JP2004319333A - Hydrogen generator - Google Patents

Hydrogen generator Download PDF

Info

Publication number
JP2004319333A
JP2004319333A JP2003113077A JP2003113077A JP2004319333A JP 2004319333 A JP2004319333 A JP 2004319333A JP 2003113077 A JP2003113077 A JP 2003113077A JP 2003113077 A JP2003113077 A JP 2003113077A JP 2004319333 A JP2004319333 A JP 2004319333A
Authority
JP
Japan
Prior art keywords
aromatic compound
hydrogen
catalyst member
hydrogenated derivative
hydrogen generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003113077A
Other languages
Japanese (ja)
Inventor
Takashi Umeoka
尚 梅岡
Yasushi Goto
靖志 五藤
Kazuhiro Fukada
和宏 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003113077A priority Critical patent/JP2004319333A/en
Publication of JP2004319333A publication Critical patent/JP2004319333A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen generator capable of executing the generation of hydrogen at high efficiency. <P>SOLUTION: In this hydrogen generator, a reaction device 1 comprises a dripping nozzle 3 for dripping a hydrogenation derivative 7 of aromatic compound, and a catalyst member 4 heated by a heating means 5 is arranged under the dripping nozzle 3. The catalyst member 4 has a plurality of pores 4a formed to communicate with each other, the average pore diameter of which is minimized continuously or stepwise toward the advancing direction of the aromatic compound hydrogenation derivative 7. The aromatic compound hydrogenation derivative 7 dripped from the dripping nozzle 3 positively makes contact with the catalyst member 4 while passing through the pores 4a to actively perform a dehydrogenation reaction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水素発生装置に関し、特に燃料電池に好適な水素発生装置に関する。
【0002】
【従来の技術】
近年、世界のエネルギー消費は一貫して増加しており、エネルギー利用に伴って排出される有害物質が、地球規模での環境破壊の一因となっている。このような背景から、燃料電池への関心が高まっている。燃料電池は、水素と酸素を電気化学的に反応させて水と共に電気エネルギーを発生することから、地球温暖化や大気汚染の防止に貢献できるものと考えられている。
【0003】
燃料電池において必要とされる水素の供給技術について種々の検討がなされており、例えば、(i)液化水素タンク等に水素を貯蔵し、必要に応じて液化水素を気化させて水素を供給する方法、(ii)メタノール,液化天然ガス,ガソリン等の液体燃料を水素前駆体として貯蔵し、改質によって水素ガスを供給する方法が知られている。
上記(i),(ii)の方法によれば、水素又は水素前駆体が液体で貯蔵されることから、気体で貯蔵される場合と比較して、貯蔵容量に対する水素ガスの供給量が大きいという利点を有する。
しかし、上記(i)の方法では、水素を冷却・圧縮して液化水素とするために、さらには、低温状態を維持するために、多大なエネルギーが必要である。
一方、上記(ii)の液体燃料を改質して水素を得る方法では、本質的に、水素発生に炭酸ガス(二酸化炭素)の発生を伴うとともに、燃料電池の電極に悪影響を及ぼす一酸化炭素ガスを副生成物として含有している。
【0004】
上記問題を解決するために、芳香族化合物の水素化誘導体水の脱水素化を利用した水素貯蔵・供給システムが提案されている(例えば特許文献1参照)。このシステムは、芳香族化合物に水素付加することにより水素化誘導体として貯蔵し、そして、必要時に、この水素化誘導体の脱水素化反応を行い、水素を取り出すようにしたものである。
【0005】
このシステムによれば、芳香族化合物及びその水素化誘導体は、常温で液体であることから、貯蔵・輸送に要するエネルギーが非常に少なく、また、脱水素反応生成物中に含まれる“芳香族化合物及びその水素化誘導体”と“水素”との分離を確実にかつ容易に実施することができ、しかも、水素ガスの発生に際して、本質的に二酸化炭素の発生を伴なわないとともに、一酸化炭素も原理的には発生しない、という利点を有している。
【0006】
【特許文献1】
特開2001−198469公報
【0007】
【発明が解決しようとする課題】
前記水素貯蔵・供給システムにおいて、芳香族化合物の水素化誘導体の脱水素化反応は、芳香族化合物の水素化誘導体を、反応装置内に設けられた加熱状態の触媒と接触させることによってなされる。
より具体的には、特許文献1には、原料貯蔵手段に貯蔵された原料(芳香族化合物の水素化誘導体)を加熱、気化させて反応装置へ供給し、蒸気凝縮部で冷却して凝縮させた原料を液滴として触媒に滴下して、触媒と接触させて水素を発生させる技術が記載されている。
【0008】
芳香族化合物の水素化誘導体の脱水素化反応は、この芳香族化合物の水素化誘導体と触媒とが接触することによって反応が進行する。従って、多くの水素を発生させるには、芳香族化合物の水素化誘導体と触媒とを効率的に接触させて、触媒の単位体積当たりの脱水素反応量を多くすることが要求される。
【0009】
芳香族化合物の水素化誘導体と触媒との接触を効率的に行うために特許文献1には、金属担持触媒として、多孔体担体に白金等の触媒金属を0.5〜20重量%程度、担持させたものが提案されている。このような、多孔体の金属担持触媒に芳香族化合物の水素化誘導体を供給すると、金属担持触媒と接触することなく多孔体担体を通過して脱水素化反応に供されない芳香族化合物の水素化誘導体が存在しているものと考えられ、脱水素化反応の効率化にはさらなる改善の余地があるものと考えられる。
【0010】
芳香族化合物の水素化誘導体が金属担持触媒と接触することなく多孔体担体を通過する現象を抑制して、脱水素化反応の効率を向上させるためには、金属担持触媒の長さを芳香族化合物の水素化誘導体の進行方向に長くしたり、あるいは金属担持触媒の温度を高めて触媒の活性度を上げることが考えられる。これらによると、ある一定の効果は得られるものの、前者の方法では、金属担持触媒の寸法が大きくなる割には脱水素化反応の効率が充分に向上せず、また、水素発生装置の小型化の要望に逆行するものであり好ましくない。また後者の方法では、脱水素化反応を行うことなく、金属担持触媒からの熱によって気化する芳香族化合物の水素化誘導体の量が多くなり、脱水素化反応の充分な効率向上は期待できない。
【0011】
本発明は、前述した課題に鑑みてなされたものであり、その目的は、高効率で水素の発生を実施できる水素発生装置を提供することである。
【0012】
【課題を解決するための手段】
請求項1に係る水素発生装置は、芳香族化合物の水素化誘導体と、触媒部材とを接触させて、芳香族化合物の水素化誘導体の脱水素化反応を実施することにより、水素の発生を行うことのできる水素発生装置であって、触媒部材が、複数の孔が連通する多孔体であるとともに、芳香族化合物の水素化誘導体の進行方向に進むにつれて、触媒部材の平均孔径が、連続的にもしくは段階的に小さくなるように構成されている。
【0013】
このような構成によれば、触媒部材が、複数の孔が連通する多孔体であるとともに、芳香族化合物の水素化誘導体の進行方向に進むにつれて、触媒部材の平均孔径が、連続的にもしくは段階的に小さくなるようにしたので、上流側の平均孔径の大きい触媒部材に接触しなかった、あるいは反応により液滴の径が小さくなった液状の芳香族化合物の水素化誘導体を、下流側の平均孔径が小さな触媒部材に確実に接触させて、反応に供される芳香族化合物の水素化誘導体の量を増大させることができる。従って、高効率で水素の発生を実施できる。
【0014】
請求項2に係る水素発生装置は、芳香族化合物の水素化誘導体と、触媒部材とを接触させて、芳香族化合物の水素化誘導体の脱水素化反応を実施することにより、水素の発生を行うことのできる水素発生装置であって、触媒部材が、複数の孔が連通する多孔体の平均孔径がそれぞれ異なる2個以上を組み合わせてなり、芳香族化合物の水素化誘導体の進行方向に進むにつれて平均孔径が小さくなるように、2個以上の多孔体が配置されている。
【0015】
このような構成によれば、平均孔径がそれぞれ異なる2個以上の多孔体を、芳香族化合物の水素化誘導体の進行方向に進むにつれて平均孔径が小さくなるように組み合わせて配置したので、触媒部材の平均孔径が、芳香族化合物の水素化誘導体の進行方向に進むにつれて段階的に小さくなる触媒部材を安価かつ容易に構成できる。また、これにより、前記したように、高効率で水素の発生を実施できる。
【0016】
請求項3に係る水素発生装置は、請求項2に係る水素発生装置において、触媒部材に対して高周波誘導加熱を実施できる加熱手段を具備するとともに、2個以上の多孔体の間に電気的絶縁体が介装されている。
【0017】
2個以上の多孔体が互いに電気的に接する場合は、高周波誘導加熱の表皮効果により、多孔体の集合体の表面近傍が誘導加熱によって加熱されるので、その内部まで熱が伝達するのに時間を要し、充分な加熱がなされにくい。
これに対して、請求項3の構成によれば、2個以上の多孔体の間に電気的絶縁体を介装させるので、高周波誘導加熱の表皮効果により、電気的に絶縁された各々の多孔体の表面付近を、誘導加熱により加熱することができ、その内部まで短時間で容易に加熱することができる。
【0018】
特に、脱水素化反応(吸熱反応)によって触媒部材の温度が低下すると、2種以上の多孔体が互いに電気的に接する場合、特にその内部においては、熱回復に長時間を要するが、2個以上の多孔体の間に電気的絶縁体が介装されている場合には、短時間での熱回復が可能であり、効率的に脱水素化反応を実施できる。これによって、触媒部材の内部の温度を、脱水素化反応に必要な温度以上に維持しやすく、より高効率で水素の発生を実施できる。
【0019】
【発明の実施の形態】
(第1実施形態)
以下本発明に係る実施形態を図面に基づいて詳細に説明する。図1は本発明に係る水素発生装置に係り、(A)は反応装置の斜視図、(B)は上流側の平均孔径が大きい触媒部材の要部拡大図、(C)は下流側の平均孔径が小さい触媒部材の要部拡大図である。
先ず、水素発生装置の全体構成について、図1に基づいて説明する。水素発生装置は、原料を貯留する原料貯蔵タンク(図示せず),反応装置1,気液分離装置(図示せず)、廃液回収タンク(図示せず),原料供給ポンプ(図示せず)、水素貯留タンク(図示せず)を備えている。
【0020】
原料貯蔵タンクは、原料である芳香族化合物の水素化誘導体7を貯蔵するためのものであって、配管2により原料供給ポンプを介して反応装置1内に配置された滴下ノズル3に接続されている。そして、原料供給ポンプを作動させることにより、原料貯蔵タンクに貯留されている芳香族化合物の水素化誘導体7を滴下ノズル3に供給できるように構成されている。
【0021】
反応装置1には、反応容器6内に、触媒部材4及び触媒部材4に向けて芳香族化合物の水素化誘導体7を液滴17として滴下させる滴下ノズル3が設けられ、反応容器6の外部に、加熱手段として誘導加熱装置の誘導コイル5が触媒部材4に巻き付けられるように配置されている。触媒部材4は、図1(B)及び図1(C)に示すように、連通する複数の孔4aが形成された多孔体である担持体に、触媒金属が担持されて構成されている。担持体は、例えば長さ300mm、幅20mm、高さ40mmの大きさのニッケルの多孔体であり、孔4aの平均孔径は、芳香族化合物の水素化誘導体7の進行方向に進むにつれて、例えば5mmから0.8mmまで連続的に小さくなるように形成されている。触媒金属は、例えば白金であり、上述したニッケルの多孔体(担持体)に担持されている。
【0022】
前記触媒金属としては、脱水素化反応を達成できるものであればどのようなものでもよく、例えば、金属成分として、ニッケル,パラジウム,白金,ロジウム,イリジウム,ルテニウム,モリブデン,レニウム,タングステン,バナジウム,オスミニウム,クロム,コバルト,鉄等を用いることができる。また、これらを2種類以上合金化したものを、中でも、脱水素化反応に対する活性の高さから、白金族の金属(白金,パラジウム,ロジウム,ルテニウム)を用いることがより好ましい。
【0023】
また、担持体は、電磁誘導方式による高周波誘導加熱がなされるように導電体を含有する多孔体であればどのようなものでもよく、例えば、活性炭,カーボンナノチューブ,金属多孔体、等の導電体からなるものや、モレキュラシーブ,ゼオライト,シリカゲル,アルミナ等の非導電体と一般的な導電体(ステンレス等)とのブレンド物などを挙げることができる。加熱の容易性からは、炭化チタンや金属(ニッケル等)などが好ましい。
【0024】
誘導加熱装置は、電磁誘導方式によって触媒部材4を高周波誘導加熱するものであり、誘導加熱コイル5と、これと電気的に接続して誘導加熱コイル5に高周波電流を流すことのできる高周波電流発生装置(図示せず)とから構成されいる。
【0025】
滴下ノズル3は、触媒部材4に対向して配置されており、原料供給ポンプによって供給された芳香族化合物の水素化誘導体7を滴下ノズル3から触媒部材4に向けて例えば平均粒径5mmの液滴として滴下し、触媒部材4に接触させて脱水素化反応によって生じた生成物8を生成するように構成されている。反応容器6には、配管9が接続されており、配管9の他端に気液分離装置が接続されている。
【0026】
気液分離装置は、脱水素化反応による生成物8を冷却して分離するためのものであって、反応装置1から発生した生成物8を水素と液体成分とに分離できれば、特に限定されないが、水冷循環式,空冷式,流水による冷却(循環させない)等、公知の冷却手段を用いることができる。冷媒としては、水,エチレングリコール,ジエチレングリコール等を用いることができる。
【0027】
気液分離装置は、配管を介して廃液回収タンクと接続しており、気液分離装置で生成物8から分離された液体成分を廃液回収タンクに回収し、貯留するように構成されている。また、気液分離装置は、他の配管によって水素貯留タンクに接続されている。これにより、気液分離装置で分離された水素を水素貯留タンクに貯留できるように構成されている。そして、水素貯留タンクから水素ガス利用機器、例えば燃料電池に水素ガスが供給されるようになっている。
【0028】
次に、本発明の水素発生装置を用いた水素発生方法について、前記した図1に基づいて説明する。
原料貯蔵タンクに貯留されている原料である芳香族化合物の水素化誘導体7を、原料供給ポンプを作動させて滴下ノズル3に供給する。芳香族化合物の水素化誘導体7としては、デカリン,1メチルデカリン、シクロヘキサン,メチルシクロヘキサン,ジメチルシクロヘキサン,トリメチルシクロヘキサン,テトラリン等を挙げることができ、単独物あるいは2種類以上の混合物として使用できる。単独物及び混合物は、常温で液状であるのが好ましい。
1メチルデカリンとデカリンの混合液の比率として、1:0.2〜20、好ましくは1:0.3〜3が例示される。この範囲であると、反応液の1メチルナフタレンとナフタレンが常温で液状を保つことができ、取り扱いやすい。
尚、以下の説明においては、芳香族化合物の水素化誘導体7として“1メチルデカリンとデカリンの混合液”を用いた例について説明する。
【0029】
滴下ノズル3に供給された“1メチルデカリンとデカリンの混合液”(芳香族化合物の水素化誘導体)7は、滴下ノズル3から例えば平均粒径5mmの液滴とされて触媒部材4に向けて滴下する。例えば、ニッケルの多孔体に白金を担持させて形成された触媒部材4は、誘導加熱装置によって200℃〜500℃から選択された所定の温度、例えば350℃に加熱されている。具体的には、高周波電流発生装置から高周波電流を誘導加熱コイル5に流すと、導電体である担持体の表面に渦電流が発生し、高周波誘導加熱の表皮効果によって、表面近傍が加熱される。尚、担持体の内部は、表面からの熱伝導によって加熱される。
【0030】
滴下ノズル3から平均粒径5mmの液滴として滴下する芳香族化合物の水素化誘導体7は、平均孔径5mmの複数の孔4aが連通して形成された触媒部材4の表面に着地し、脱水素化反応を行いながら触媒部材4の孔4aを通って下方に向かって通過する。脱水素化反応によって芳香族化合物の水素化誘導体7の液滴の粒径は次第に減少するが、触媒部材4の平均孔径も連続的に小さくなるように形成されているので、芳香族化合物の水素化誘導体7は液体の状態で確実に触媒部材4に接触できる。
【0031】
反応装置1では、“1メチルデカリンとデカリンの混合液”7と触媒部材4とが接触して、“1メチルデカリンとデカリンの混合液”7が水素、1メチルナフタレン及びナフタレンに分解する“芳香族化合物の水素化誘導体の脱水素化反応”が進行し、水素、1メチルナフタレン及びナフタレン、未反応により残った1メチルデカリン及びデカリンが混合した脱水素化反応後の生成物8が生成される。
【0032】
反応装置1で生成された脱水素化反応後の生成物8は、気液分離装置に導入されて冷却され、水素と液体成分(1メチルナフタレン、ナフタレン、1メチルデカリン及びデカリンの混合物)とに分離される。気液分離装置にて分離された液体成分は廃液回収タンクに回収される。一方、水素は、水素貯留タンクに圧送されて貯留される。以上のようにして取り出され水素貯留タンクに貯留された水素は、必要時に燃料電池等の水素ガス利用機器へ供給して使用される。
【0033】
(第2実施形態)
次に、第2実施形態の水素発生装置を図2を参照して説明する。尚、以下に説明する各実施の形態において、水素発生装置の全体構成は第1実施形態の水素発生装置と同じであり、触媒部材のみが異なっている。既に図1において説明した部材などについては、図中に同一符号又は相当符号を付して説明を簡略化又は省略する。
【0034】
図2に示すように、本実施形態の触媒部材14は、4枚の多孔体14A,14B,14C,14Dが積層されて構成されている。
それぞれの多孔体14A,14B,14C,14Dは、例えば長さ300mm、幅20mm、高さ10mmの大きさのニッケルの多孔体である担持体に白金が担持されて構成されている。ここで、4枚の多孔体である14A,14B,14C,14Dの担持体は、導電体で構成されているので、積層された4枚の多孔体14A,14B,14C,14Dは、互いに電気的に導通して電気的には一体のものとして作用する。すなわち、高周波電流発生装置から高周波電流を誘導加熱コイル5に流すと、高周波誘導加熱の表皮効果によって、一体の触媒部材14の表面に渦電流が発生し、表面近傍が加熱される。尚、担持体の内部は、表面からの熱伝導によって加熱される。
【0035】
4枚の多孔体14A,14B,14C,14Dは、それぞれ平均孔径を異にしており、芳香族化合物の水素化誘導体7の進行方向、最上流側に配置された多孔体14Aの平均孔径は例えば5mm、2番目に配置された多孔体14Bの平均孔径は例えば3.5mm、3番目に配置された多孔体14Cの平均孔径は例えば2mm、最下流側に配置された多孔体14Dの平均孔径は例えば0.8mmとされている。
【0036】
触媒部材14は、互いに異なる平均孔径を持つ4枚の多孔体14A,14B,14C,14Dが積層されて構成されるので、第1実施形態に示す平均孔径が連続して小さくなる触媒部材4と比較して、製作がより安価かつ容易となる。その他の作用については、第1実施形態の水素発生装置と同様であるので、説明を省略する。
【0037】
(第3実施形態)
次に、第3実施形態の水素発生装置を図3を参照して説明する。
図3に示すように、本実施形態の触媒部材24は、平均孔径の異なる4枚の多孔体14A,14B,14C,14Dの間に電気的絶縁層15を介して積層することにより、互いに電気的に絶縁された状態で配置されている。電気的絶縁層15は、多孔体14A,14B,14C,14D間の電流な流れを阻止するとともに、芳香族化合物の水素化誘導体7の通過は許容するように、多孔体から構成するのが望ましい。
【0038】
なお、多孔体14A,14B,14C,14Dは、例えば10mmの間隔を設けて配置し、それぞれの多孔体14A,14B,14C,14Dの間に形成された空気層を電気的絶縁層15とすることもできる。
【0039】
このように構成された触媒部材24を、誘導加熱コイル5に高周波電流を流して加熱すると、高周波誘導加熱の表皮効果によって、それぞれの多孔体14A,14B,14C,14Dの表面近傍が加熱される。第2実施形態の触媒部材14は、4枚の多孔体14A,14B,14C,14Dが電気的には一体として作用し、その全体の表面が加熱されるのに対し、触媒部材24は4枚の多孔体14A,14B,14C,14Dのそれぞれの表面近傍が加熱されるので、短時間で所定の温度まで加熱することができる。特に、表面からの熱伝導によって加熱される内部加熱の時間の短縮には、有効に作用する。その他の作用については、第1実施形態の水素発生装置と同様であるので、説明を省略する。
【0040】
尚、本発明の水素発生装置は、前述した実施形態に限定されるものではなく、触媒部材、孔、加熱手段、芳香族化合物の水素化誘導体、電気的絶縁体、多孔体、等の、材質、形状、寸法、数値、形態、数、配置箇所、等は本発明を実施できるものであれば適宜な変形、改良が可能であり、限定されない。
【0041】
【発明の効果】
本発明によれば、高効率で水素の発生を実施できる水素発生装置を提供できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る水素発生装置の反応装置の斜視図である。
【図2】本発明の第2実施形態に係る水素発生装置の反応装置の縦断面図である。
【図3】本発明の第3実施形態に係る水素発生装置の反応装置の縦断面図である。
【符号の説明】
4,14,24 触媒部材
4a,14a 孔
5 誘導加熱コイル(加熱手段)
7 芳香族化合物の水素化誘導体
15 電気的絶縁層(電気的絶縁体)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen generator, and more particularly to a hydrogen generator suitable for a fuel cell.
[0002]
[Prior art]
In recent years, world energy consumption has been constantly increasing, and harmful substances emitted as a result of energy use contribute to environmental destruction on a global scale. Against this background, interest in fuel cells is increasing. Fuel cells are considered to be able to contribute to the prevention of global warming and air pollution because they electrochemically react hydrogen and oxygen to generate electric energy together with water.
[0003]
Various studies have been made on the technique of supplying hydrogen required in fuel cells. For example, (i) a method of supplying hydrogen by storing hydrogen in a liquefied hydrogen tank or the like and vaporizing liquefied hydrogen as necessary. (Ii) A method is known in which a liquid fuel such as methanol, liquefied natural gas, or gasoline is stored as a hydrogen precursor, and hydrogen gas is supplied by reforming.
According to the above methods (i) and (ii), since hydrogen or a hydrogen precursor is stored as a liquid, the supply amount of hydrogen gas with respect to the storage capacity is larger than when stored as a gas. Has advantages.
However, the method (i) requires a large amount of energy to cool and compress hydrogen to liquefied hydrogen and to maintain a low temperature state.
On the other hand, in the method of obtaining hydrogen by reforming the liquid fuel of the above (ii), the generation of hydrogen essentially involves the generation of carbon dioxide (carbon dioxide) and the carbon monoxide which adversely affects the electrodes of the fuel cell. It contains gas as a by-product.
[0004]
In order to solve the above problem, a hydrogen storage / supply system utilizing dehydrogenation of hydrogenated derivative water of an aromatic compound has been proposed (for example, see Patent Document 1). In this system, an aromatic compound is stored as a hydrogenated derivative by hydrogenation, and when necessary, the hydrogenated derivative is subjected to a dehydrogenation reaction to remove hydrogen.
[0005]
According to this system, since the aromatic compound and its hydrogenated derivative are liquid at room temperature, the energy required for storage and transportation is extremely small, and the "aromatic compound" contained in the dehydrogenation reaction product is used. And its hydrogenated derivatives ”and“ hydrogen ”can be separated reliably and easily. In addition, the generation of hydrogen gas essentially does not involve the generation of carbon dioxide, and the generation of carbon monoxide is also reduced. This has the advantage that it does not occur in principle.
[0006]
[Patent Document 1]
JP 2001-198469 A
[Problems to be solved by the invention]
In the hydrogen storage / supply system, the dehydrogenation reaction of the hydrogenated derivative of the aromatic compound is performed by bringing the hydrogenated derivative of the aromatic compound into contact with a heated catalyst provided in the reactor.
More specifically, Patent Document 1 discloses that a raw material (hydrogenated derivative of an aromatic compound) stored in a raw material storage unit is heated, vaporized, supplied to a reactor, cooled and condensed in a vapor condensing unit. A technique is described in which the raw material is dropped as a droplet onto a catalyst and brought into contact with the catalyst to generate hydrogen.
[0008]
The dehydrogenation reaction of the hydrogenated derivative of the aromatic compound proceeds when the hydrogenated derivative of the aromatic compound comes into contact with the catalyst. Therefore, in order to generate a large amount of hydrogen, it is necessary to efficiently contact a hydrogenated derivative of an aromatic compound with a catalyst to increase the amount of dehydrogenation reaction per unit volume of the catalyst.
[0009]
In order to efficiently contact the hydrogenated derivative of an aromatic compound with the catalyst, Patent Document 1 discloses a metal-supported catalyst in which about 0.5 to 20% by weight of a catalyst metal such as platinum is supported on a porous carrier. What has been proposed has been proposed. When a hydrogenated derivative of an aromatic compound is supplied to such a porous metal-supported catalyst, hydrogenation of an aromatic compound which is not subjected to a dehydrogenation reaction through a porous carrier without contacting the metal-supported catalyst is performed. It is considered that a derivative is present, and there is room for further improvement in the efficiency of the dehydrogenation reaction.
[0010]
In order to suppress the phenomenon that the hydrogenated derivative of the aromatic compound passes through the porous carrier without coming into contact with the metal-supported catalyst, and to improve the efficiency of the dehydrogenation reaction, the length of the metal-supported catalyst must be aromatic. It is conceivable that the activity of the metal-supported catalyst is increased by increasing the length of the hydrogenated derivative of the compound in the traveling direction or by increasing the temperature of the metal-supported catalyst. According to these, although a certain effect can be obtained, in the former method, the efficiency of the dehydrogenation reaction is not sufficiently improved for the size of the metal-supported catalyst, and the size of the hydrogen generator is reduced. It is contrary to the demand of the above and is not preferable. Further, in the latter method, the amount of the hydrogenated derivative of the aromatic compound vaporized by the heat from the metal-supported catalyst increases without performing the dehydrogenation reaction, and it is not possible to expect a sufficient improvement in the efficiency of the dehydrogenation reaction.
[0011]
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a hydrogen generator capable of efficiently generating hydrogen.
[0012]
[Means for Solving the Problems]
The hydrogen generator according to claim 1 generates hydrogen by bringing a hydrogenated derivative of an aromatic compound into contact with a catalyst member and performing a dehydrogenation reaction of the hydrogenated derivative of an aromatic compound. In the hydrogen generating device, the catalyst member is a porous body in which a plurality of pores communicate with each other, and as the hydrogen derivative of the aromatic compound proceeds, the average pore diameter of the catalyst member continuously increases. Alternatively, it is configured to be gradually reduced.
[0013]
According to such a configuration, the catalyst member is a porous body in which a plurality of holes communicate with each other, and as the hydrogenated derivative of the aromatic compound proceeds, the average pore diameter of the catalyst member increases continuously or stepwise. The hydrogenated derivative of the liquid aromatic compound that did not come into contact with the catalyst member having a large average pore diameter on the upstream side or the diameter of the droplet became small due to the reaction was reduced to an average value on the downstream side. The amount of the hydrogenated derivative of the aromatic compound used for the reaction can be increased by reliably contacting the catalyst member having a small pore size. Therefore, hydrogen can be generated with high efficiency.
[0014]
The hydrogen generator according to claim 2 generates hydrogen by bringing the hydrogenated derivative of the aromatic compound into contact with the catalyst member and performing the dehydrogenation reaction of the hydrogenated derivative of the aromatic compound. A hydrogen generating device, wherein the catalyst member is formed by combining two or more porous materials having a plurality of pores communicating with each other and having different average pore diameters, and the average value increases in the direction of progress of the hydrogenated derivative of the aromatic compound. Two or more porous bodies are arranged so that the pore diameter becomes small.
[0015]
According to such a configuration, two or more porous bodies having different average pore diameters are arranged in combination such that the average pore diameter becomes smaller as the hydrogenated derivative of the aromatic compound proceeds in the traveling direction. A catalyst member in which the average pore size gradually decreases as the hydrogenated derivative of the aromatic compound proceeds in the traveling direction can be easily formed at low cost. Further, as described above, hydrogen can be generated with high efficiency as described above.
[0016]
A hydrogen generator according to a third aspect of the present invention is the hydrogen generator according to the second aspect, further comprising a heating unit capable of performing high-frequency induction heating on the catalyst member, and electrically insulating between two or more porous bodies. The body is interposed.
[0017]
When two or more porous bodies are in electrical contact with each other, the skin effect of high-frequency induction heating heats the vicinity of the surface of the aggregate of the porous bodies by induction heating, so it takes time for heat to transfer to the inside. And it is difficult to perform sufficient heating.
On the other hand, according to the configuration of the third aspect, since the electrical insulator is interposed between the two or more porous bodies, each of the porous bodies electrically insulated by the skin effect of the high-frequency induction heating. The vicinity of the body surface can be heated by induction heating, and the inside thereof can be easily heated in a short time.
[0018]
In particular, when the temperature of the catalyst member is lowered by the dehydrogenation reaction (endothermic reaction), when two or more kinds of porous bodies are in electrical contact with each other, especially in the inside thereof, it takes a long time for heat recovery. When an electrical insulator is interposed between the above-described porous bodies, heat recovery can be performed in a short time, and the dehydrogenation reaction can be efficiently performed. Thus, the temperature inside the catalyst member can be easily maintained at a temperature higher than the temperature required for the dehydrogenation reaction, and hydrogen can be generated with higher efficiency.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 relates to a hydrogen generator according to the present invention, in which (A) is a perspective view of a reactor, (B) is an enlarged view of a main part of a catalyst member having a large average pore diameter on the upstream side, and (C) is an average view on the downstream side. It is a principal part enlarged view of a catalyst member with a small hole diameter.
First, the overall configuration of the hydrogen generator will be described with reference to FIG. The hydrogen generator includes a raw material storage tank (not shown) for storing raw materials, a reactor 1, a gas-liquid separator (not shown), a waste liquid recovery tank (not shown), a raw material supply pump (not shown), A hydrogen storage tank (not shown) is provided.
[0020]
The raw material storage tank is for storing a hydrogenated derivative 7 of an aromatic compound as a raw material, and is connected to a drip nozzle 3 arranged in the reactor 1 via a raw material supply pump by a pipe 2. I have. By operating the raw material supply pump, the hydrogenated derivative 7 of the aromatic compound stored in the raw material storage tank can be supplied to the dropping nozzle 3.
[0021]
The reaction device 1 is provided with a catalyst member 4 and a drip nozzle 3 for dropping a hydrogenated derivative 7 of an aromatic compound as droplets 17 toward the catalyst member 4 inside the reaction container 6. The induction coil 5 of the induction heating device is arranged so as to be wound around the catalyst member 4 as a heating means. As shown in FIGS. 1B and 1C, the catalyst member 4 is configured such that a catalyst metal is carried on a porous carrier having a plurality of communicating holes 4a formed therein. The carrier is, for example, a nickel porous body having a length of 300 mm, a width of 20 mm, and a height of 40 mm. The average pore diameter of the holes 4 a is, for example, 5 mm as the hydrogenated derivative 7 of the aromatic compound proceeds in the traveling direction. From 0.8 mm to 0.8 mm. The catalyst metal is, for example, platinum, and is supported on the above-described nickel porous body (support).
[0022]
The catalyst metal may be any one that can achieve a dehydrogenation reaction. For example, as the metal component, nickel, palladium, platinum, rhodium, iridium, ruthenium, molybdenum, rhenium, tungsten, vanadium, Osmium, chromium, cobalt, iron and the like can be used. In addition, it is more preferable to use a metal obtained by alloying two or more of these metals, particularly, a platinum group metal (platinum, palladium, rhodium, ruthenium) from the viewpoint of high activity against dehydrogenation reaction.
[0023]
The carrier may be any porous body containing a conductor so that high-frequency induction heating by an electromagnetic induction method is performed. For example, a conductive body such as activated carbon, carbon nanotube, or a metal porous body may be used. And a blend of a non-conductive material such as molecular sieve, zeolite, silica gel, and alumina and a general conductive material (such as stainless steel). From the viewpoint of ease of heating, titanium carbide and a metal (eg, nickel) are preferable.
[0024]
The induction heating device heats the catalyst member 4 by high frequency induction by an electromagnetic induction method. The induction heating coil 5 is connected to the induction heating coil 5 to generate a high frequency current that can flow a high frequency current through the induction heating coil 5. And an apparatus (not shown).
[0025]
The dropping nozzle 3 is arranged to face the catalyst member 4, and feeds the hydrogenated derivative 7 of the aromatic compound supplied by the raw material supply pump from the dropping nozzle 3 toward the catalyst member 4, for example, with a liquid having an average particle diameter of 5 mm. It is configured to be dropped as a drop and to be brought into contact with the catalyst member 4 to generate a product 8 generated by the dehydrogenation reaction. A pipe 9 is connected to the reaction vessel 6, and a gas-liquid separation device is connected to the other end of the pipe 9.
[0026]
The gas-liquid separation device is for cooling and separating the product 8 by the dehydrogenation reaction, and is not particularly limited as long as the product 8 generated from the reaction device 1 can be separated into hydrogen and a liquid component. Known cooling means such as a water-cooled circulation type, an air-cooled type, and cooling (not circulating) by flowing water can be used. As the refrigerant, water, ethylene glycol, diethylene glycol, or the like can be used.
[0027]
The gas-liquid separator is connected to a waste liquid recovery tank via a pipe, and is configured to collect and store the liquid component separated from the product 8 by the gas-liquid separator in the waste liquid recovery tank. The gas-liquid separator is connected to the hydrogen storage tank by another pipe. Thereby, the hydrogen separated by the gas-liquid separation device can be stored in the hydrogen storage tank. Then, hydrogen gas is supplied from the hydrogen storage tank to a hydrogen gas utilization device, for example, a fuel cell.
[0028]
Next, a hydrogen generating method using the hydrogen generating apparatus of the present invention will be described with reference to FIG.
The hydrogenated derivative 7 of the aromatic compound, which is the raw material stored in the raw material storage tank, is supplied to the drip nozzle 3 by operating the raw material supply pump. Examples of the hydrogenated derivative 7 of an aromatic compound include decalin, 1-methyldecalin, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, and tetralin, and can be used alone or as a mixture of two or more. The single substance and the mixture are preferably liquid at room temperature.
The ratio of the mixture of 1-methyldecalin and decalin is, for example, 1: 0.2 to 20, preferably 1: 0.3 to 3. Within this range, 1-methylnaphthalene and naphthalene of the reaction solution can be kept in a liquid state at room temperature and are easy to handle.
In the following description, an example in which “a mixed solution of 1-methyldecalin and decalin” is used as the hydrogenated derivative 7 of an aromatic compound will be described.
[0029]
The “mixture of 1-methyldecalin and decalin” (hydrogenated derivative of an aromatic compound) 7 supplied to the dropping nozzle 3 is converted into a droplet having an average particle diameter of 5 mm from the dropping nozzle 3 and directed toward the catalyst member 4. Drip. For example, the catalyst member 4 formed by supporting platinum on a nickel porous body is heated to a predetermined temperature selected from 200 ° C. to 500 ° C., for example, 350 ° C. by an induction heating device. Specifically, when a high-frequency current flows from the high-frequency current generator to the induction heating coil 5, an eddy current is generated on the surface of the carrier, which is a conductor, and the vicinity of the surface is heated by the skin effect of the high-frequency induction heating. . The inside of the carrier is heated by heat conduction from the surface.
[0030]
The hydrogenated derivative 7 of the aromatic compound, which is dropped from the dropping nozzle 3 as a droplet having an average particle diameter of 5 mm, lands on the surface of the catalyst member 4 in which a plurality of holes 4a having an average hole diameter of 5 mm communicate with each other, and dehydrogenates. It passes through the hole 4a of the catalyst member 4 downward while performing the chemical reaction. The particle size of the droplets of the hydrogenated derivative 7 of the aromatic compound is gradually reduced by the dehydrogenation reaction, but the average pore size of the catalyst member 4 is formed so as to be continuously reduced. The derivative 7 can reliably contact the catalyst member 4 in a liquid state.
[0031]
In the reactor 1, the "mixture of 1-methyldecalin and decalin" 7 comes into contact with the catalyst member 4, and the "mixture of 1-methyldecalin and decalin" 7 is decomposed into hydrogen, 1-methylnaphthalene and naphthalene. The dehydrogenation reaction of the hydrogenated derivative of the group III compound proceeds, and a product 8 is produced after the dehydrogenation reaction in which hydrogen, 1-methylnaphthalene and naphthalene, and 1-methyldecalin and decalin remaining after unreaction are mixed. .
[0032]
The product 8 after the dehydrogenation reaction generated in the reactor 1 is introduced into a gas-liquid separator, cooled, and converted into hydrogen and a liquid component (a mixture of 1-methylnaphthalene, naphthalene, 1-methyldecalin and decalin). Separated. The liquid component separated by the gas-liquid separation device is collected in a waste liquid collection tank. On the other hand, hydrogen is pumped and stored in a hydrogen storage tank. The hydrogen extracted and stored in the hydrogen storage tank as described above is supplied to a hydrogen gas utilization device such as a fuel cell as needed, and used.
[0033]
(2nd Embodiment)
Next, a hydrogen generator according to a second embodiment will be described with reference to FIG. In each of the embodiments described below, the overall configuration of the hydrogen generator is the same as that of the first embodiment, and only the catalyst member is different. The members and the like already described in FIG. 1 are denoted by the same reference numerals or corresponding reference numerals in the drawing, and the description is simplified or omitted.
[0034]
As shown in FIG. 2, the catalyst member 14 of the present embodiment is configured by laminating four porous bodies 14A, 14B, 14C, and 14D.
Each of the porous bodies 14A, 14B, 14C, and 14D is configured by supporting platinum on a nickel porous body having a length of, for example, 300 mm, a width of 20 mm, and a height of 10 mm. Here, since the carrier of four porous bodies 14A, 14B, 14C, and 14D is made of a conductor, the laminated four porous bodies 14A, 14B, 14C, and 14D are electrically connected to each other. And electrically acts as an integral unit. That is, when a high-frequency current is passed from the high-frequency current generator to the induction heating coil 5, an eddy current is generated on the surface of the integrated catalyst member 14 by the skin effect of the high-frequency induction heating, and the vicinity of the surface is heated. The inside of the carrier is heated by heat conduction from the surface.
[0035]
The four porous bodies 14A, 14B, 14C, and 14D have different average pore diameters. For example, the average pore diameter of the porous body 14A disposed on the most upstream side in the traveling direction of the hydrogenated derivative 7 of the aromatic compound is, for example, The average pore diameter of the second porous body 14B is, for example, 3.5 mm, the average pore diameter of the third porous body 14C is, for example, 2 mm, and the average pore diameter of the most downstream porous body 14D is 5 mm. For example, it is 0.8 mm.
[0036]
Since the catalyst member 14 is formed by stacking four porous bodies 14A, 14B, 14C, and 14D having different average pore diameters, the catalyst member 4 shown in the first embodiment and having the average pore diameter continuously reduced becomes smaller. In comparison, it is cheaper and easier to manufacture. Other operations are the same as those of the hydrogen generator according to the first embodiment, and thus description thereof is omitted.
[0037]
(Third embodiment)
Next, a hydrogen generator according to a third embodiment will be described with reference to FIG.
As shown in FIG. 3, the catalyst member 24 of the present embodiment is electrically connected to each other by laminating the four porous bodies 14A, 14B, 14C, and 14D having different average pore diameters with the electrical insulating layer 15 interposed therebetween. They are arranged in an electrically insulated state. The electrical insulating layer 15 is preferably made of a porous material so as to prevent a current flow between the porous materials 14A, 14B, 14C, and 14D and allow the aromatic compound to pass through the hydrogenated derivative 7. .
[0038]
The porous bodies 14A, 14B, 14C, and 14D are arranged with an interval of, for example, 10 mm, and an air layer formed between the porous bodies 14A, 14B, 14C, and 14D is used as the electrically insulating layer 15. You can also.
[0039]
When the high-frequency current is passed through the induction heating coil 5 to heat the catalyst member 24 thus configured, the vicinity of the surface of each of the porous bodies 14A, 14B, 14C, and 14D is heated by the skin effect of the high-frequency induction heating. . In the catalyst member 14 of the second embodiment, the four porous bodies 14A, 14B, 14C, and 14D electrically work integrally and the entire surface thereof is heated, whereas the catalyst member 24 has four sheets. Since the vicinity of the surface of each of the porous bodies 14A, 14B, 14C, and 14D is heated, it can be heated to a predetermined temperature in a short time. In particular, it effectively works to shorten the time of internal heating which is heated by heat conduction from the surface. Other operations are the same as those of the hydrogen generator according to the first embodiment, and thus description thereof is omitted.
[0040]
The hydrogen generator of the present invention is not limited to the above-described embodiment, and may be made of materials such as a catalyst member, a hole, a heating means, a hydrogenated derivative of an aromatic compound, an electrical insulator, and a porous body. The shape, size, numerical value, form, number, arrangement location, and the like can be appropriately modified and improved as long as the present invention can be implemented, and are not limited.
[0041]
【The invention's effect】
According to the present invention, it is possible to provide a hydrogen generator capable of efficiently generating hydrogen.
[Brief description of the drawings]
FIG. 1 is a perspective view of a reactor of a hydrogen generator according to a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of a reactor of a hydrogen generator according to a second embodiment of the present invention.
FIG. 3 is a longitudinal sectional view of a reactor of a hydrogen generator according to a third embodiment of the present invention.
[Explanation of symbols]
4,14,24 Catalyst member 4a, 14a Hole 5 Induction heating coil (heating means)
7 Hydrogenated derivatives of aromatic compounds 15 Electrical insulating layer (electrical insulator)

Claims (3)

芳香族化合物の水素化誘導体と、触媒部材とを接触させて、前記芳香族化合物の水素化誘導体の脱水素化反応を実施することにより、水素の発生を行うことのできる水素発生装置であって、
前記触媒部材が、複数の孔が連通する多孔体であるとともに、前記芳香族化合物の水素化誘導体の進行方向に進むにつれて、前記触媒部材の平均孔径が、連続的にもしくは段階的に小さくなるように構成された水素発生装置。
A hydrogen generator capable of generating hydrogen by bringing a hydrogenated derivative of an aromatic compound into contact with a catalyst member and performing a dehydrogenation reaction of the hydrogenated derivative of the aromatic compound. ,
The catalyst member is a porous body in which a plurality of pores communicate with each other, and as the hydrogenated derivative of the aromatic compound proceeds, the average pore diameter of the catalyst member decreases continuously or stepwise. Hydrogen generator configured in.
芳香族化合物の水素化誘導体と、触媒部材とを接触させて、前記芳香族化合物の水素化誘導体の脱水素化反応を実施することにより、水素の発生を行うことのできる水素発生装置であって、
前記触媒部材が、複数の孔が連通する多孔体の平均孔径がそれぞれ異なる2個以上を組み合わせてなり、前記芳香族化合物の水素化誘導体の進行方向に進むにつれて前記平均孔径が小さくなるように、2個以上の前記多孔体が配置された水素発生装置。
A hydrogen generator capable of generating hydrogen by bringing a hydrogenated derivative of an aromatic compound into contact with a catalyst member and performing a dehydrogenation reaction of the hydrogenated derivative of the aromatic compound. ,
The catalyst member is formed by combining two or more different average pore diameters of the porous body through which a plurality of pores communicate, and the average pore diameter decreases as the hydrogenated derivative of the aromatic compound proceeds. A hydrogen generator in which two or more porous bodies are arranged.
前記触媒部材に対して高周波誘導加熱を実施できる加熱手段を具備するとともに、2個以上の前記多孔体の間に電気的絶縁体が介装された請求項2に記載の水素発生装置。3. The hydrogen generator according to claim 2, further comprising a heating unit capable of performing high-frequency induction heating on the catalyst member, and an electrical insulator interposed between two or more of the porous bodies. 4.
JP2003113077A 2003-04-17 2003-04-17 Hydrogen generator Pending JP2004319333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113077A JP2004319333A (en) 2003-04-17 2003-04-17 Hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113077A JP2004319333A (en) 2003-04-17 2003-04-17 Hydrogen generator

Publications (1)

Publication Number Publication Date
JP2004319333A true JP2004319333A (en) 2004-11-11

Family

ID=33473120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113077A Pending JP2004319333A (en) 2003-04-17 2003-04-17 Hydrogen generator

Country Status (1)

Country Link
JP (1) JP2004319333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018104712A1 (en) * 2016-12-05 2018-06-14 Oxford University Innovation Limited Process for producing hydrogen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018104712A1 (en) * 2016-12-05 2018-06-14 Oxford University Innovation Limited Process for producing hydrogen
CN110267911A (en) * 2016-12-05 2019-09-20 牛津大学创新有限公司 Method for producing hydrogen
JP2020500832A (en) * 2016-12-05 2020-01-16 オックスフォード ユニヴァーシティ イノベーション リミテッド Method for producing hydrogen
RU2750631C2 (en) * 2016-12-05 2021-06-30 Оксфорд Юниверсити Инновейшн Лимитед Method for producing hydrogen
JP7000446B2 (en) 2016-12-05 2022-02-04 オックスフォード ユニヴァーシティ イノベーション リミテッド Methods for producing hydrogen

Similar Documents

Publication Publication Date Title
US20090035619A1 (en) Methods and systems of producing molecular hydrogen using a plasma system in combination with an electrical swing adsorption separation system
US20080138676A1 (en) Methods and systems of producing molecular hydrogen using a plasma system in combination with a membrane separation system
JP6194143B2 (en) Hydrogen and synthetic natural gas production apparatus and production method
JP5654371B2 (en) Hydrogen gas generation apparatus and hydrogen gas generation method
US20080131744A1 (en) Methods and systems of producing molecular hydrogen using a low-temperature plasma system
JP7316309B2 (en) Carbon dioxide treatment device, carbon dioxide treatment method, and method for producing carbon compound
JP2005022939A (en) Reaction device of hydrogen-supply system, and hydrogen-supply system
JP2004250255A (en) Hydrogen storage and generation system
JP2004319333A (en) Hydrogen generator
JP5243859B2 (en) Hydrogen production apparatus and hydrogen production method
JP2003306303A (en) Hydrogen generator and hydrogen storage/supply apparatus
JP2004026593A (en) Apparatus for generating and storing hydrogen
CN115125545A (en) Carbon dioxide treatment device and method for producing carbon compound
JP2004313974A (en) Dropping nozzle, and hydrogen generator
JP2005154205A (en) Hydrogen supply apparatus
JP7198047B2 (en) Dehydrogenation device and dehydrogenation reaction method
JP2004315310A (en) Hydrogen supply apparatus
JP2004250256A (en) Hydrogen storage and generation system
JP2004223505A (en) Dehydrogenation catalyst and its production method
JP2004315327A (en) Apparatus and method for generating hydrogen
JP2005170712A (en) Method and apparatus for producing hydrogen-containing gas
JP4107566B2 (en) Hydrogen separation and purification equipment
JP4426169B2 (en) Fuel cell system
JP2005154204A (en) Hydrogen supply apparatus
JP2003321201A (en) Hydrogen storage/supply system