JP2004317193A - Cryogenic calibration method and cryogenic calibrating apparatus - Google Patents

Cryogenic calibration method and cryogenic calibrating apparatus Download PDF

Info

Publication number
JP2004317193A
JP2004317193A JP2003108971A JP2003108971A JP2004317193A JP 2004317193 A JP2004317193 A JP 2004317193A JP 2003108971 A JP2003108971 A JP 2003108971A JP 2003108971 A JP2003108971 A JP 2003108971A JP 2004317193 A JP2004317193 A JP 2004317193A
Authority
JP
Japan
Prior art keywords
ultra
temperature sensor
low temperature
calibrated
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003108971A
Other languages
Japanese (ja)
Other versions
JP4233372B2 (en
Inventor
Tsutomu Otsubo
勤 大坪
Hideo Endo
英男 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEION KK
Yokogawa Electric Corp
Yokogawa Solution Service Corp
Original Assignee
TEION KK
Yokogawa Engineering Service Corp
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEION KK, Yokogawa Engineering Service Corp, Yokogawa Electric Corp filed Critical TEION KK
Priority to JP2003108971A priority Critical patent/JP4233372B2/en
Publication of JP2004317193A publication Critical patent/JP2004317193A/en
Application granted granted Critical
Publication of JP4233372B2 publication Critical patent/JP4233372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cryogenic calibration method and a cryogenic calibrating apparatus for calibrating an actual temperature as an entire cryogenic measuring apparatus including a temperature sensor to be calibrated, a signal cable, and a display at an installation location of the temperature sensor to be calibrated or near it. <P>SOLUTION: The cryogenic calibrating apparatus that can be moved to a location, where the temperature sensor to be calibrated connected to the display via the signal cable is installed, or near the location, and the temperature sensor to be calibrated connected to the display via the signal cable is inserted into the cryogenic calibrating apparatus along with a standard temperature sensor, thus calibrating the actual temperature of the temperature sensor to be calibrated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、温度校正方法および温度校正装置に関し、さらに詳しくは、可搬型の装置による超低温の校正方法と校正装置に関するものである。
【0002】
【従来の技術】
図3は、超低温用温度センサーの一般的な使用例図である。例えばTタイプの熱電対よりなる超低温用温度センサー1は、−80℃以下まで内部温度を設定可能な例えば培養組織を保存するための冷凍庫2の内部温度を測定するように、冷凍庫2の温度センサー取付け部3に取付けられている。そして、この超低温用温度センサー1の測定信号は、そのシステム構成に応じて、ペーパーレスレコーダ4や、チャートレコーダ5や、パソコンを用いた監視記録装置6などに出力される。
【0003】
このような温度計や温度測定装置の測定値が所定の精度を保っていることを保証・証明するのにあたっては、定期的に校正を行って各測定値と補正値の対応関係を明確にしておかなければならない。
【0004】
そこで、一般には、例えば図4に示すように、被校正温度センサー1を予め校正された白金測温抵抗体よりなる標準温度センサー7とともに温度制御された比較恒温槽8に挿入してそれぞれのセンサーで比較恒温槽8内の実温度を測定し、表示装置として用いるデジタル温度計9にデジタル表示される標準温度センサー7の測定値を標準として表示装置として用いるデジタル温度計10にデジタル表示される被校正温度センサー1の測定値を比較校正する実温度校正が行われている。なお、ここで標準温度センサーとしては、より高位の測定水準により次々と校正されて国家標準および国際標準につながる経路が確立されているJIS8103に基づく「トレーサビリティ」が保証されているものが用いられる。
【0005】
ところで、被校正温度センサー1のユーザーとしては、被校正温度センサー1の校正は、冷凍庫などの温度測定対象装置の連続運転を維持するために、比較恒温槽8を被校正温度センサー1の設置場所またはその近傍に持ち込んで行うことが望ましい。
【0006】
ところが、従来の可搬型の比較恒温槽は、温度槽が空気槽式であるために、温度設定範囲を−30℃以下に設定できない。また、空気槽式温度槽は熱時定数が大きく、設定温度に到達するまでに1時間以上かかるため作業効率が悪い。
【0007】
現時点で−30℃以下に設定可能な比較恒温装置として商品化されている装置は、重量が100kg以上で使用電源はAC200Vであり、使用電源がAC100Vの一般的な現場に搬入して使用するには適さない。
【0008】
これらから、現状では、超低温域(−80℃以下)の実温度校正を被校正温度センサー1の設置場所で実施することができない。
【0009】
そこで、図5のフローチャートに示すように、ユーザーまたは被校正温度センサーの製造メーカーなどの校正事業者は被校正温度センサーを温度測定対象装置から取外し(SP1)、代替温度センサーを温度測定対象装置に取付ける(SP2)。そして、取外した被校正温度センサーを梱包した後(SP3)、運送便で(SP4)校正事業者に発送する。校正事業者は開梱して(SP5)、被校正温度センサー単体で実温度校正を実施する(SP6)。
【0010】
校正事業者は実温度校正が完了したら被校正温度センサーを梱包し(SP7)、運送便で(SP8)ユーザーに発送する。ユーザーは開梱して(SP9)、代替温度センサーを温度測定対象装置から取外し(SP10)、被校正温度センサーを温度測定対象装置に取付ける(SP1・1)。なお、被校正温度センサーが接続される表示装置については、被校正温度センサーを取外した部位から信号ケーブルを介して模擬電気信号を入力することにより、現場校正を行う。
【0011】
【特許文献1】
特開2000‐205973
【0012】
特許文献1には、極低温液体の温度測定用熱電対を液体酸素や液体窒素などの実液を用いて校正する方法および装置が開示されている。
【0013】
しかし、特許文献1は、本発明のように可搬型の比較恒温槽を用いて校正することは示唆していない。
【0014】
【発明が解決しようとする課題】
被校正温度センサーについて−30℃以下の超低温校正を行うのにあたってその都度被校正温度センサーを校正事業者の工場に発送する従来の方法では、代替温度センサーを保有するためのコスト、温度センサーの温度測定対象装置に対する取外し取付作業工数、温度センサーの梱包、発送、開梱に伴う作業工数と管理工数などが発生してユーザーの費用負担は増大するとともに、校正済の被校正温度センサーがユーザーの設置現場に戻ってくるまでにほぼ1ヵ月を要することも珍しくない。
【0015】
そして、被校正温度センサーを校正事業者の工場に発送する方式では、被校正温度センサーと信号ケーブルと表示装置を含む超低温測定装置全体としての実温度校正ができないことから、実温度でのトレサビリティーを証明することができない。
【0016】
本発明は、これらの問題に着目したものであり、その目的は、被校正温度センサーの設置場所またはその近傍で、被校正温度センサーと信号ケーブルと表示装置を含む超低温測定装置全体としての実温度校正が行える超低温校正方法および超低温校正装置を提供することにある。
【0017】
【課題を解決するための手段】
上記目的を達成する請求項1の発明は、
信号ケーブルを介して表示装置に接続された被校正温度センサーが設置されている場所またはその近傍に移動可能に構成された超低温校正装置を搬送し、信号ケーブルを介して表示装置に接続された被校正温度センサーを標準温度センサーとともに超低温校正装置に挿入することにより、被校正温度センサーの実温度校正を行うことを特徴とする超低温校正方法である。
【0018】
請求項2の発明は、請求項1に記載の超低温校正方法において、
超低温校正装置として、
冷凍機で冷却され内部には冷却液が注入されて被校正温度センサーと標準温度センサーがガイドに従って同一深さまで挿入される管型液槽と、
管型液槽内部が所望の超低温になるように冷凍機を制御する温度制御器と、
装置底面に取付けられた移動用車輪、を含むものを用いることを特徴とする。
【0019】
請求項3の発明は、請求項1または請求項2に記載の超低温校正方法において、
超低温校正装置は、
少なくとも2個の管型液槽と、
これら管型液槽の温度を個別に制御する温度制御器を有することを特徴とする。
【0020】
請求項4の発明は、請求項2または請求項3に記載の超低温校正方法において、
管型液槽の底部には、冷却液の取出口を設けたことを特徴とする。
【0021】
請求項5の発明は、請求項2から請求項4のいずれかに記載の超低温校正方法において、
管型液槽の開口部には着脱可能な蓋を設け、この蓋に被校正温度センサーと標準温度センサーの挿入深さを位置決めするガイドを一体化したことを特徴とする。
【0022】
請求項6の発明は、
冷凍機で冷却され内部には冷却液が注入されて被校正温度センサーと標準温度センサーがガイドに従って同一深さまで挿入される管型液槽と、
管型液槽内部が所望の超低温になるように冷凍機を制御する温度制御器と、
装置底面に取付けられた移動用車輪、とで構成されたことを特徴とする超低温校正装置である。
【0023】
請求項7の発明は、請求項6記載の超低温校正装置において、
少なくとも2個の管型液槽と、
これら管型液槽の温度を個別に制御する温度制御器を設けたことを特徴とする。
【0024】
請求項8の発明は、請求項6または請求項7記載の超低温校正装置において、
管型液槽の底部には、冷却液の取出口を設けたことを特徴とする。
【0025】
請求項9の発明は、請求項6から請求項8のいずれかに記載の超低温校正装置において、
管型液槽の開口部には着脱可能な蓋を設け、
この蓋に被校正温度センサーと標準温度センサーの挿入深さを位置決めするガイドを一体化したことを特徴とする。
【0026】
これらにより、被校正温度センサーの設置場所またはその近傍で、被校正温度センサーと信号ケーブルと表示装置を含む超低温測定装置全体としての実温度校正が行える超低温校正方法および超低温校正装置を実現することができる。
【0027】
【発明の実施の形態】
以下、図面を参照し、本発明の実施形態例に基づいて、本発明を詳細に説明する。図1は、本発明の実施の形態例を示す構成概念図であり、図3および図5と共通する部分には同一の符号を付けている。図1において、超低温校正装置100は、図2に示すように移動可能に構成されたものであり、被校正温度センサー1が設置されている場所またはその近傍に搬送して超低温校正を行う。
【0028】
図2において、超低温校正装置100の内部には、個別に制御可能な冷凍機1・10が2系統設けられていて、管型液槽121・122を個別に例えば温度下限値−150℃程度まで冷却する。管型液槽121・122は、超低温校正装置100の上部に開口するように設けられていて、内部には市販されているアルコール系の冷却液が注入され、その開口部には着脱可能に構成された蓋131・132が取り付けられる。なお、管型液槽121・122の開口直径は例えば30mmとし、深さは340mmとする。
【0029】
蓋131・132には、それぞれ被校正温度センサー1と標準温度センサー7を管型液槽121・122内の同一深さまで挿入するためのガイド体141・142が一体化されている。管型液槽121・122内の底部には冷却液を回収するための取出口151・152が設けられている。
【0030】
設定に応じて冷凍機1・10の冷媒循環バルブに対し、例えば誤差0.1℃の精度で温度表示とON/OFF制御またはPID制御とを行う温度制御器161・162は、超低温校正装置100の正面に設定操作できるように設けられている。表示ランプ171・172と電源スイッチ181・182は、温度制御器161・162の近傍に設けられている。
【0031】
超低温校正装置100の底面4隅近傍にはそれぞれ移動用車輪190が設けられ、両側面には取っ手200が設けられている。そして、超低温校正装置100は、AC100Vで駆動できるように構成されている。このように構成される超低温校正装置100の重量は45kg程度であり、2人で搬送移動可能である。
なお超低温校正装置100全体の大きさは、例えば幅550mm、高さ500mm、奥行き470mmとする。
【0032】
再び図1において、被校正温度センサー1の超低温校正は、信号ケーブルを介して表示装置に接続された被校正温度センサー1を標準温度センサー7とともに超低温校正装置100の管型液槽121・122のいずれかに挿入して、実温度校正として行う。図1の例では、冷凍庫2の内部温度を測定するように冷凍庫2に挿入される被校正温度センサー1を、表示装置として用いるチャートレコーダ5に接続した状態で、管型液槽121に挿入している。
【0033】
このようなシステム構成にすることにより、超低温校正装置100内の温度は標準温度センサー1と表示装置として用いる標準デジタル温度計9との組合せによりトレサビリティーが証明されているので、標準デジタル温度計9の温度指示値とチャートレコーダ5の温度指示値を比較することにより、被校正温度センサー1と信号ケーブルと表示装置としてのチャートレコーダ5を含む超低温測定装置全体としてのトレサビリティーを証明することができる。
【0034】
ここで、超低温校正装置100には2個の管型液槽121・122を設けているので、もう一つの管型液槽122は、複数の被温度センサーを予冷したり、2点校正する場合のもう一点の校正温度に設定しておくこと等により、さらに効率的な校正作業を実施することができる。
【0035】
このように移動搬送可能な超低温校正装置100を用いることにより、従来の方法では現場で行えなかった被校正温度センサーと信号ケーブルと表示装置を含む超低温測定装置全体としてのトレサビリティーが短時間で証明できる。具体的には、従来の校正事業者工場引取の場合は1月かかっていたものが、本発明では1日で実施できる。
【0036】
超低温校正装置100の温度槽を空気槽から管型液槽121・122にしたことにより、管型液槽121・122に注入する溶液ボトルを事前にドライアイス等で予冷しておくことができるようになったことと温度制御器161・162による温度ON−OFF制御によって、目標温度到達時間は約15分になって従来の空気槽の場合に比べて1/5以下になり、さらにPID制御による温度安定化を実現したことによって作業効率は飛躍的に向上する。
【0037】
従来の校正事業者工場引取校正期間中の冷凍設備稼動にあたっては、代替品の温度センサーが必要であったが、本発明ではそれらの購入保守維持費用や代替品取り付け取外し費用などが不要となるため大幅なコストダウンとなる。
そして、前述のように作業効率が5倍以上改善されるので、作業工数面においても従来に比べて大幅なコストダウンとなる。
【0038】
さらに、近年の医薬事業関連(バイオテクノロジー、GMP、GLP)や食品事業関連(HACCP)における超低温域温度管理の要求に応えられる技術であり、溶液種類によっては−100℃以下の超低温温度校正も可能である。
【0039】
なお、超低温校正装置100は、試料定温冷却装置としても使用できる。すなわち、管型液槽121・122の内部温度は±0.1℃で制御できるので、例えば試料が入っている試験管等を蓋131・132をあけて管型液槽121・122に入れるだけで温度下限値−150℃程度まで容易かつ正確に冷却できる。
【0040】
【発明の効果】
以上説明したように、本発明によれば、被校正温度センサーの設置場所またはその近傍で、被校正温度センサーと信号ケーブルと表示装置を含む超低温測定装置全体としての実温度校正が行える超低温校正方法および超低温校正装置を実現でき、医薬事業や食品事業分野に代表される各種の超低温域温度管理の要求に応えることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態例を示す構成概念図である。
【図2】図1で用いる超低温校正装置100の構成説明図である。
【図3】超低温用温度センサーの一般的な使用例図である。
【図4】従来の温度校正例を示す説明図である。
【図5】従来の温度校正例の手順を示すフローチャートである。
【符号の説明】
1 被校正温度センサー
2 冷凍庫
3 温度センサー取付け部
4 ペーパーレスレコーダ
5 クロック位相検出
6 監視記録装置
7 標準温度センサー
9 デジタル温度計
100 超低温校正装置
1・10 冷凍機
121・122 管型液槽
131・132 蓋
141・142 ガイド体
151・152 取出口
161・162 温度制御器
171・172 表示ランプ
181・182 電源スイッチ
190 移動用車輪
200 取っ手
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a temperature calibration method and a temperature calibration device, and more particularly, to an ultra-low temperature calibration method and a calibration device using a portable device.
[0002]
[Prior art]
FIG. 3 is a general use example diagram of a temperature sensor for ultra-low temperature. For example, an ultra-low temperature sensor 1 made of a T-type thermocouple can set the internal temperature to −80 ° C. or less, and measures the internal temperature of the freezer 2 for storing cultured tissue, for example. It is attached to the attachment part 3. Then, the measurement signal of the ultra-low temperature sensor 1 is output to the paperless recorder 4, the chart recorder 5, the monitoring and recording device 6 using a personal computer, and the like according to the system configuration.
[0003]
In order to assure and prove that the measured values of such thermometers and temperature measuring devices maintain the prescribed accuracy, periodically calibrate and clarify the correspondence between each measured value and correction value. I have to put it.
[0004]
Therefore, in general, for example, as shown in FIG. 4, the temperature sensor 1 to be calibrated is inserted into a temperature-controlled comparative thermostat 8 together with a standard temperature sensor 7 made of a platinum resistance thermometer which has been calibrated in advance. The actual temperature in the comparison thermostat 8 is measured, and the measured value of the standard temperature sensor 7 digitally displayed on the digital thermometer 9 used as a display device is digitally displayed on the digital thermometer 10 used as a display device as a standard. Actual temperature calibration for comparing and calibrating the measured value of the calibration temperature sensor 1 is performed. Here, as the standard temperature sensor, a sensor whose “traceability” based on JIS 8103, which is calibrated one after another at a higher measurement level and a path leading to a national standard and an international standard is established, is guaranteed.
[0005]
By the way, as a user of the temperature sensor 1 to be calibrated, the calibration of the temperature sensor 1 to be calibrated is performed by setting the comparative thermostatic chamber 8 to a place where the temperature sensor 1 to be calibrated is installed in order to maintain the continuous operation of the temperature measurement target device such as a freezer. Or, it is desirable to carry it around.
[0006]
However, in the conventional portable comparative thermostatic bath, the temperature setting range cannot be set to −30 ° C. or lower because the temperature bath is an air bath type. Further, the air bath type temperature bath has a large thermal time constant, and it takes one hour or more to reach the set temperature, so that the working efficiency is poor.
[0007]
At present, a device commercialized as a comparative constant temperature device that can be set at -30 ° C or lower has a weight of 100 kg or more and a power supply of 200 V AC, and is used in a general site where the power supply is 100 V AC. Is not suitable.
[0008]
For these reasons, at present, actual temperature calibration in an ultra-low temperature range (−80 ° C. or less) cannot be performed at the installation location of the temperature sensor 1 to be calibrated.
[0009]
Therefore, as shown in the flowchart of FIG. 5, the user or a calibration technician such as a manufacturer of the temperature sensor to be calibrated removes the temperature sensor to be calibrated from the temperature measurement target device (SP1) and sets the substitute temperature sensor as the temperature measurement device. Attach (SP2). Then, after the removed temperature sensor to be calibrated is packed (SP3), it is sent to the calibration service company by freight (SP4). The calibration business unpacks the package (SP5), and performs the actual temperature calibration using only the temperature sensor to be calibrated (SP6).
[0010]
When the calibration of the actual temperature is completed, the calibration company packs the temperature sensor to be calibrated (SP7) and sends it to the user by freight (SP8). The user unpacks (SP9), removes the alternative temperature sensor from the temperature measurement target device (SP10), and attaches the temperature sensor to be calibrated to the temperature measurement target device (SP1.1). In the display device to which the temperature sensor to be calibrated is connected, on-site calibration is performed by inputting a simulated electric signal via a signal cable from a portion from which the temperature sensor to be calibrated is removed.
[0011]
[Patent Document 1]
JP 2000-205973A
[0012]
Patent Literature 1 discloses a method and an apparatus for calibrating a thermocouple for temperature measurement of a cryogenic liquid using a real liquid such as liquid oxygen or liquid nitrogen.
[0013]
However, Patent Literature 1 does not suggest calibrating using a portable comparative thermostat as in the present invention.
[0014]
[Problems to be solved by the invention]
With the conventional method of sending the temperature sensor to be calibrated to the factory of the calibration company every time the ultra-low temperature calibration of -30 ° C or less is performed for the temperature sensor to be calibrated, the cost of having an alternative temperature sensor, the temperature of the temperature sensor, Man-hours for removing and attaching to the device to be measured, man-hours for packing, shipping, and unpacking the temperature sensor, etc., increase the cost burden for the user and increase the user's installation of the calibrated temperature sensor to be calibrated. It is not uncommon for it to take almost a month to return to the scene.
[0015]
In the method of sending the temperature sensor to be calibrated to the factory of the calibration business, the actual temperature calibration of the entire ultra-low temperature measurement device including the temperature sensor to be calibrated, the signal cable, and the display device cannot be performed. Can not prove.
[0016]
The present invention focuses on these problems, and its object is to measure the actual temperature of the ultra-low temperature measurement device as a whole including the temperature sensor to be calibrated, the signal cable, and the display device at or near the installation location of the temperature sensor to be calibrated. An object of the present invention is to provide an ultra-low temperature calibration method and an ultra-low temperature calibration device capable of performing calibration.
[0017]
[Means for Solving the Problems]
The invention of claim 1 which achieves the above object is as follows.
A cryogenic calibration device movably configured is transported to or near the place where the temperature sensor to be calibrated connected to the display device via the signal cable is installed, and the device connected to the display device via the signal cable. An ultra-low temperature calibration method characterized by performing actual temperature calibration of a temperature sensor to be calibrated by inserting a calibration temperature sensor into an ultra-low temperature calibration device together with a standard temperature sensor.
[0018]
The invention according to claim 2 is the ultra-low temperature calibration method according to claim 1,
As an ultra-low temperature calibration device,
A tubular liquid tank into which a cooling liquid is injected by cooling in a refrigerator and a temperature sensor to be calibrated and a standard temperature sensor are inserted to the same depth according to a guide,
A temperature controller for controlling the refrigerator so that the inside of the tubular liquid tank has a desired ultra-low temperature;
And a moving wheel mounted on the bottom of the apparatus.
[0019]
According to a third aspect of the present invention, in the ultra-low temperature calibration method according to the first or second aspect,
Ultra low temperature calibration equipment
At least two tubular liquid tanks;
It is characterized by having a temperature controller for individually controlling the temperatures of these tubular liquid tanks.
[0020]
According to a fourth aspect of the present invention, in the ultra-low temperature calibration method according to the second or third aspect,
An outlet for cooling liquid is provided at the bottom of the tubular liquid tank.
[0021]
According to a fifth aspect of the present invention, in the ultra-low temperature calibration method according to any one of the second to fourth aspects,
A detachable lid is provided at the opening of the tubular liquid tank, and a guide for positioning the insertion depth of the temperature sensor to be calibrated and the standard temperature sensor is integrated with the lid.
[0022]
The invention of claim 6 is
A tubular liquid tank into which a cooling liquid is injected by cooling in a refrigerator and a temperature sensor to be calibrated and a standard temperature sensor are inserted to the same depth according to a guide,
A temperature controller for controlling the refrigerator so that the inside of the tubular liquid tank has a desired ultra-low temperature;
And a moving wheel mounted on the bottom surface of the apparatus.
[0023]
The invention according to claim 7 is the ultra-low temperature calibration device according to claim 6,
At least two tubular liquid tanks;
It is characterized in that a temperature controller for individually controlling the temperatures of these tubular liquid tanks is provided.
[0024]
The invention according to claim 8 is the ultra-low temperature calibration device according to claim 6 or 7,
An outlet for cooling liquid is provided at the bottom of the tubular liquid tank.
[0025]
According to a ninth aspect of the present invention, in the ultralow temperature calibration apparatus according to any one of the sixth to eighth aspects,
A removable lid is provided at the opening of the tubular liquid tank,
The lid is integrated with a guide for positioning the insertion depth of the temperature sensor to be calibrated and the standard temperature sensor.
[0026]
Thus, an ultra-low temperature calibration method and an ultra-low temperature calibration device capable of performing actual temperature calibration of the entire ultra-low temperature measurement device including the temperature sensor to be calibrated, the signal cable, and the display device at or near the installation location of the temperature sensor to be calibrated can be realized. it can.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments of the present invention with reference to the drawings. FIG. 1 is a conceptual diagram showing the configuration of an embodiment of the present invention, and the same reference numerals are given to the parts common to FIG. 3 and FIG. In FIG. 1, an ultra-low temperature calibration apparatus 100 is configured to be movable as shown in FIG. 2, and is transported to a place where the temperature sensor 1 to be calibrated is installed or in the vicinity thereof to perform ultra-low temperature calibration.
[0028]
In FIG. 2, two systems of individually controllable refrigerators 1 and 10 are provided inside the ultra-low temperature calibration apparatus 100, and the pipe-shaped liquid tanks 121 and 122 are individually set to, for example, a temperature lower limit of about −150 ° C. Cooling. The tubular liquid tanks 121 and 122 are provided so as to open at the upper part of the ultra-low temperature calibration apparatus 100, and a commercially available alcohol-based cooling liquid is injected into the inside thereof, and the opening is detachable. Covers 131 and 132 are attached. The opening diameter of the tubular liquid tanks 121 and 122 is, for example, 30 mm, and the depth is 340 mm.
[0029]
Guides 141 and 142 for inserting the temperature sensor 1 to be calibrated and the standard temperature sensor 7 to the same depth in the tubular liquid tanks 121 and 122 are integrated with the lids 131 and 132, respectively. At the bottom of the tubular liquid tanks 121 and 122, outlets 151 and 152 for recovering the cooling liquid are provided.
[0030]
The temperature controllers 161 and 162 which perform temperature display and ON / OFF control or PID control with an accuracy of, for example, an error of 0.1 ° C. on the refrigerant circulation valves of the refrigerators 1 and 10 according to the settings are provided by the ultra-low temperature calibration device 100. It is provided so that setting operation can be performed in front of the camera. The display lamps 171 and 172 and the power switches 181 and 182 are provided near the temperature controllers 161 and 162.
[0031]
Movement wheels 190 are provided near the four corners of the bottom surface of the ultra-low temperature calibration device 100, and handles 200 are provided on both side surfaces. The ultra-low temperature calibration device 100 is configured to be driven at AC 100V. The weight of the ultra-low temperature calibration device 100 thus configured is about 45 kg, and can be transported and moved by two people.
The size of the entire ultra-low temperature calibration apparatus 100 is, for example, 550 mm in width, 500 mm in height, and 470 mm in depth.
[0032]
Referring again to FIG. 1, the ultra-low temperature calibration of the temperature sensor 1 to be calibrated is performed by using the temperature sensor 1 to be calibrated connected to the display device via a signal cable together with the standard temperature sensor 7 in the tubular liquid tanks 121 and 122 of the ultra-low temperature calibration device 100. Insert it into any of them and perform the actual temperature calibration. In the example of FIG. 1, the temperature sensor 1 to be calibrated inserted into the freezer 2 so as to measure the internal temperature of the freezer 2 is inserted into the tubular liquid tank 121 while being connected to the chart recorder 5 used as a display device. ing.
[0033]
With this system configuration, the traceability of the temperature in the ultra-low temperature calibration device 100 has been proven by the combination of the standard temperature sensor 1 and the standard digital thermometer 9 used as a display device. By comparing the indicated temperature value with the indicated temperature value of the chart recorder 5, it is possible to prove the traceability of the entire ultra-low temperature measuring apparatus including the temperature sensor 1 to be calibrated, the signal cable, and the chart recorder 5 as a display device. .
[0034]
Here, since the ultra low temperature calibration apparatus 100 is provided with two tubular liquid tanks 121 and 122, the other tubular liquid tank 122 is used for pre-cooling a plurality of temperature sensors or performing two-point calibration. By setting the calibration temperature at the other point, a more efficient calibration operation can be performed.
[0035]
By using the ultra-low temperature calibration device 100 that can be transported in this way, the traceability of the entire ultra-low temperature measurement device including the temperature sensor to be calibrated, the signal cable, and the display device, which could not be performed in the field by the conventional method, is proved in a short time. it can. More specifically, it takes one month in the case of a conventional calibration operator factory collection, but the present invention can be implemented in one day.
[0036]
By changing the temperature tank of the ultra-low temperature calibration apparatus 100 from the air tank to the tubular liquid tanks 121 and 122, the solution bottle to be injected into the tubular liquid tanks 121 and 122 can be pre-cooled with dry ice or the like in advance. And the temperature ON-OFF control by the temperature controllers 161 and 162, the target temperature arrival time becomes about 15 minutes, which is 1/5 or less as compared with the conventional air tank, and furthermore, the PID control Work efficiency is dramatically improved by realizing temperature stabilization.
[0037]
In order to operate the refrigeration equipment during the period of the conventional calibration company factory take-back calibration, a temperature sensor for a replacement was necessary.However, the present invention eliminates the cost of purchasing, maintaining and maintaining them, and the cost of installing and removing replacements. Significant cost reduction.
As described above, the work efficiency is improved by a factor of 5 or more, so that the number of work steps is significantly reduced as compared with the related art.
[0038]
Furthermore, it is a technology that meets the recent demands for ultra-low temperature control in the pharmaceutical business (biotechnology, GMP, GLP) and the food business (HACCP). Depending on the type of solution, ultra-low temperature calibration at -100 ° C or lower is also possible. It is.
[0039]
The ultra-low temperature calibration device 100 can also be used as a sample constant temperature cooling device. That is, since the internal temperatures of the tube-shaped liquid tanks 121 and 122 can be controlled at ± 0.1 ° C., for example, a test tube or the like containing a sample is simply put into the tube-shaped liquid tanks 121 and 122 with the lids 131 and 132 opened. The temperature can be easily and accurately cooled to the lower limit of the temperature of about -150 ° C.
[0040]
【The invention's effect】
As described above, according to the present invention, at or near the installation location of a temperature sensor to be calibrated, an ultra-low temperature calibration method capable of performing actual temperature calibration as an entire ultra-low temperature measurement device including a temperature sensor to be calibrated, a signal cable, and a display device And an ultra-low temperature calibration device can be realized, and can respond to various demands of ultra-low temperature range management represented by the pharmaceutical business and the food business field.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing the configuration of an embodiment of the present invention.
FIG. 2 is an explanatory diagram of a configuration of an ultra-low temperature calibration device 100 used in FIG.
FIG. 3 is a diagram illustrating a general use example of an ultra-low temperature sensor.
FIG. 4 is an explanatory diagram showing a conventional temperature calibration example.
FIG. 5 is a flowchart showing a procedure of a conventional temperature calibration example.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 Temperature sensor to be calibrated 2 Freezer 3 Temperature sensor mounting section 4 Paperless recorder 5 Clock phase detection 6 Monitoring and recording device 7 Standard temperature sensor 9 Digital thermometer 100 Ultra-low temperature calibration device 1/10 Refrigerator 121 ・ 122 Tube type liquid tank 131 ・ 132 Lids 141 and 142 Guide bodies 151 and 152 Outlets 161 and 162 Temperature controllers 171 and 172 Indicator lamps 181 and 182 Power switch 190 Wheel 200 for movement Handle

Claims (9)

信号ケーブルを介して表示装置に接続された被校正温度センサーが設置されている場所またはその近傍に移動可能に構成された超低温校正装置を搬送し、信号ケーブルを介して表示装置に接続された被校正温度センサーを標準温度センサーとともに超低温校正装置に挿入することにより、被校正温度センサーの実温度校正を行うことを特徴とする超低温校正方法。A cryogenic calibration device movably configured is transported to or near the place where the temperature sensor to be calibrated connected to the display device via the signal cable is installed, and the device connected to the display device via the signal cable. An ultra-low temperature calibration method characterized by performing actual temperature calibration of a temperature sensor to be calibrated by inserting a calibration temperature sensor into an ultra-low temperature calibration device together with a standard temperature sensor. 超低温校正装置として、
冷凍機で冷却され内部には冷却液が注入されて被校正温度センサーと標準温度センサーがガイドに従って同一深さまで挿入される管型液槽と、
管型液槽内部が所望の超低温になるように冷凍機を制御する温度制御器と、
装置底面に取付けられた移動用車輪、を含むものを用いることを特徴とする請求項1記載の超低温校正方法。
As an ultra-low temperature calibration device,
A tubular liquid tank into which a cooling liquid is injected by cooling in a refrigerator, and a temperature sensor to be calibrated and a standard temperature sensor are inserted to the same depth according to a guide,
A temperature controller that controls the refrigerator so that the inside of the tubular liquid tank has a desired ultra-low temperature;
2. The ultra-low temperature calibration method according to claim 1, wherein a method including a moving wheel mounted on a bottom surface of the apparatus is used.
超低温校正装置は、
少なくとも2個の管型液槽と、
これら管型液槽の温度を個別に制御する温度制御器を有することを特徴とする請求項1または請求項2に記載の超低温校正方法。
Ultra low temperature calibration equipment
At least two tubular liquid tanks;
3. The ultra-low temperature calibration method according to claim 1, further comprising a temperature controller for individually controlling the temperatures of the tubular liquid tanks.
管型液槽の底部には、冷却液の取出口を設けたことを特徴とする請求項2または請求項3に記載の超低温校正方法。4. The ultra-low temperature calibration method according to claim 2, wherein a cooling liquid outlet is provided at a bottom of the tubular liquid tank. 管型液槽の開口部には着脱可能な蓋を設け、この蓋に被校正温度センサーと標準温度センサーの挿入深さを位置決めするガイドを一体化したことを特徴とする請求項2から請求項4のいずれかに記載の超低温校正方法。A detachable lid is provided at the opening of the tubular liquid tank, and a guide for positioning the insertion depth of the temperature sensor to be calibrated and the standard temperature sensor is integrated with the lid. 5. The ultra-low temperature calibration method according to any one of 4. 冷凍機で冷却され内部には冷却液が注入されて被校正温度センサーと標準温度センサーがガイドに従って同一深さまで挿入される管型液槽と、
管型液槽内部が所望の超低温になるように冷凍機を制御する温度制御器と、
装置底面に取付けられた移動用車輪、とで構成されたことを特徴とする超低温校正装置。
A tubular liquid tank into which a cooling liquid is injected by cooling in a refrigerator, and a temperature sensor to be calibrated and a standard temperature sensor are inserted to the same depth according to a guide,
A temperature controller that controls the refrigerator so that the inside of the tubular liquid tank has a desired ultra-low temperature;
An ultra-low temperature calibration device, comprising: a moving wheel mounted on a bottom surface of the device.
少なくとも2個の管型液槽と、
これら管型液槽の温度を個別に制御する温度制御器を設けたことを特徴とする請求項6記載の超低温校正装置。
At least two tubular liquid tanks;
7. The ultra-low temperature calibration device according to claim 6, further comprising a temperature controller for individually controlling the temperatures of the tubular liquid tanks.
管型液槽の底部には、冷却液の取出口を設けたことを特徴とする請求項6または請求項7記載の超低温校正装置。8. The ultra-low temperature calibration apparatus according to claim 6, wherein a cooling liquid outlet is provided at a bottom of the tubular liquid tank. 管型液槽の開口部には着脱可能な蓋を設け、この蓋に被校正温度センサーと標準温度センサーの挿入深さを位置決めするガイドを一体化したことを特徴とする請求項6から請求項8のいずれかに記載の超低温校正装置。7. A detachable lid is provided at an opening of the tubular liquid tank, and a guide for positioning an insertion depth of the temperature sensor to be calibrated and the standard temperature sensor is integrated with the lid. 8. The ultra-low temperature calibration device according to any one of 8.
JP2003108971A 2003-04-14 2003-04-14 Ultra-low temperature calibration method and ultra-low temperature calibration device Expired - Fee Related JP4233372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108971A JP4233372B2 (en) 2003-04-14 2003-04-14 Ultra-low temperature calibration method and ultra-low temperature calibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003108971A JP4233372B2 (en) 2003-04-14 2003-04-14 Ultra-low temperature calibration method and ultra-low temperature calibration device

Publications (2)

Publication Number Publication Date
JP2004317193A true JP2004317193A (en) 2004-11-11
JP4233372B2 JP4233372B2 (en) 2009-03-04

Family

ID=33470280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108971A Expired - Fee Related JP4233372B2 (en) 2003-04-14 2003-04-14 Ultra-low temperature calibration method and ultra-low temperature calibration device

Country Status (1)

Country Link
JP (1) JP4233372B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248277A (en) * 2006-03-16 2007-09-27 National Institute Of Advanced Industrial & Technology Low temperature calibrating device for thermometer
JP2008180614A (en) * 2007-01-25 2008-08-07 Daikin Ind Ltd Sensor calibration device
US7708459B2 (en) 2006-03-02 2010-05-04 National Institute Of Advanced Industrial Science And Technology Low-temperature comparison calibrator for thermometers
KR101348603B1 (en) 2012-10-30 2014-02-13 한국기초과학지원연구원 Cryogenic temperature sensor calibrator
CN110411592A (en) * 2019-08-28 2019-11-05 广州计量检测技术研究院 Standard thermometer measurement servicing unit and its application method
US11467045B2 (en) * 2018-12-27 2022-10-11 SIKA Dr. Siebert & Kühn GmbH & Co. KG Calibration structure for calibrating a temperature sensor and methods therefore

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7708459B2 (en) 2006-03-02 2010-05-04 National Institute Of Advanced Industrial Science And Technology Low-temperature comparison calibrator for thermometers
JP2007248277A (en) * 2006-03-16 2007-09-27 National Institute Of Advanced Industrial & Technology Low temperature calibrating device for thermometer
JP4714850B2 (en) * 2006-03-16 2011-06-29 独立行政法人産業技術総合研究所 Thermometer low temperature calibration device
JP2008180614A (en) * 2007-01-25 2008-08-07 Daikin Ind Ltd Sensor calibration device
KR101348603B1 (en) 2012-10-30 2014-02-13 한국기초과학지원연구원 Cryogenic temperature sensor calibrator
US11467045B2 (en) * 2018-12-27 2022-10-11 SIKA Dr. Siebert & Kühn GmbH & Co. KG Calibration structure for calibrating a temperature sensor and methods therefore
CN110411592A (en) * 2019-08-28 2019-11-05 广州计量检测技术研究院 Standard thermometer measurement servicing unit and its application method

Also Published As

Publication number Publication date
JP4233372B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
US9752814B2 (en) Cooling apparatus used for cryonic preservation, and corresponding operating method
US10531656B2 (en) Cryogenic workstation using nitrogen
KR102412507B1 (en) Systems, devices, and methods for automated sample thawing
WO2017195461A1 (en) Transport container
EP4360510A2 (en) Quick-chill beverage cooler
CN102175348B (en) Calibrating device and calibrating method thereof capable of providing air medium temperature source
JP2004317193A (en) Cryogenic calibration method and cryogenic calibrating apparatus
JP2011191207A (en) Reagent storage, automatic analyzer, and temperature control program of the reagent storage
GB2400660B (en) Thermometer
US20200086338A1 (en) Temperature controlled nozzle
RU2485463C1 (en) Device for air thermostatting of calorimetric cell
US11666047B2 (en) Container for cryopreserved samples
US6939035B2 (en) System for calibrating thermometers
US5586061A (en) Temperature validation method for temperature-controlling and temperature-monitoring systems
JP5187663B2 (en) Insulated calorimeter
CN108760807A (en) A kind of Cabinet heat transfer coefficient test system and method
US10719091B2 (en) Temperature control
CN107976589A (en) A kind of quasi-static d33 tests system of width temperature range
RU2221971C1 (en) Thermal container
US20150375932A1 (en) Temperature Controlled Container For Storing And Transporting Core Samples
JP2013020471A (en) Temperature controller and temperature control method
Lang et al. Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T= 15 K to T= 350 K
CN106768615A (en) A kind of low temperature warm area High Accuracy Constant Temperature test cavity
CN102286776B (en) Temperature control system for sapphire crystal growth by Kyropoulos
CN117143722B (en) Multichannel frozen cell synchronous thawing device and control method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4233372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees