JP2004316992A - Indirect heat exchanger - Google Patents

Indirect heat exchanger Download PDF

Info

Publication number
JP2004316992A
JP2004316992A JP2003109674A JP2003109674A JP2004316992A JP 2004316992 A JP2004316992 A JP 2004316992A JP 2003109674 A JP2003109674 A JP 2003109674A JP 2003109674 A JP2003109674 A JP 2003109674A JP 2004316992 A JP2004316992 A JP 2004316992A
Authority
JP
Japan
Prior art keywords
heat
heat exchange
reaction vessel
cooling fluid
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003109674A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nishikawa
西川  佳弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP2003109674A priority Critical patent/JP2004316992A/en
Publication of JP2004316992A publication Critical patent/JP2004316992A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger having further improved heat exchanging efficiency without depending only on the heat conductivity of the heat exchanger. <P>SOLUTION: A jacket part 2 is mounted on the outer periphery of a reaction vessel 1. In the jacket part 2 on almost all outer peripheral face of the reaction vessel 1, a ceramic 4 is mounted which serves as a membrane heat emitting member for converting heat into a far infrared ray. The heat of a heat exchanged object in the reaction vessel 1 is conducted to cooled fluid in the jacket part 2 and emitted as the far infrared ray into the cooled fluid by the ceramic 4, thus improving the heat exchanging efficiency. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、各種化学反応を行う反応釜や、加熱あるいは冷却を行う熱交換器等の間接熱交換器に関する。
【0002】
【従来の技術】
【実用新案文献】実用新案登録第2535250号公報
これは、間接熱交換器としての反応釜の内周面で且つジャケット部に対向する位置に、厚みの異なるグラスライニング層を設けたもので、ジャケット部へ供給される加熱用の蒸気から、反応釜内部の被熱交換物としての反応物への加熱ムラを防止することができるものである。
【0003】
【発明が解決しようとする課題】
上記従来の間接熱交換器では、加熱用の蒸気から反応釜内の被熱交換物への熱交換効率が、反応釜の壁部材の熱伝導に依拠するために、所定値以上に向上させることができない問題があった。
【0004】
従って本発明の課題は、熱交換器の壁部材の熱伝導のみに依拠することなく、熱交換効率を更に向上させることのできる間接熱交換器を得ることである。
【0005】
【課題を解決するための手段】
上記の課題を解決するための手段は、熱交換容器に熱交換される被熱交換物と熱交換する熱交換源を、隔壁部材を介在して配置したものにおいて、隔壁部材の熱交換源側に、被熱交換物の有する熱を遠赤外線に変換して放射する熱放射部材を配置したものである。
【0006】
【発明の実施の形態】
被熱交換物の有する熱を遠赤外線に変換して放射する熱放射部材を、隔壁部材の熱交換源側へ配置したことによって、被熱交換物の有する熱が、隔壁部材の熱伝導に加えて、熱放射部材から遠赤外線へ変換されて熱交換源側へ放射されることとなり、熱交換効率を向上させることができる。
【0007】
熱を遠赤外線に変換して放射する熱放射部材としては、例えばセラミックや高分子材料等を使用することができる。セラミックとしては、コージライト、遷移元素酸化物系セラミック、アルミナ、ジルコニア、チタニア、あるいは、酸化ケイ素と酸化アルミニウムの化合物等既知のものを使用することができるが、熱から遠赤外線への変換効率の高いものが適する。
【0008】
【実施例】
本実施例では熱交換容器として反応釜1を用いた例を示す。図1において、反応釜1の外周に設けたジャケット部2と、ジャケット部2へ熱交換源としての冷却流体を供給する冷却流体供給管3、及び、反応釜1の外周側に配置した熱を遠赤外線に変換して放射する熱放射部材としてのセラミック4とで間接熱交換器を構成する。
【0009】
反応釜1は略円筒状で、外周側すなわちジャケット部2内で熱交換源側のほぼ全体に熱放射部材としてのセラミック4を取り付ける。本実施例においては、反応釜1を構成する壁部材が隔壁部材に相当する。
【0010】
セラミック4は、酸化ケイ素と酸化アルミニウムの化合物と水とを混合した液体状のものを塗布して乾燥させ積層した膜状のもので、セラミック4の膜厚や取り付け面積等は、反応釜1の種類に応じて適宜調節することができる。また、セラミック4の熱伝導率は、反応釜1の壁部材と同程度の値若しくは上回る値であることが好適である。
【0011】
反応釜1の上面を除くほぼ全周を覆うジャケット部2の上部に、冷却流体供給管3とバルブ5とを介して、熱交換源としての所定温度の冷却流体を供給することによって、反応釜1内の被熱交換物が間接冷却される。
【0012】
ジャケット部2の下方に冷却流体排出管6を介してエゼクタ式真空ポンプ7を接続する。エゼクタ式真空ポンプ7は、冷却流体排出管6と連通するエゼクタ8とタンク9と循環ポンプ10とを循環路11で順次接続して構成する。エゼクタ8とジャケット部2の上部を排気管16で接続する。
【0013】
タンク9の上部に冷却流体供給管3を分岐した冷却流体補給管12を接続する。また、タンク9の上部側方には、タンク9内の冷却流体のオーバーフロー管13を接続する。
【0014】
循環路11を分岐して余剰の冷却流体を外部へ排出する余剰流体排出管14を取り付ける。同じく、循環路11を分岐して循環流体供給管15をジャケット部2の上部と接続する。循環流体供給管15は、エゼクタ式真空ポンプ7を循環する冷却流体の一部を、ジャケット部2内へ供給することによって、反応釜1内の被熱交換物を冷却することができるものである。
【0015】
反応釜1内の図示しない被熱交換物を冷却する場合、冷却流体供給管3又は循環流体供給管15からジャケット部2内へ冷却流体を供給すると共に、エゼクタ式真空ポンプ7を駆動させる。被熱交換物の熱は、反応釜1の壁部材としての隔壁部材並びにセラミック4を伝達して、ジャケット部2内の冷却流体へ伝導すると同時に、セラミック4から遠赤外線として冷却流体中へ放射されることによって、遠赤外線での冷却流体への熱伝導が付加されて熱交換効率が向上する。
【0016】
被熱交換物からジャケット部2内の冷却流体へ熱伝導されると、冷却流体は直ちに蒸発して気化することによって、その気化潜熱でもって反応釜1を冷却する。冷却によって発生した気化蒸気と、蒸発しきれなかった残余の冷却流体は、ジャケット部2上部の排気管16と冷却流体排出管6からエゼクタ8へ吸引され、タンク9へ至る。
【0017】
本実施例においては、熱交換容器として反応釜1を用いた例を示したが、その他の熱交換器等の間接熱交換器にも同様に用いることができる。
【0018】
また本実施例においては、セラミック4が液体状で反応釜1の外周に塗布する例を示したが、合成樹脂や金属から成る多孔質体に粒子状のセラミックを混入させて薄板状として、反応釜1の外周に接触して取り付けることもできる。
【0019】
【発明の効果】
上記のように本発明では、熱を遠赤外線に変換して放射する熱放射部材で被熱交換物の保有する熱を効率良く冷却流体中へ伝達することにより、間接熱交換器の壁部材の熱伝導のみに依拠することなく、熱交換効率を更に向上させることができる。
【図面の簡単な説明】
【図1】本発明の間接熱交換器の一部断面構成図。
【符号の説明】
1 反応釜
2 ジャケット部
3 冷却流体供給管
4 セラミック
6 冷却流体排出管
7 エゼクタ式真空ポンプ
8 エゼクタ
9 タンク
10 循環ポンプ
11 循環路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reactor for performing various chemical reactions and an indirect heat exchanger such as a heat exchanger for heating or cooling.
[0002]
[Prior art]
[Utility Model Document] Japanese Utility Model Registration No. 2535250 This is a device in which a glass lining layer having a different thickness is provided on the inner peripheral surface of a reactor as an indirect heat exchanger and at a position facing the jacket portion. It is possible to prevent uneven heating from heating steam supplied to the section to a reactant as a heat exchanged substance inside the reaction vessel.
[0003]
[Problems to be solved by the invention]
In the above-mentioned conventional indirect heat exchanger, the heat exchange efficiency from the heating steam to the heat exchange target in the reactor is improved to a predetermined value or more because the efficiency depends on the heat conduction of the wall member of the reactor. There was no problem.
[0004]
Therefore, an object of the present invention is to provide an indirect heat exchanger that can further improve the heat exchange efficiency without relying only on the heat conduction of the wall member of the heat exchanger.
[0005]
[Means for Solving the Problems]
Means for solving the above-mentioned problem is that a heat exchange source for exchanging heat with a heat exchange object to be heat-exchanged in a heat exchange container is disposed with a partition member interposed therebetween. And a heat radiation member that converts the heat of the heat exchanged object into far-infrared rays and radiates it.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
By arranging the heat radiating member that converts the heat of the object to be exchanged into far-infrared radiation and radiates it to the heat exchange source side of the partition member, the heat of the object to be exchanged is added to the heat conduction of the partition member. As a result, the heat radiation member is converted into far-infrared rays and radiated to the heat exchange source side, so that the heat exchange efficiency can be improved.
[0007]
As a heat radiating member that converts heat into far infrared rays and radiates it, for example, a ceramic or polymer material can be used. As the ceramic, cordierite, a transition element oxide ceramic, alumina, zirconia, titania, or a known compound such as a compound of silicon oxide and aluminum oxide can be used, but the conversion efficiency from heat to far infrared rays can be used. Tall ones are suitable.
[0008]
【Example】
In this embodiment, an example in which the reaction vessel 1 is used as a heat exchange container will be described. In FIG. 1, a jacket 2 provided on the outer periphery of a reaction vessel 1, a cooling fluid supply pipe 3 for supplying a cooling fluid as a heat exchange source to the jacket 2, and heat disposed on the outer periphery of the reaction vessel 1. An indirect heat exchanger is constituted by the ceramic 4 as a heat radiating member that converts into far infrared rays and radiates.
[0009]
The reactor 1 has a substantially cylindrical shape, and a ceramic 4 as a heat radiating member is attached to the outer peripheral side, that is, almost entirely on the heat exchange source side in the jacket portion 2. In the present embodiment, the wall member constituting the reaction vessel 1 corresponds to a partition member.
[0010]
The ceramic 4 is in the form of a film in which a liquid in which a compound of silicon oxide and aluminum oxide is mixed with water is applied, dried, and laminated. It can be adjusted appropriately according to the type. Further, it is preferable that the thermal conductivity of the ceramic 4 be a value that is equal to or higher than the wall member of the reaction vessel 1.
[0011]
By supplying a cooling fluid of a predetermined temperature as a heat exchange source via a cooling fluid supply pipe 3 and a valve 5 to an upper portion of a jacket portion 2 covering almost the entire circumference except for the upper surface of the reaction vessel 1, The heat exchange target in 1 is indirectly cooled.
[0012]
An ejector type vacuum pump 7 is connected below the jacket 2 via a cooling fluid discharge pipe 6. The ejector type vacuum pump 7 is configured by sequentially connecting an ejector 8 communicating with the cooling fluid discharge pipe 6, a tank 9, and a circulation pump 10 via a circulation path 11. The ejector 8 and the upper part of the jacket 2 are connected by an exhaust pipe 16.
[0013]
A cooling fluid supply pipe 12, which is a branch of the cooling fluid supply pipe 3, is connected to the upper part of the tank 9. An overflow pipe 13 for the cooling fluid in the tank 9 is connected to the upper side of the tank 9.
[0014]
A surplus fluid discharge pipe 14 for branching off the circulation path 11 and discharging surplus cooling fluid to the outside is attached. Similarly, the circulation path 11 is branched and the circulation fluid supply pipe 15 is connected to the upper part of the jacket 2. The circulating fluid supply pipe 15 can cool the heat exchange target in the reactor 1 by supplying a part of the cooling fluid circulating through the ejector vacuum pump 7 into the jacket portion 2. .
[0015]
When cooling the heat exchange target (not shown) in the reactor 1, the cooling fluid is supplied from the cooling fluid supply pipe 3 or the circulating fluid supply pipe 15 into the jacket 2, and the ejector type vacuum pump 7 is driven. The heat of the heat-exchanged material is transmitted through the partition member as the wall member of the reaction vessel 1 and the ceramic 4 to be conducted to the cooling fluid in the jacket portion 2 and is radiated from the ceramic 4 into the cooling fluid as far infrared rays. By doing so, heat transfer to the cooling fluid in the far infrared is added, and the heat exchange efficiency is improved.
[0016]
When heat is transferred from the heat-exchanged material to the cooling fluid in the jacket portion 2, the cooling fluid immediately evaporates and vaporizes, thereby cooling the reactor 1 with the latent heat of vaporization. The vaporized vapor generated by the cooling and the remaining cooling fluid that has not been completely evaporated are sucked into the ejector 8 from the exhaust pipe 16 and the cooling fluid discharge pipe 6 in the upper portion of the jacket portion 2 and reach the tank 9.
[0017]
In the present embodiment, an example in which the reaction vessel 1 is used as the heat exchange vessel is shown, but the present invention can be similarly applied to other indirect heat exchangers such as heat exchangers.
[0018]
Further, in this embodiment, the example in which the ceramic 4 is applied in a liquid state to the outer periphery of the reaction vessel 1 has been described, but the ceramic is mixed into a porous body made of a synthetic resin or a metal to form a thin plate. It can also be attached in contact with the outer periphery of the shuttle 1.
[0019]
【The invention's effect】
As described above, in the present invention, the heat radiating member that converts heat into far-infrared rays and radiates the heat efficiently transfers the heat possessed by the heat-exchanged object into the cooling fluid, thereby forming the wall member of the indirect heat exchanger. The heat exchange efficiency can be further improved without relying only on heat conduction.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional configuration diagram of an indirect heat exchanger of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction vessel 2 Jacket part 3 Cooling fluid supply pipe 4 Ceramic 6 Cooling fluid discharge pipe 7 Ejector type vacuum pump 8 Ejector 9 Tank 10 Circulation pump 11 Circulation path

Claims (1)

熱交換容器に熱交換される被熱交換物と熱交換する熱交換源を、隔壁部材を介在して配置したものにおいて、隔壁部材の熱交換源側に、被熱交換物の有する熱を遠赤外線に変換して放射する熱放射部材を配置したことを特徴とする間接熱交換器。When a heat exchange source for exchanging heat with a heat exchange object to be heat-exchanged in a heat exchange container is disposed with a partition member interposed therebetween, heat of the heat exchange object is transferred to the heat exchange source side of the partition member. An indirect heat exchanger, comprising a heat radiation member that converts the radiation into infrared radiation.
JP2003109674A 2003-04-15 2003-04-15 Indirect heat exchanger Pending JP2004316992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003109674A JP2004316992A (en) 2003-04-15 2003-04-15 Indirect heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003109674A JP2004316992A (en) 2003-04-15 2003-04-15 Indirect heat exchanger

Publications (1)

Publication Number Publication Date
JP2004316992A true JP2004316992A (en) 2004-11-11

Family

ID=33470732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003109674A Pending JP2004316992A (en) 2003-04-15 2003-04-15 Indirect heat exchanger

Country Status (1)

Country Link
JP (1) JP2004316992A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034191A2 (en) * 2007-09-14 2009-03-19 Energy Products Group Nv Heat recovery apparatus
EP2559637A1 (en) * 2010-04-13 2013-02-20 Yatsuo Dairy Cooperative Method for contamination prevention in fluid storage tank requiring temperature control, and device therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034191A2 (en) * 2007-09-14 2009-03-19 Energy Products Group Nv Heat recovery apparatus
WO2009034191A3 (en) * 2007-09-14 2009-07-02 Energy Products Group Nv Heat recovery apparatus
EP2559637A1 (en) * 2010-04-13 2013-02-20 Yatsuo Dairy Cooperative Method for contamination prevention in fluid storage tank requiring temperature control, and device therefor
EP2559637A4 (en) * 2010-04-13 2015-07-01 Yatsuo Dairy Cooperative Method for contamination prevention in fluid storage tank requiring temperature control, and device therefor
US9248480B2 (en) 2010-04-13 2016-02-02 Yatsuo Dairy Cooperative Method for contamination prevention in fluid storage tank requiring temperature control, and device therefor
US10058903B2 (en) 2010-04-13 2018-08-28 Yatsuo Diary Cooperative Method for contamination prevention in fluid storage tank requiring temperature control, and device therefor
US10562082B2 (en) 2010-04-13 2020-02-18 Yatsuo Dairy Cooperative Method for contamination prevention in fluid storage tank requiring temperature control, and device therefor

Similar Documents

Publication Publication Date Title
CN106884297A (en) A kind of clothes drying device and clothes-drying method
JP5786132B2 (en) Electric car
CN108631024A (en) A kind of heat management battery system, thermal management algorithm and the battery control device of automobile
JP2004316992A (en) Indirect heat exchanger
JP5552193B2 (en) Distillation type hot water supply apparatus and energy saving heating unit thereof
JP2004313889A (en) Indirect heat exchanger
CN208850121U (en) A kind of immersion oil water-cooled cooling structure
CN210382557U (en) Air heat flow heating equipment
KR20190081999A (en) Loop Type Heat Pipe
CN210107548U (en) Non-contact heating floor heating system
CN210356084U (en) Evaporate appearance cold well soon
KR101242612B1 (en) Thermoelectric Power Generation System
JP4357872B2 (en) heat pipe
CN217785869U (en) Cement manufacture waste heat recovery device
CN216522327U (en) But waste heat utilization&#39;s biphase heat medium boiler
KR20190081998A (en) Heat Accumulation System
CN208349411U (en) A kind of energy-saving hot-pipe heating system
JPH102647A (en) Heating and cooling device
CN220788416U (en) Waste heat recycling device of chemical tempering furnace
CN211198668U (en) Waste water evaporator
RU2125696C1 (en) Heat exchange apparatus
CN209419877U (en) A kind of ceramic insulation device applied to heater
JP2001091170A (en) Heat carrying apparatus
KR200428048Y1 (en) The heating system using heating method with infrared rays a lamp
CN102287787A (en) Heat radiator arranged in vacuum cavity and applied to LED (Light Emitting Diode) single light source