JP2004317357A - Light-receiving element and optical encoder equipped therewith - Google Patents

Light-receiving element and optical encoder equipped therewith Download PDF

Info

Publication number
JP2004317357A
JP2004317357A JP2003112937A JP2003112937A JP2004317357A JP 2004317357 A JP2004317357 A JP 2004317357A JP 2003112937 A JP2003112937 A JP 2003112937A JP 2003112937 A JP2003112937 A JP 2003112937A JP 2004317357 A JP2004317357 A JP 2004317357A
Authority
JP
Japan
Prior art keywords
light receiving
light
row
pitch
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003112937A
Other languages
Japanese (ja)
Other versions
JP4307895B2 (en
Inventor
Toshinori Nakahara
利典 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP2003112937A priority Critical patent/JP4307895B2/en
Publication of JP2004317357A publication Critical patent/JP2004317357A/en
Application granted granted Critical
Publication of JP4307895B2 publication Critical patent/JP4307895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical encoder wherein crosstalk is suppressed. <P>SOLUTION: In this optical encoder, a scale 3 wherein translucent parts 32 are arrayed at a pitch P is arranged between a light source 2 and this light-receiving element 1. In the light-receiving element 1 equipped with the first light-receiving region row wherein the first light-receiving regions A having the same shape are arrayed in one row at a pitch P/2 in the X-direction and the second light-receiving region row wherein the second light-receiving regions B having the same shape are arrayed in one row at the pitch P/2 in the X-direction, each second light-receiving region B is positioned between the adjacent first light-receiving regions A, and the first light-receiving region row and the second light-receiving region row are arranged with a step so that the first light-receiving regions A and the second light-receiving regions B are partially overlapped in the Y-direction perpendicular to the X-direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、受光素子及びそれを備える光エンコーダに関する。
【0002】
【従来の技術】
従来の光エンコーダは特許文献1に記載のように、スケールにピッチPの透光部が設けられ、受光素子に前記透光部のピッチPの1/4倍のピッチでの受光領域を一列に配列している。
【0003】
【特許文献1】
特開昭61−292016号公報
【0004】
【発明が解決しようとする課題】
従来の光エンコーダは、各受光領域がその長さ方向において互いに隣接しているので、隣の受光領域の影響を受けるクロストークが発生しやすい。隣り合うべき受光領域を上下に配置することによって受光領域を2列に分けて配列すれば、クロストークの影響を受けにくくなる。しかしながら、受光領域を上下に2段に分けて配列すると、取付誤差などによってスケールの透光部と受光領域の間に傾きが生じた場合に、出力信号の状態が不安定になりやすい。また、受光領域の長さ方向に素子の長さが長くなり、素子の形状が大型化し、1つのウエハから取れる素子数が減少する。
【0005】
そこで本発明は、素子形状の大型化を防止するとともに、クロストークの発生を抑制することを課題とする。
【0006】
【課題を解決するための手段】
本発明の受光素子は請求項1に記載のように、同一形状の第1受光領域をX方向に一列に配列した第1の受光領域列と、同一形状の第2受光領域をX方向に一列に配列した第2の受光領域列とを備え、隣接する前記第1受光領域の間に前記第2受光領域が位置するとともに、前記X方向と直交するY方向において前記第1受光領域と前記第2受光領域が部分的に重なるように第1の受光領域列と第2の受光領域列とを段差をもって配置したことを特徴とする。
【0007】
本発明の光エンコーダは請求項2に記載のように、透光部がピッチPで配列されたスケールが光源と受光素子の間に配置された光エンコーダにおいて、前記受光素子は、同一形状の第1受光領域をX方向に一列にピッチP/2で配列した第1の受光領域列と、同一形状の第2受光領域をX方向にピッチP/2で一列に配列した第2の受光領域列とを備え、隣接する前記第1受光領域の間に前記第2受光領域が位置するとともに、前記X方向と直交するY方向において前記第1受光領域と前記第2受光領域が部分的に重なるように第1の受光領域列と第2の受光領域列とを段差をもって配置したことを特徴とする。
【0008】
本発明の光エンコーダは請求項3に記載のように、透光部がピッチPで配列されたスケールが光源と受光素子の間に配置された光エンコーダにおいて、前記受光素子は、同一形状の第1受光領域をX方向に一列にピッチP/2で配列した第1の受光領域列と、同一形状の第2受光領域をX方向にピッチP/2で一列に配列した第2の受光領域列とを備え、隣接する前記第1受光領域の間に前記第2受光領域が位置するとともに、前記X方向と直交するY方向において前記第1受光領域と前記第2受光領域が部分的に重なるように配置され、隣接する前記第1受光領域の出力が第1の比較器に与えられ、隣接する前記第2受光領域の出力が第2の比較器に与えられることを特徴とする。
【0009】
【発明の実施の形態】
以下本発明の実施形態について、図面を参照して説明する。図1は、光エンコーダの概略構成を示す図である。
【0010】
この光エンコーダは、受光素子1と光源2の間に、スケール3を配置して構成される。光源2は、発光ダイオードを利用しているが、それ以外の光源を利用することもできる。光源2の光は、コリメートレンズ21等の光学手段によって平行な光に揃えてからスケール3に照射する構成とすることができる。
【0011】
スケール3は、基材31に複数の透光部32をピッチP(例えば170μm)で配列している。基材31は、金属板のような遮光性の板によって構成し、そこに透光部32としての穴を形成しても良いし、ガラスやプラスチックのような透明な板によって構成し、そこに遮光性の被膜をパターン形成しても良い。透光部32の幅は、前記ピッチPの略半分の長さの例えば85μmに設定している。透光部32の長さは、前記ピッチPよりも十分に長い例えば2000μmに設定している。隣接する透光部32の間に位置する遮光性の部分は、透光部32と同等の形状に設定している。スケール3は、X方向に往復移動する細長い板状のものとしているが、透光部がX方向に沿って回転する円状の板によって構成することもできる。
【0012】
受光素子1は、複数の受光領域A、Bを整列して有する受光部11を備える。受光素子1は、受光部11と回路部12を集積して構成される。受光部11は、同一形状の受光領域A,Bを一方向(X方向)に配列し、前記X方向と直交するY方向に前記受光領域A,Bを交互に突出させることによって、前記受光領域A,Bをジグザグ状に配置している。前記突出させる長さL1は、前記受光領域A,BのY方向の長さLよりも短い長さに設定している。
【0013】
受光部11の1段目に位置する第1受光領域Aの列は、前記ピッチPの半分のピッチ(P/2)で配列されている。受光部11の2段目に位置する第2受光領域Bの列は、前記ピッチPの半分のピッチ(P/2)で配列されている。隣接する第1受光領域Aの間に第2受光領域Bが位置する。Y方向において前記第1受光領域Aと第2受光領域Bが部分的に重なるとともに、第1の受光領域列と第2の受光領域列が段差(長さL1)をもって配列される。
【0014】
第1、第2の受光領域A、Bの幅は、前記ピッチPの1/4の長さ(P/4)よりも若干短い長さの例えば30μmに設定される。第1、第2の受光領域A,Bの長さLは、例えば260μmに設定される。第1、第2の受光領域A,Bの間には、P/4から第1(第2)の受光領域A(B)の幅を差し引いた長さの間隔、この例では12.5μmの間隔が設けられる。
【0015】
第1受光領域Aと第2受光領域BがY方向において部分的に重なる長さL2は、第1受光領域Aもしくは第2受光領域Bの長さLの半分よりも長い長さに設定しいている。この重なる長さL2が長ければ長いほど、受光素子1のY方向の長さを短く設定することができるので、1つのウエハから得られる受光素子の数を増加することができる。ただし、長さL2が長ければ長くなるほど、隣接する受光領域の間において、一方の受光信号が他方に影響を与えるクロストーク現象が現れやすくなる。そこで、受光素子1のY方向の長さに制約がなければ、前記重なる長さL2を第1、第2の受光領域A,Bの長さの半分の長さL/2よりも短くすることができる。このようにすれば、クロストーク現象をより多く抑制することができる。
【0016】
受光部11は、受光領域A,Bを除いた部分の表面を遮光性の被膜によって覆っている。
【0017】
受光素子1は、図2に示すような構成の回路部12を受光部11に隣接するようにして半導体基板上に集積し、受光部11と回路部12一体的に形成している。
【0018】
回路部12上には、電源供給用のVcc端子と接地用のGND端子と出力用のVoutA、VoutBを備えている。
【0019】
回路部12は、図2に示すように、受光領域Aと、その出力と反転の関係にある出力を得る受光領域A−(ここで−は、バーと呼ばれる反転出力を示す意味で使用している。以下同様)の各出力を増幅器で増幅後、比較器COMP−Aにて比較して出力VoutAを得る構成としている。同様に、受光領域Bと、その出力と反転の関係にある出力を得る受光領域B−の各出力を増幅器で増幅後、比較器COMP−Bにて比較して出力VoutBを得る構成としている。
【0020】
受光領域B−,A,B,A−は、連続する4つの受光領域で構成され、隣接する受光領域B−,Aがスケールの透光部32に同時に重なるとき、隣接する受光領域B,A−がスケール遮光部に重なるように構成される。すなわち、受光領域B−,A,B,A−によって構成される1つのブロックが前記スケールのピッチP内に収まるように配置される。この受光素子1は、前記ブロックをX方向に複数、この例では4つ配列した構成である。受光領域A、Bに付した番号がブロックの番号を示す。ブロック数は増減することができる。各ブロックの対応する受光領域は、それぞれが並列の関係になるように電気的に接続される。例えば、図2のAにて示す素子(フォトダイオード)は、受光領域A1〜A4を並列に接続した状態を代表して示している。図2のA−,B,B−にて示す素子についても同様である。
【0021】
図3は、スケール3と受光素子1を相対的に移動させた場合において、図2に示す回路の各部の信号波形を示している。同図(1)は、素子AとA−の出力信号を、同図(2)は、比較器COMP−Aの出力VoutAを、同図(3)は、素子BとB−の出力信号を、同図(4)は、比較器COMP−Bの出力VoutBを示している。このようにして、出力VoutAと出力VoutBの間に90度の位相差を持たせることができる。
【0022】
上述のように、X方向に配列した受光領域を、隣接する受光領域とY方向に重なりを持たせた状態で交互に千鳥状(ジグザグ状)に配置しているので、受光素子(受光部)のY方向の寸法を抑えつつ、隣接する受光領域間のクロストークを抑制することができる。
【0023】
【発明の効果】
以上のように本発明によれば、寸法が小さく、クロストークを抑制した受光素子、あるいはそれを備える光エンコーダを提供することができる。
【図面の簡単な説明】
【図1】本発明の実施形態を示す光エンコーダの概略構成図である。
【図2】同実施形態の回路図である。
【図3】同実施形態の回路図における信号波形図である。
【符号の説明】
1 受光素子
11 受光部
12 回路部
2 光源
3 スケール
32 透光部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light receiving element and an optical encoder including the same.
[0002]
[Prior art]
In the conventional optical encoder, as described in Patent Document 1, a light-transmitting portion having a pitch P is provided on a scale, and light-receiving regions are arranged in a line in a light-receiving element at a pitch 1/4 times the pitch P of the light-transmitting portion. They are arranged.
[0003]
[Patent Document 1]
JP-A-61-292016
[Problems to be solved by the invention]
In the conventional optical encoder, since each light receiving region is adjacent to each other in the length direction, crosstalk that is affected by the adjacent light receiving region is likely to occur. By arranging the light receiving regions to be adjacent to each other vertically so that the light receiving regions are arranged in two rows, it is less likely to be affected by crosstalk. However, if the light receiving area is arranged in two stages vertically, the state of the output signal is likely to be unstable when an inclination occurs between the light transmitting part of the scale and the light receiving area due to a mounting error or the like. Further, the length of the element increases in the length direction of the light receiving region, the size of the element increases, and the number of elements that can be obtained from one wafer decreases.
[0005]
Accordingly, it is an object of the present invention to prevent the element shape from becoming large and to suppress the occurrence of crosstalk.
[0006]
[Means for Solving the Problems]
As described in claim 1, the light receiving element of the present invention has a first light receiving region row in which first light receiving regions of the same shape are arranged in a line in the X direction, and a second light receiving region of the same shape in a line in the X direction. And a second light receiving region row arranged in a row. The second light receiving region is located between the adjacent first light receiving regions, and the first light receiving region and the second light receiving region are arranged in a Y direction orthogonal to the X direction. The first light receiving area row and the second light receiving area row are arranged with a step so that the two light receiving areas partially overlap.
[0007]
The optical encoder of the present invention is an optical encoder in which a scale in which light-transmitting portions are arranged at a pitch P is arranged between a light source and a light-receiving element, wherein the light-receiving element has the same shape. A first light receiving region row in which one light receiving region is arranged in a line in the X direction at a pitch P / 2, and a second light receiving region line in which second light receiving regions having the same shape are arranged in a line in the X direction at a pitch P / 2. And the second light receiving region is located between the adjacent first light receiving regions, and the first light receiving region and the second light receiving region partially overlap in a Y direction orthogonal to the X direction. The first light receiving area row and the second light receiving area row are arranged with steps.
[0008]
An optical encoder according to the present invention is an optical encoder in which a scale in which light transmitting portions are arranged at a pitch P is arranged between a light source and a light receiving element, wherein the light receiving element has the same shape. A first light receiving region row in which one light receiving region is arranged in a line in the X direction at a pitch P / 2, and a second light receiving region line in which second light receiving regions having the same shape are arranged in a line in the X direction at a pitch P / 2. And the second light receiving region is located between the adjacent first light receiving regions, and the first light receiving region and the second light receiving region partially overlap in a Y direction orthogonal to the X direction. And the output of the adjacent first light receiving area is provided to a first comparator, and the output of the adjacent second light receiving area is provided to a second comparator.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of the optical encoder.
[0010]
This optical encoder is configured by disposing a scale 3 between a light receiving element 1 and a light source 2. The light source 2 uses a light emitting diode, but other light sources may be used. The light of the light source 2 may be arranged to be collimated by an optical means such as a collimator lens 21 and then irradiated to the scale 3.
[0011]
The scale 3 has a plurality of light transmitting portions 32 arranged at a pitch P (for example, 170 μm) on a base material 31. The base material 31 is formed of a light-shielding plate such as a metal plate, and a hole serving as the light-transmitting portion 32 may be formed therein. Alternatively, the base material 31 may be formed of a transparent plate such as glass or plastic. A light-shielding film may be patterned. The width of the light transmitting portion 32 is set to, for example, 85 μm, which is approximately half the length of the pitch P. The length of the light transmitting portion 32 is set to, for example, 2000 μm, which is sufficiently longer than the pitch P. The light-shielding portion located between the adjacent light-transmitting portions 32 is set to have the same shape as the light-transmitting portion 32. The scale 3 has an elongated plate shape that reciprocates in the X direction. However, the scale 3 may be formed of a circular plate in which the light transmitting portion rotates along the X direction.
[0012]
The light receiving element 1 includes a light receiving unit 11 having a plurality of light receiving areas A and B aligned. The light receiving element 1 is configured by integrating a light receiving unit 11 and a circuit unit 12. The light receiving section 11 arranges light receiving areas A and B having the same shape in one direction (X direction), and alternately protrudes the light receiving areas A and B in a Y direction orthogonal to the X direction. A and B are arranged in a zigzag shape. The protruding length L1 is set to be shorter than the length L of the light receiving regions A and B in the Y direction.
[0013]
The rows of the first light receiving areas A located at the first stage of the light receiving section 11 are arranged at a pitch (P / 2) that is half the pitch P. The rows of the second light receiving areas B located at the second stage of the light receiving section 11 are arranged at a pitch (P / 2) that is a half of the pitch P. The second light receiving area B is located between the adjacent first light receiving areas A. In the Y direction, the first light receiving area A and the second light receiving area B partially overlap, and the first light receiving area row and the second light receiving area row are arranged with a step (length L1).
[0014]
The width of the first and second light receiving regions A and B is set to, for example, 30 μm, which is slightly shorter than the length (P / 4) of the pitch P. The length L of the first and second light receiving areas A and B is set to, for example, 260 μm. Between the first and second light receiving areas A and B, an interval of a length obtained by subtracting the width of the first (second) light receiving area A (B) from P / 4, in this example, 12.5 μm An interval is provided.
[0015]
The length L2 where the first light receiving area A and the second light receiving area B partially overlap in the Y direction is set to be longer than half the length L of the first light receiving area A or the second light receiving area B. I have. The longer the overlapping length L2 is, the shorter the length of the light receiving element 1 in the Y direction can be set, so that the number of light receiving elements obtained from one wafer can be increased. However, as the length L2 becomes longer, a crosstalk phenomenon in which one light receiving signal affects the other is more likely to appear between adjacent light receiving regions. Therefore, if there is no restriction on the length of the light receiving element 1 in the Y direction, the overlapping length L2 should be shorter than half the length L / 2 of the length of the first and second light receiving areas A and B. Can be. By doing so, the crosstalk phenomenon can be further suppressed.
[0016]
The light receiving unit 11 covers the surface of the portion excluding the light receiving regions A and B with a light-shielding coating.
[0017]
The light receiving element 1 is configured such that a circuit section 12 having a configuration as shown in FIG. 2 is integrated on a semiconductor substrate so as to be adjacent to the light receiving section 11, and is integrally formed with the light receiving section 11 and the circuit section 12.
[0018]
On the circuit section 12, a Vcc terminal for power supply, a GND terminal for grounding, and VoutA and VoutB for output are provided.
[0019]
As shown in FIG. 2, the circuit unit 12 includes a light-receiving area A and a light-receiving area A- (where-represents an inverted output called a bar) for obtaining an output having an inverse relationship with the output. After that, each output is amplified by an amplifier and compared by a comparator COMP-A to obtain an output VoutA. Similarly, each output of the light receiving region B and the light receiving region B− that obtains an output having an inverted relationship with the output is amplified by an amplifier, and then compared by a comparator COMP-B to obtain an output VoutB.
[0020]
The light receiving areas B-, A, B, A- are composed of four continuous light receiving areas. When the adjacent light receiving areas B-, A overlap the light transmitting part 32 of the scale simultaneously, the adjacent light receiving areas B, A -Is configured to overlap the scale light-shielding portion. That is, one block composed of the light receiving areas B-, A, B, A- is arranged so as to be within the pitch P of the scale. This light receiving element 1 has a configuration in which a plurality of the blocks are arranged in the X direction, in this example, four blocks are arranged. The numbers assigned to the light receiving areas A and B indicate the numbers of the blocks. The number of blocks can be increased or decreased. The corresponding light receiving areas of each block are electrically connected so that they are in a parallel relationship. For example, an element (photodiode) indicated by A in FIG. 2 typically represents a state in which light receiving regions A1 to A4 are connected in parallel. The same applies to the elements indicated by A-, B and B- in FIG.
[0021]
FIG. 3 shows signal waveforms at various parts of the circuit shown in FIG. 2 when the scale 3 and the light receiving element 1 are relatively moved. FIG. 1A shows the output signals of the elements A and A−, FIG. 2B shows the output VoutA of the comparator COMP-A, and FIG. 3C shows the output signals of the elements B and B−. (4) shows the output VoutB of the comparator COMP-B. In this way, a phase difference of 90 degrees can be provided between the output VoutA and the output VoutB.
[0022]
As described above, the light receiving areas arranged in the X direction are alternately arranged in a zigzag shape with the adjacent light receiving areas overlapping in the Y direction, so that the light receiving elements (light receiving sections) , The crosstalk between adjacent light receiving regions can be suppressed.
[0023]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a light receiving element having small dimensions and suppressing crosstalk, or an optical encoder including the same.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an optical encoder showing an embodiment of the present invention.
FIG. 2 is a circuit diagram of the embodiment.
FIG. 3 is a signal waveform diagram in the circuit diagram of the embodiment.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 light receiving element 11 light receiving unit 12 circuit unit 2 light source 3 scale 32 light transmitting unit

Claims (3)

同一形状の第1受光領域をX方向に一列に配列した第1の受光領域列と、同一形状の第2受光領域をX方向に一列に配列した第2の受光領域列とを備え、隣接する前記第1受光領域の間に前記第2受光領域が位置するとともに、前記X方向と直交するY方向において前記第1受光領域と前記第2受光領域が部分的に重なるように第1の受光領域列と第2の受光領域列とを段差をもって配置したことを特徴とする受光素子。A first light receiving area row in which first light receiving areas of the same shape are arranged in a row in the X direction, and a second light receiving area row in which second light receiving areas of the same shape are arranged in a row in the X direction are adjacent to each other. The first light receiving region is located such that the second light receiving region is located between the first light receiving regions, and the first light receiving region and the second light receiving region partially overlap in a Y direction orthogonal to the X direction. A light receiving element, wherein a row and a second light receiving area row are arranged with a step. 透光部がピッチPで配列されたスケールが光源と受光素子の間に配置された光エンコーダにおいて、前記受光素子は、同一形状の第1受光領域をX方向に一列にピッチP/2で配列した第1の受光領域列と、同一形状の第2受光領域をX方向にピッチP/2で一列に配列した第2の受光領域列とを備え、隣接する前記第1受光領域の間に前記第2受光領域が位置するとともに、前記X方向と直交するY方向において前記第1受光領域と前記第2受光領域が部分的に重なるように第1の受光領域列と第2の受光領域列とを段差をもって配置したことを特徴とする光エンコーダ。In an optical encoder in which a scale in which light transmitting portions are arranged at a pitch P is arranged between a light source and a light receiving element, the light receiving elements are arranged such that first light receiving regions of the same shape are arranged in a line in the X direction at a pitch P / 2. And a second light receiving region row in which second light receiving regions of the same shape are arranged in a line at a pitch P / 2 in the X direction, and the second light receiving region line is arranged between the adjacent first light receiving regions. A first light receiving area row and a second light receiving area row are arranged such that a second light receiving area is located and the first light receiving area and the second light receiving area partially overlap in a Y direction orthogonal to the X direction. An optical encoder characterized in that is disposed with a step. 透光部がピッチPで配列されたスケールが光源と受光素子の間に配置された光エンコーダにおいて、前記受光素子は、同一形状の第1受光領域をX方向に一列にピッチP/2で配列した第1の受光領域列と、同一形状の第2受光領域をX方向にピッチP/2で一列に配列した第2の受光領域列とを備え、隣接する前記第1受光領域の間に前記第2受光領域が位置するとともに、前記X方向と直交するY方向において前記第1受光領域と前記第2受光領域が部分的に重なるように配置され、隣接する前記第1受光領域の出力が第1の比較器に与えられ、隣接する前記第2受光領域の出力が第2の比較器に与えられることを特徴とする光エンコーダ。In an optical encoder in which a scale in which light transmitting portions are arranged at a pitch P is arranged between a light source and a light receiving element, the light receiving elements are arranged such that first light receiving regions of the same shape are arranged in a line in the X direction at a pitch P / 2. And a second light receiving region row in which second light receiving regions of the same shape are arranged in a line at a pitch P / 2 in the X direction, and the second light receiving region line is arranged between the adjacent first light receiving regions. A second light receiving region is located, and the first light receiving region and the second light receiving region are arranged so as to partially overlap each other in a Y direction orthogonal to the X direction. An optical encoder, wherein the output is supplied to one comparator, and the output of the adjacent second light receiving region is supplied to a second comparator.
JP2003112937A 2003-04-17 2003-04-17 Optical encoder Expired - Fee Related JP4307895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003112937A JP4307895B2 (en) 2003-04-17 2003-04-17 Optical encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003112937A JP4307895B2 (en) 2003-04-17 2003-04-17 Optical encoder

Publications (2)

Publication Number Publication Date
JP2004317357A true JP2004317357A (en) 2004-11-11
JP4307895B2 JP4307895B2 (en) 2009-08-05

Family

ID=33473016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003112937A Expired - Fee Related JP4307895B2 (en) 2003-04-17 2003-04-17 Optical encoder

Country Status (1)

Country Link
JP (1) JP4307895B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044367A1 (en) * 2006-10-10 2008-04-17 Hamamatsu Photonics K.K. Encoder
US8044340B2 (en) 2005-10-13 2011-10-25 Hamamatsu Photonics K.K. Encoder and light receiving device for encoder
JP2017058239A (en) * 2015-09-16 2017-03-23 ハイデンハイン株式会社 Optical rotary encoder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8044340B2 (en) 2005-10-13 2011-10-25 Hamamatsu Photonics K.K. Encoder and light receiving device for encoder
WO2008044367A1 (en) * 2006-10-10 2008-04-17 Hamamatsu Photonics K.K. Encoder
JP2008096204A (en) * 2006-10-10 2008-04-24 Hamamatsu Photonics Kk Encoder
US7544925B2 (en) 2006-10-10 2009-06-09 Hamamatsu Photonics K.K. Encoder including rotating member, light source device and photodetecting device including a scale having photodetecting elements arranged thereon
JP2017058239A (en) * 2015-09-16 2017-03-23 ハイデンハイン株式会社 Optical rotary encoder

Also Published As

Publication number Publication date
JP4307895B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
KR100555614B1 (en) Electric device with pixel array
JP3045452B2 (en) Photoelectric measuring or angle measuring device
US7381942B2 (en) Two-dimensional optical encoder with multiple code wheels
JP2007121296A (en) Reflection type encoder having various kinds of emitter-detector constitution
JPH0740609B2 (en) Method for manufacturing semiconductor device
US7098446B2 (en) Photoelectric encoder
DE60128489D1 (en) REAR-LIGHTED IMAGE RECORDING WITH INCREASED SENSITIVITY FROM UV TO NEAR IR RANGE
JP2008064705A (en) Optical encoder
JP2010256080A (en) Photoelectric encoder and method of controlling operation thereof
JP4134525B2 (en) Light source device and image forming apparatus
JP2004317357A (en) Light-receiving element and optical encoder equipped therewith
EP1528367A2 (en) Sensor head of reflective optical encoder
CN102763402A (en) Image sensor ic and contact image sensor using same
JP2005121593A (en) Absolute encoder
JPH102761A (en) Photoelectric encoder
US6456313B1 (en) Method and apparatus for optical writing capable of effectively performing an accurate scanning
JP3738742B2 (en) Optical absolute value encoder and moving device
JP2004209703A (en) Optical writing head
JP2004327713A (en) Image read device and manufacturing method therefor
US7053361B2 (en) Projection encoder with moving side gratings and fixed side gratings
JP2004028667A (en) Photoelectric encoder and method of manufacturing scale
JP2002005693A (en) Movement detecting device for printer head
JPS63119371A (en) Image sensor
JP2558639B2 (en) Contact type photoelectric conversion element unit
JP2003161646A (en) Photoelectric encoder

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees