flat surface of the insulating substrate of the chuck by the chucking force of the electrostatic chuck or the vacuum chuck, and the energy beam is irradiated in a flat state. I do. The dielectric layer formed by the irradiation of the particle beam in step (b) is polymerized, its strength is increased, it is firmly adhered to the wafer surface, and the surface of the dielectric layer is smoothed. Steps (c) to (d) are repeated until the measured value of the unevenness difference becomes equal to or less than a predetermined value. The irradiation of the particle beam is preferably performed using, for example, a high-power gun disclosed in Non-Patent Document 1, and the method disclosed in Patent Document 1 is preferably used to extract the particle beam into the atmosphere. A device is used.
[0007]
In the device manufacturing method of the present invention, preferably, the energy beam is an electron beam, and the step of irradiating the energy beam includes a step of irradiating the electron beam while moving the electron beam along a circumference. The radius of the circumference is varied.
[0008]
The present invention provides a device manufacturing apparatus using the above device manufacturing method. In the device manufacturing apparatus of the present invention, the electron beam irradiation unit, the substrate height measurement unit, or the measurement unit of the film thickness deposited on the substrate is arranged in the same vacuum.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic vertical sectional view of an electron beam irradiation apparatus 30 used for carrying out the device manufacturing method of the present invention. The electron beam irradiation device 30 includes an electron gun 32 including a LaB 6 cathode 1, a Wehnelt electrode 2, and an anode 3, an electromagnetic lens 4, 5, an electromagnetic deflector 34 including a deflection coil 6 and a deflection core 7, and a lower part of the irradiation chamber 8. It has an electrostatic chuck 36 including an insulating substrate 13 and an electrode 14 to be arranged. The back surface of the wafer W is sucked onto the flat surface 13s of the insulating substrate 13 of the electrostatic chuck 36 to be flattened.
[0010]
In the electron beam irradiation apparatus 30 shown in FIG. 1, an electron beam 33 emitted from an electron gun 32 is focused by electromagnetic lenses 4 and 5, and an entire area on one side of a wafer W can be scanned by an electromagnetic deflector 34. The surface W1 of the wafer W is coated with a dielectric layer 11 having a uniform thickness by spin coating. The back surface W2 of the wafer W is fixed flat by the electrostatic chuck 36.
[0011]
The electron beam 33 irradiates the surface W1 of the wafer W while being rotationally deflected in the direction of the arrow 38 along the circumference 20 where the radius R changes in a plane parallel to the surface of the wafer W. The radius R of the circumference 20 changes over time. The radius R of the circumference 20 and the scanning density D of the electron beam are controlled so that the irradiation amount (dose) is constant. In this case, the irradiation amount is the amount of coulomb received by the wafer per unit surface area, and the unit is coulomb / cm 2 . The scanning density D is the number of scanning lines N (the number of scanning lines) within a unit dimension (mm) in the radial direction, and can be represented by N lines / mm. In order to keep the irradiation amount constant, the scanning density D decreases as the radius R increases, and scanning is performed such that the scanning density D increases in a place where the radius R is small. Instead of changing the scanning density D, the scanning density can be kept constant and the scanning speed can be controlled to be a decreasing function of the radius R.
[0012]
After the scanning of the entire wafer surface W1 by the electron beam 33 is completed, the voltage applied to the anode 3 is reduced, and the generation of the electron beam 33 is temporarily stopped. In this state, the unevenness of the surface of the dielectric layer 11 is measured by a flatness measuring device. The flatness measuring device 39 includes the laser irradiation light source 15, the laser light receiver 16, and the flatness measuring unit 17. The unevenness is measured by applying a laser beam 12 from the laser irradiation light source 15 of the flatness measuring device 39 to the surface 11s of the dielectric layer through the entrance window 9 and emitting the laser beam from the exit window 10 to coat the wafer W. The unevenness of the surface 11 s of the dielectric layer 11 is measured, and data is sent to the computer 18.
[0013]
The CPU 18 calculates from the measurement data of the unevenness sent from the flatness measuring device 39 which position and how much additional irradiation is to be performed, and based on the calculation, the deflectors 6 and 7 and the anode electrode through the interface. 3 is controlled. The relationship between the additional irradiation amount and the change in the thickness of the dielectric layer is measured in advance and stored in the computer 18 as a table.
[0014]
The flatness measuring device 39 emphasizes only the reflected light from the dielectric surface 11s and removes the reflected light from the dielectric lower surface. For this purpose, the computer 18 includes software for detecting the base pattern such as the incident angle, the deflection direction, and the wiring, and removing the reflected light from the wiring pattern on the computer.
[0015]
FIG. 2 is an arrangement diagram of an electron beam irradiation device 30 according to the second embodiment of the present invention. The electron beam irradiation device 30 has a thickness measurement unit 24 adjacent to the irradiation chamber 8 for forming and measuring a dielectric layer. The electrostatic chuck 36 disposed below the irradiation chamber 8 is disposed on the roller 23 on the horizontal stage 22, and moves the wafer mounted on the electrostatic chuck 36 between the irradiation chamber 8 and the thickness measurement unit 24. It is configured to be able to reciprocate. The measurement unit 24 includes a measurement optical system 28. The measurement optical system 28 measures the difference between the front surface and the back surface of the dielectric layer 11, that is, the thickness of the dielectric layer 11.
[0016]
FIG. 3 is a graph showing the relationship between the wafer radius and the thickness (measured value) of the dielectric layer. The horizontal axis represents the wafer radius (mm), and the vertical axis represents the thickness of the wafer and the dielectric layer (μm). When the thickness of the dielectric layer has a distribution indicated by a solid line 26 in FIG. 3, an electron beam is additionally irradiated to a position indicated by an arrow 25 in FIG. 3 to reduce the thickness of the portion of the dielectric layer that has been additionally irradiated. , The distribution indicated by the dotted line 27. By repeating the irradiation of the electron beam and the measurement of the thickness of the dielectric layer such that the thickness difference δ between the thickness of the thickest part of the dielectric layer and the thickness of the thinnest part of the dielectric layer is equal to or less than the standard value, The dielectric layer may be planarized after formation to such an extent that polishing by CMP is not required.
[0017]
The material of the low dielectric layer is determined, and by determining the optimum radiation dose radius dependency by the above method, thereafter, irradiating the electron beam according to the radius dependency of the dose stored in the computer, The thickness measurement can be omitted. Depending on the material, the thickness of the dielectric layer may increase by electron beam irradiation.In such a case, the thickness difference δ is equal to or less than the standard value by irradiating the electron beam to the thin portion of the dielectric layer. For example, it can be 0.3 μm on the wafer surface.
[0018]
【The invention's effect】
The present invention has the following functions and effects.
(1) According to the method for forming an insulating layer (dielectric layer) of the present invention, it is not necessary or necessary to flatten the surface of the insulating layer by CMP (chemical mechanical polishing) after forming the insulating layer. Can be completed by simple polishing, so that it can be used even when the strength of the material of the low dielectric layer is not strong enough to perform CMP, and the insulating layer can be formed of a material having a smaller dielectric constant.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of an electron beam irradiation apparatus 30 used to carry out a device manufacturing method of the present invention.
FIG. 2 is a layout view of an electron beam irradiation device 30 according to a second embodiment of the present invention.
FIG. 3 is a graph showing a relationship between a wafer radius and a thickness (measured value) of a dielectric layer.
1: LaB 6 cathode, 2: Wehnelt electrode, 3: anode, 4: lens coil (electromagnetic lens), 5: Lens core (magnetic lens), 6: deflection coil (deflector) 7: deflection core (deflector) , 8: irradiation chamber, 9: entrance window, 10: exit window, 11: dielectric layer, 12: laser beam, 13: insulating substrate, 14: electrode, 15: laser irradiation light source, 16: laser receiver, 17: Flatness measuring instrument, 18: Computer, 19: Interface, 20: Circumference (cross section of beam orbit), 22: Stage, 23: Roller, 24: Measurement chamber, 25: Additional irradiation position, 26: Thickness distribution, 28 : Thickness measuring instrument, 30: electron beam irradiation device, 32: electron gun, 33: electron beam, 34: deflector, 36: electrostatic chuck, 39: flatness measuring instrument, D: scanning density, R: radius, W : Wafer, W1: Wafer surface.

Claims (4)

デバイス製造方法であって、(a)ウエーハ表面に誘電体層を形成するステップ、(b)前記誘電体層を形成されたウエーハ表面にエネルギービームを照射するステップ、(c)前記エネルギービームを照射されたウエーハ表面の凹凸を測定するステップ、(d)前記ウエーハ表面の凹凸の測定値をもとに凹又は凸部分にエネルギービームを追加照射するステップを含むことを特徴とするデバイス製造方法。A device manufacturing method, comprising: (a) forming a dielectric layer on a wafer surface; (b) irradiating an energy beam on the wafer surface on which the dielectric layer is formed; and (c) irradiating the energy beam. Measuring the unevenness of the wafer surface thus obtained, and (d) additionally irradiating the concave or convex portion with an energy beam based on the measured value of the unevenness of the wafer surface. 前記ステップ(b)においてウエーハ裏面をチャックの平坦な絶縁基板の表面へ密着させ平坦にした状態でエネルギービームを照射することを特徴とする請求項1のデバイス製造方法。2. The device manufacturing method according to claim 1, wherein in the step (b), the energy beam is irradiated in a state where the back surface of the wafer is brought into close contact with the surface of the flat insulating substrate of the chuck and is flat. 前記ステップ(c)からステップ(d)を、前記凹凸の測定値が予め決められた値以下になるまで繰り返し行うことを特徴とする請求項1のデバイス製造方法。2. The device manufacturing method according to claim 1, wherein the steps (c) to (d) are repeatedly performed until the measured value of the unevenness becomes equal to or less than a predetermined value. 前記エネルギービームは電子線であり、前記エネルギービームを照射するステップは電子線を円周に沿って移動させながら照射することを特徴とする請求項1のデバイス製造方法。2. The device manufacturing method according to claim 1, wherein the energy beam is an electron beam, and the step of irradiating the energy beam is performed while moving the electron beam along a circumference.
JP2003107422A 2003-04-11 2003-04-11 Method and apparatus for manufacturing device Pending JP2004319560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107422A JP2004319560A (en) 2003-04-11 2003-04-11 Method and apparatus for manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107422A JP2004319560A (en) 2003-04-11 2003-04-11 Method and apparatus for manufacturing device

Publications (1)

Publication Number Publication Date
JP2004319560A true JP2004319560A (en) 2004-11-11

Family

ID=33469253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107422A Pending JP2004319560A (en) 2003-04-11 2003-04-11 Method and apparatus for manufacturing device

Country Status (1)

Country Link
JP (1) JP2004319560A (en)

Similar Documents

Publication Publication Date Title
TW461964B (en) Voltage contrast method and apparatus for semiconductor inspection using low voltage particle beam
US8076654B2 (en) Sample surface inspection apparatus and method
WO2009125603A1 (en) Specimen observation method and device, and inspection method and device using the method and device
TWI608303B (en) Electrostatic clamp
JP6752490B2 (en) Defect reduction in substrate processing method
JP2009075089A (en) Method and system for imaging cross section of specimen
JP6253647B2 (en) Electrostatic clamp, lithographic apparatus and method
US20100012838A1 (en) Inspection method and apparatus of a glass substrate for imprint
CN1628380A (en) Monitoring of contact hole production
CN107079572A (en) Electron beam-induced plasma(eBIP)Application in inspection, test, debugging and surfaction
JP2004226079A (en) Surface or section processing observation method and its device
US8530836B2 (en) Electron-beam dimension measuring apparatus and electron-beam dimension measuring method
JP3251875B2 (en) Charged particle beam exposure system
TWI375978B (en) Method for characterizing an electron beam treatment apparatus
JP2000337846A (en) Length-measuring method with scanning electron microscope
Oh et al. Improving detection of plasma etching end point using light compensation on optical emission spectra
JP2004319560A (en) Method and apparatus for manufacturing device
US8530866B2 (en) Pattern observation method
JP5771256B2 (en) Imprint glass substrate, resist pattern forming method, imprint glass substrate inspection method and inspection apparatus
TWI337362B (en) Electron-beam size measuring apparatus and size measuring method with electron beams
JP2003331772A (en) Electron beam equipment and device manufacturing method
JP2024508743A (en) System and method suitable for uniform ion cutting
US20180068848A1 (en) Low dielectric constant (low-k) dielectric and method of forming the same
US9033964B2 (en) Target structure used for generating charged particle beam, method of manufacturing the same and medical appliance using the same
JP2005203241A (en) Electrically-charged particle beam observation method and electrically-charged particle beam device