JP2004316820A - Ventilated disc rotor and its method of manufacture - Google Patents

Ventilated disc rotor and its method of manufacture Download PDF

Info

Publication number
JP2004316820A
JP2004316820A JP2003113277A JP2003113277A JP2004316820A JP 2004316820 A JP2004316820 A JP 2004316820A JP 2003113277 A JP2003113277 A JP 2003113277A JP 2003113277 A JP2003113277 A JP 2003113277A JP 2004316820 A JP2004316820 A JP 2004316820A
Authority
JP
Japan
Prior art keywords
side disk
disk
free end
connecting member
end side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003113277A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nakanishi
宏之 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003113277A priority Critical patent/JP2004316820A/en
Publication of JP2004316820A publication Critical patent/JP2004316820A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the falling of a ventilated disk rotor by heat. <P>SOLUTION: For example, in casting, the metallographic structure of a free end side disk 3 is refined and the residual compressive stress of a free end side disk 3 is increased by rapidly cooling by cooling water the free end side disk 3 on the opposite side of a wheel connection member 2 to which a wheel connection member 8 is continuously connected thereto to reduce the thermal expansion of the free end side disk 3 having a thermal capacity smaller than that of a wheel connection member side disk 2 with large thermal capacity so as to reduce a difference in thermal expansion therebetween for suppressing the falling of a rotor body 1 by heat. The same effect can be obtained by, for example, forming a flow off on the wheel connection member side disk 2 side of a sand mold 4 or by disposing an inoculant 7 for promoting solidification at the free end side disk 3 portion of the sand mold 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、車両のディスクブレーキに使用されるベンチレーテッドディスクロータに関する。
【0002】
【従来の技術】
車両のディスクブレーキに使用されるベンチレーテッドディスクロータは、ブレーキパッドに挟着されて摺動する二つの摺動面間に隙間を形成し、冷却効率を高めるようにしたものである。このようなベンチレーテッドディスクロータにおいて、例えばその形状を工夫することにより、制動時に発生する熱でロータ本体が傾く、所謂熱倒れを改善するものがある(例えば特許文献1参照)。
【0003】
【特許文献1】
特開2000−46081公報
【0004】
【発明が解決しようとする課題】
しかしながら、前記従来のベンチレーテッドディスクロータでは、熱倒れの改善のために複雑な形状変更が必要となり、製造上のデメリットとなっている。
本発明は、上記のような問題点に着目してなされたもので、複雑な形状変更を必要とせず、熱倒れを改善することができるベンチレーテッドディスクロータ及びその製造方法を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明のベンチレーテッドディスクロータ及びその製造方法は、車輪連結部材側と反対側の自由端側ディスクの圧縮残留応力を、車輪連結部材側ディスクの圧縮残留応力より大きくしたことを特徴とするものである。なお、前記車輪連結部材側ディスクとは、車輪側部材、或いは車軸に連結される部材が連設されている側のディスク、自由端側ディスクとは、自由端側ディスクとは、前記冷却効果を高めるための隙間を挟んで前記車輪連結部材側ディスクに対向している側のディスクを示す。
【0006】
【発明の効果】
本発明のベンチレーテッドディスクロータ及びその製造方法によれば、自由端側ディスクの圧縮残留応力を、車輪連結部材側ディスクの圧縮残留応力より大きくしたことにより、熱容量の大きな車輪連結部材側ディスクに対し、熱容量が小さく、より高温になる自由端側ディスクの熱膨張を小さくし、これにより双方の熱膨張差を小さくすることができるので、複雑な形状変更を必要とせず、熱倒れを改善することができる。
【0007】
【発明の実施の形態】
次に、本発明の一実施形態について図面を参照しつつ説明する。
図1は、本実施形態に係るベンチレーテッドディスクロータの鋳造状態を示す説明図である。同図中、符号1はベンチレーテッドロータ本体、8は車輪側部材或いは車軸に連結される車輪連結部材、2は隙間を挟んで車輪連結部材側に連設する車輪連結部材側ディスク、3は、同じく隙間を挟んで前記車輪連結部材側ディスク2に対向する自由端側ディスクである。ちなみに、前記隙間は、周知のように、完全な隙間である必要はない。つまり、自由端側のブレーキパッド摺動面と、車輪連結部材側のブレーキパッド摺動面との間に放熱のための通路を形成すればよいのであって、その放熱通路を形式的に隙間と称する。また、前記車輪連結部材8は、一般にハットと呼ばれ、帽体形状をしており、この帽体形状の内側に車軸側部材、つまりハブナックルなどが取付けられ、帽体形状の外側に車輪側部材、つまりタイヤホイールが取付けられる。つまり、この実施形態の場合、前記帽体形状の車輪連結部材8が車輪連結部材側ディスク2側に突出しているので、前記自由端側ディスク3が車幅方向内側に位置し、車輪連結部材側ディスク2が車幅方向外側に位置する。
【0008】
前記ロータ本体1は、例えば黒鉛の含有量が、全組織中3.0%〜3.6%のFC100〜FC250相当のねずみ鋳鉄からなり、鋳鉄素材を溶かした溶湯を、予め成型した砂型(鋳型)4に流し込み、鋳込み後、所定の形状に加工する。そして、本実施形態では、前記溶湯が凝固し始めるときに、前記砂型4の一面、具体的には前記自由端側ディスク3側の面に冷却水を吹き付けて急冷する。冷却条件は、例えば毎秒30cmの冷却水を、前記砂型4の自由端側ディスク3側の面に満遍なく噴霧した。また、砂型4の車輪連結部材側ディスク2側の面は自然冷却、所謂放冷した。
【0009】
図2aには車輪連結部材側ディスク2、図2bには自由端側ディスク3の圧縮残留応力分布を示す。同図より、前記冷却水によって急冷された自由端側ディスク3の圧縮残留応力の方が、車輪連結部材側ディスク2の圧縮残留応力より大きいことが分かる。また、図3aには車輪連結部材側ディスク2、図3bには自由端側ディスクの金属組織の状態を示す。同図より、前記冷却水によって急冷された自由端側ディスク3の金属組織の方が、車輪連結部材側ディスクの金属組織より微細化されていることが分かる。
【0010】
このベンチレーテッドディスクロータをダイナモ試験機に取付け、所定の速度から停止状態まで減速する制動を所定回数繰り返した後、冷却中のロータ外周から5mmの位置での熱倒れ量を測定した。測定結果を図4に示す。なお、図中の比較例は、前記自由端側ディスク3側の冷却水による急冷を行っていないものである。同図から明らかなように、自由端側ディスク3を急冷した本実施形態(図では実施例)のベンチレーテッドディスクロータは、自由端側ディスクを急冷していない比較例のベンチレーテッドディスクロータに比して、熱倒れ量が小さい。これは、自由端側ディスク3の金属組織の微細化に伴って、当該自由端側ディスク3の圧縮残留応力が車輪連結部材側ディスク2の圧縮残留応力より大きいことに依存している。
【0011】
ベンチレーテッドディスクロータの熱倒れとは、例えば制動時の熱によって図5に示すようにロータ本体1が傾く現象で、車輪連結部材8が連設されている車輪連結部材側ディスク2の方が熱容量が大きく、相対的に熱容量の小さい自由端側ディスク3がより高温となるため、自由端側ディスク3の熱膨張が車輪連結部材側ディスク2の熱膨張より大きくなり、両者の熱膨張差によって熱倒れが発生する。そこで、本実施形態では、前記自由端側ディスク3の圧縮残留応力を大きくすることにより、当該自由端側ディスク3の膨張を抑制し、もって熱倒れを抑制することができる。圧縮残留応力は、引張応力に対する変形を抑制したり、熱膨張を抑制したりする作用があり、このうちの熱膨張抑制作用を利用して熱倒れを防止する。勿論、この実施形態では、ロータ本体1の複雑な形状変更を必要としない。
【0012】
図6は、本発明のベンチレーテッドディスクロータの他の実施形態を示す。この実施形態のベンチレーテッドディスクロータは、前記図1の実施形態のベンチレーテッドディスクロータと同じ形態であり、前記帽体形状の車輪連結部材8が車輪連結部材側ディスク2側に突出しているので、前記自由端側ディスク3が車幅方向内側に位置し、車輪連結部材側ディスク2が車幅方向外側に位置する。この実施形態では、前記砂型4のうち、ロータ本体1の車輪連結部材側ディスク2部分にフローオフ5が設けられている。図中の符号6は、夫々、湯道を示す。フローオフは、周知のように、揚りとも呼ばれ、溶湯が固った後に切削などにて取り除く部分である。本実施形態では、このフローオフにより車輪連結部材側ディスク2の冷却速度が遅くなる分、金属組織が均一化すると共に粗くなり、圧縮残留応力を小さくする作用がある。そのため、自由端側ディスク3の圧縮残留応力が車輪連結部材側ディスク2の圧縮残留応力より相対的に大きくなり、前記と同様に熱倒れを抑制する効果がある。
【0013】
図7は、本発明のベンチレーテッドディスクロータの更に他の実施形態を示す。この実施形態のベンチレーテッドディスクロータは、前記図1の実施形態のベンチレーテッドディスクロータと逆の形態であり、前記帽体形状の車輪連結部材8が自由端側ディスク3側に突出しているので、前車輪連結部材側ディスク2が車幅方向内側に位置し、自由端側ディスク3が車幅方向外側に位置する。この実施形態では、前記砂型4のうち、前記自由端側ディスク3が鋳込まれる部分に接種材7を配置してから注湯する。例えば砂型4の自由端側ディスク3と触れる部分の壁面に接種材7を噴霧するか、若しくは砂型4を作るための型の自由端側ディスク3の面に相当する部分に接種材7を噴霧しておき、砂型4を作ったときに砂型4の内壁に付着するようにしてもよい。接種材とは、一般に、鋳造製品の金属組織の改善や、脆化或いは引けといった鋳造不良の発生を抑制するものであり、例えばCa系、Si計、希土類からなる粉体からなり、黒鉛化促進効果がある。ここで、溶湯が、車輪連結部材側ディスク2及び自由端側ディスク3側に注湯されると、前記接種材7の黒鉛化促進効果によって自由端側ディスク3が早く凝固する。このとき、黒鉛組織の大きさを変える、具体的には自由端側ディスク3の金属組織を微細化することにより、当該自由端側ディスク3の圧縮残留応力が車輪連結部材側ディスク2の圧縮残留応力より相対的に大きくなり、前記と同様に、熱倒れを抑制する効果が得られる。
【図面の簡単な説明】
【図1】本発明のベンチレーテッドディスクロータの一実施形態を示す鋳造説明図である。
【図2】図1のベンチレーテッドディスクロータの圧縮残留応力の説明図である。
【図3】図1のベンチレーテッドディスクロータの金属組織の説明図である。
【図4】図1のベンチレーテッドディスクロータの熱倒れの説明図である。
【図5】ベンチレーテッドディスクロータの熱倒れの説明図である。
【図6】本発明のベンチレーテッドディスクロータの他の実施形態を示す鋳造説明図である。
【図7】本発明のベンチレーテッドディスクロータの更に他の実施形態を示す鋳造説明図である。
【符号の説明】
1はロータ本体
2は車輪連結部材側ディスク
3は自由端側ディスク
4は砂型
5はフローオフ
6は湯道
7は接種材
8は車輪連結部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ventilated disc rotor used for a disc brake of a vehicle.
[0002]
[Prior art]
In a ventilated disc rotor used for a disc brake of a vehicle, a gap is formed between two sliding surfaces that slide while being sandwiched between brake pads to increase cooling efficiency. Among such ventilated disk rotors, there is one in which the shape of the ventilated disk rotor is improved, for example, so-called thermal collapse, in which the rotor body is inclined by heat generated during braking (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP 2000-46081 A
[Problems to be solved by the invention]
However, the above-mentioned conventional ventilated disk rotor requires a complicated shape change in order to improve thermal collapse, which is a disadvantage in manufacturing.
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a ventilated disk rotor capable of improving thermal collapse without requiring a complicated shape change and a method of manufacturing the same. It is the purpose.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the ventilated disk rotor and the method of manufacturing the same according to the present invention determine the residual compressive stress of the free end side disk opposite to the wheel connecting member side from the compressive residual stress of the wheel connecting member side disk. It is characterized by being enlarged. In addition, the wheel connecting member side disk is a wheel side member or a disk on which a member connected to an axle is continuously provided, a free end side disk is a free end side disk, and the cooling effect is the same. 5 shows a disk on a side facing the wheel connecting member side disk with a gap for heightening therebetween.
[0006]
【The invention's effect】
According to the ventilated disk rotor and the method of manufacturing the same of the present invention, the compressive residual stress of the free end side disk is made larger than the compressive residual stress of the wheel connecting member side disk, so that the wheel connecting member side disk having a large heat capacity can be obtained. On the other hand, the thermal expansion of the free-end-side disk, which has a small heat capacity and becomes higher in temperature, is reduced, and the difference in thermal expansion between the two can be reduced. Therefore, a complicated shape change is not required, and the thermal collapse is improved. be able to.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory diagram showing a casting state of the ventilated disk rotor according to the present embodiment. In the figure, reference numeral 1 denotes a ventilated rotor main body, 8 denotes a wheel connecting member connected to a wheel side member or an axle, 2 denotes a wheel connecting member side disc connected to a wheel connecting member side with a gap therebetween, and 3 denotes a wheel connecting member. And a free end-side disk facing the wheel connecting member-side disk 2 with a gap therebetween. Incidentally, as is well known, the gap does not need to be a complete gap. In other words, a passage for heat dissipation may be formed between the brake pad sliding surface on the free end side and the brake pad sliding surface on the wheel connecting member side. Name. The wheel connecting member 8 is generally called a hat and has a hat shape. An axle-side member, that is, a hub knuckle, is attached to the inside of the hat shape, and the wheel side is mounted to the outside of the hat shape. A member, that is, a tire wheel is mounted. That is, in the case of this embodiment, since the cap-shaped wheel connecting member 8 protrudes toward the wheel connecting member side disk 2, the free end side disk 3 is located inward in the vehicle width direction, and the wheel connecting member side The disk 2 is located outside in the vehicle width direction.
[0008]
The rotor main body 1 is made of gray cast iron corresponding to FC100 to FC250, for example, having a graphite content of 3.0% to 3.6% in the entire structure, and a molten metal obtained by melting a cast iron material is sand-molded (mold) in advance. ) Pour into 4 and after casting, work into a predetermined shape. In this embodiment, when the molten metal starts to solidify, cooling water is sprayed onto one surface of the sand mold 4, specifically, the surface on the free end side disk 3 side to be rapidly cooled. As for the cooling conditions, for example, cooling water of 30 cm 3 per second was sprayed evenly on the surface of the sand mold 4 on the free end side disk 3 side. In addition, the surface of the sand mold 4 on the side of the wheel connecting member-side disk 2 was naturally cooled, that is, allowed to cool.
[0009]
FIG. 2A shows the distribution of compressive residual stress of the disk 2 on the wheel connecting member side, and FIG. It can be seen from the figure that the compressive residual stress of the free end side disk 3 quenched by the cooling water is larger than the compressive residual stress of the wheel connecting member side disk 2. FIG. 3A shows the metal structure of the wheel connecting member side disk 2 and FIG. 3B shows the metal structure of the free end side disk. From the figure, it can be seen that the metal structure of the free end side disk 3 quenched by the cooling water is finer than the metal structure of the wheel connecting member side disk.
[0010]
This ventilated disk rotor was attached to a dynamo tester, and braking was repeated a predetermined number of times from a predetermined speed to a stop state, and then the amount of thermal collapse at a position 5 mm from the outer periphery of the rotor during cooling was measured. FIG. 4 shows the measurement results. It should be noted that the comparative example in the figure does not perform rapid cooling with the cooling water on the free end side disk 3 side. As is clear from the figure, the ventilated disk rotor of the present embodiment (the example in the figure) in which the free end disk 3 is rapidly cooled is the ventilated disk rotor of the comparative example in which the free end disk is not rapidly cooled. The amount of heat falling is smaller than that of. This depends on the fact that the compressive residual stress of the free end-side disk 3 is larger than the compressive residual stress of the wheel connecting member-side disk 2 as the metal structure of the free end-side disk 3 becomes finer.
[0011]
The thermal collapse of the ventilated disk rotor is a phenomenon in which the rotor main body 1 is tilted as shown in FIG. 5 due to, for example, heat during braking. Since the free end side disk 3 having a large heat capacity and a relatively small heat capacity has a higher temperature, the thermal expansion of the free end side disk 3 becomes larger than the thermal expansion of the wheel connecting member side disk 2 and the difference in thermal expansion between the two. Thermal collapse occurs. Therefore, in the present embodiment, by increasing the compressive residual stress of the free-end-side disk 3, the expansion of the free-end-side disk 3 can be suppressed, and thus the thermal collapse can be suppressed. The compressive residual stress has an effect of suppressing deformation due to tensile stress and an effect of suppressing thermal expansion, and prevents thermal collapse by utilizing the effect of suppressing thermal expansion. Of course, in this embodiment, it is not necessary to change the shape of the rotor main body 1 in a complicated manner.
[0012]
FIG. 6 shows another embodiment of the ventilated disk rotor of the present invention. The ventilated disc rotor of this embodiment has the same form as the ventilated disc rotor of the embodiment of FIG. 1, and the cap-shaped wheel connecting member 8 protrudes toward the wheel connecting member side disk 2. Therefore, the free end side disk 3 is located inside the vehicle width direction, and the wheel connecting member side disk 2 is located outside the vehicle width direction. In this embodiment, a flow-off 5 is provided in a portion of the disk 2 on the wheel connecting member side of the rotor body 1 in the sand mold 4. Reference numeral 6 in the figure indicates a runner, respectively. As is well known, the flow-off is also called frying, and is a portion that is removed by cutting or the like after the molten metal has hardened. In the present embodiment, the flow-off reduces the cooling rate of the wheel connecting member-side disk 2, so that the metal structure becomes uniform and coarse, and the compressive residual stress is reduced. Therefore, the compressive residual stress of the free end side disk 3 becomes relatively larger than the compressive residual stress of the wheel connecting member side disk 2, and has the effect of suppressing thermal collapse as described above.
[0013]
FIG. 7 shows still another embodiment of the ventilated disk rotor of the present invention. The ventilated disc rotor of this embodiment has a configuration opposite to that of the ventilated disc rotor of the embodiment of FIG. 1, and the cap-shaped wheel connecting member 8 protrudes toward the free end side disc 3. Therefore, the front wheel connecting member side disk 2 is located inside the vehicle width direction, and the free end side disk 3 is located outside the vehicle width direction. In this embodiment, the inoculant 7 is placed in a portion of the sand mold 4 into which the free end disk 3 is cast, and then the molten metal is poured. For example, the inoculant 7 is sprayed on the wall surface of the portion of the sand mold 4 which comes into contact with the free end disk 3 or the inoculant 7 is sprayed on a portion corresponding to the surface of the free end disk 3 of the mold for making the sand mold 4. In addition, when the sand mold 4 is made, it may be attached to the inner wall of the sand mold 4. The inoculant is generally used to improve the metal structure of a cast product and to suppress the occurrence of casting defects such as embrittlement or shrinkage. effective. Here, when the molten metal is poured into the wheel connecting member side disk 2 and the free end side disk 3 side, the free end side disk 3 solidifies quickly due to the graphitization promoting effect of the inoculant 7. At this time, by changing the size of the graphite structure, specifically, by refining the metal structure of the free end-side disk 3, the compressive residual stress of the free-end-side disk 3 causes the compression residual stress of the wheel connecting member-side disk 2 to decrease. The stress becomes relatively larger than the stress, and the effect of suppressing thermal collapse can be obtained as described above.
[Brief description of the drawings]
FIG. 1 is an explanatory view of casting showing an embodiment of a ventilated disk rotor of the present invention.
FIG. 2 is an explanatory diagram of a compressive residual stress of the ventilated disk rotor of FIG.
FIG. 3 is an explanatory view of a metal structure of the ventilated disk rotor of FIG. 1;
FIG. 4 is an explanatory diagram of a thermal collapse of the ventilated disk rotor of FIG. 1;
FIG. 5 is an explanatory diagram of a thermal collapse of a ventilated disk rotor.
FIG. 6 is an explanatory view of a casting showing another embodiment of the ventilated disk rotor of the present invention.
FIG. 7 is an explanatory view of casting showing still another embodiment of the ventilated disk rotor of the present invention.
[Explanation of symbols]
1 is a rotor body 2 is a wheel connecting member side disk 3 is a free end side disk 4 is a sand mold 5 is a flow off 6 is a runner 7 is an inoculum 8 is a wheel connecting member

Claims (9)

車輪連結部材と反対側の自由端側ディスクの圧縮残留応力が、車輪連結部材側ディスクの圧縮残留応力より大きいことを特徴とするベンチレーテッドディスクロータ。A ventilated disk rotor, wherein the residual compressive stress of the free end side disk opposite to the wheel connecting member is larger than the residual compressive stress of the wheel connecting member side disk. 前記自由端側ディスクのブレーキパッド摺動表面のみに、車輪連結部材側ディスクの圧縮残留応力より大きい圧縮残留応力を発生させることを特徴とする請求項1に記載のベンチレーテッドディスクロータ。2. The ventilated disk rotor according to claim 1, wherein a compressive residual stress greater than a compressive residual stress of the wheel connecting member side disk is generated only on a sliding surface of the brake pad of the free end side disk. 前記自由端側ディスクの断面全域に、車輪連結部材側ディスクの圧縮残留応力より大きい圧縮残留応力を発生させることを特徴とする請求項1に記載のベンチレーテッドディスクロータ。The ventilated disk rotor according to claim 1, wherein a compressive residual stress greater than a compressive residual stress of the wheel connecting member side disk is generated in the entire cross section of the free end side disk. 前記自由端側ディスクのみを急冷して、当該自由端側ディスクの圧縮残留応力を、車輪連結部材側ディスクの圧縮残留応力より大きくしたことを特徴とする請求項1に記載のベンチレーテッドディスクロータ。2. The ventilated disk rotor according to claim 1, wherein only the free end side disk is rapidly cooled, and a compressive residual stress of the free end side disk is made larger than a compressive residual stress of the wheel connecting member side disk. . 鋳造時、車輪連結部材側ディスクの金属凝固が自由端側ディスクの金属凝固より遅くなるようにして、当該自由端側ディスクの圧縮残留応力を、車輪連結部材側ディスクの圧縮残留応力より大きくしたことを特徴とする請求項1に記載のベンチレーテッドディスクロータ。During casting, the metal solidification of the wheel connecting member side disk is made slower than the metal solidification of the free end side disk, and the compressive residual stress of the free end side disk is made larger than the compressive residual stress of the wheel connecting member side disk. The ventilated disk rotor according to claim 1, wherein: 鋳造時、自由端側ディスクの鋳型内に接種材を配置し、当該自由端側ディスクの金属組織の微細化を促進させて、当該自由端側ディスクの圧縮残留応力を、車輪連結部材側ディスクの圧縮残留応力より大きくしたことを特徴とする請求項1に記載のベンチレーテッドディスクロータ。At the time of casting, the inoculum is placed in the mold of the free-end-side disk to promote the miniaturization of the metal structure of the free-end-side disk, and to reduce the compressive residual stress of the free-end-side disk to the wheel connecting member-side disk. 2. The ventilated disk rotor according to claim 1, wherein said ventilated disk rotor is larger than a compressive residual stress. 車輪連結部材と反対側の自由端側ディスクのみを急冷して、当該自由端側ディスクの圧縮残留応力を、車輪連結部材側ディスクの圧縮残留応力より大きくしたことを特徴とするベンチレーテッドディスクロータの製造方法。A ventilated disk rotor characterized in that only the free end side disk opposite to the wheel connecting member is quenched so that the compressive residual stress of the free end side disk is larger than the compressive residual stress of the wheel connecting member side disk. Manufacturing method. 鋳造時、車輪連結部材側ディスクの金属凝固が車輪連結部材と反対側の自由端側ディスクの金属凝固より遅くなるようにして、当該自由端側ディスクの圧縮残留応力を、車輪連結部材側ディスクの圧縮残留応力より大きくしたことを特徴とするベンチレーテッドディスクロータの製造方法。At the time of casting, the metal solidification of the wheel connecting member side disk is made slower than the metal solidification of the free end side disk opposite to the wheel connecting member, and the compressive residual stress of the free end side disk is reduced. A method for manufacturing a ventilated disk rotor, wherein the residual stress is larger than a compressive residual stress. 鋳造時、車輪連結部材と反対側の自由端側ディスクの鋳型内に接種材を配置し、当該自由端側ディスクの金属組織の微細化を促進させて、当該自由端側ディスクの圧縮残留応力を、車輪連結部材側ディスクの圧縮残留応力より大きくしたことを特徴とするベンチレーテッドディスクロータの製造方法。At the time of casting, an inoculum is placed in the mold of the free end side disk opposite to the wheel connecting member to promote the miniaturization of the metal structure of the free end side disk and reduce the compressive residual stress of the free end side disk. A method for manufacturing a ventilated disk rotor, wherein the compression residual stress is made larger than the compression residual stress of the wheel connecting member side disk.
JP2003113277A 2003-04-17 2003-04-17 Ventilated disc rotor and its method of manufacture Pending JP2004316820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113277A JP2004316820A (en) 2003-04-17 2003-04-17 Ventilated disc rotor and its method of manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113277A JP2004316820A (en) 2003-04-17 2003-04-17 Ventilated disc rotor and its method of manufacture

Publications (1)

Publication Number Publication Date
JP2004316820A true JP2004316820A (en) 2004-11-11

Family

ID=33473259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113277A Pending JP2004316820A (en) 2003-04-17 2003-04-17 Ventilated disc rotor and its method of manufacture

Country Status (1)

Country Link
JP (1) JP2004316820A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034056A (en) * 2012-08-10 2014-02-24 Nissan Motor Co Ltd Method of manufacturing structural member
JP2016017559A (en) * 2014-07-08 2016-02-01 クアーズテック株式会社 Braking material using fiber-reinforced composite material
CN108087466A (en) * 2017-12-27 2018-05-29 将乐县和轩刹车片厂 A kind of brake block with cooling function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034056A (en) * 2012-08-10 2014-02-24 Nissan Motor Co Ltd Method of manufacturing structural member
JP2016017559A (en) * 2014-07-08 2016-02-01 クアーズテック株式会社 Braking material using fiber-reinforced composite material
CN108087466A (en) * 2017-12-27 2018-05-29 将乐县和轩刹车片厂 A kind of brake block with cooling function

Similar Documents

Publication Publication Date Title
JP4210468B2 (en) Cast iron cast-in member
WO2003095129A1 (en) Cast iron internal chill member and method of producing the same
CN102407286B (en) Manufacture the method for brake component
KR20170120725A (en) Disc brake and brake pad set for a disc brake
JP4210469B2 (en) Method for producing cast iron cast member
JP2004316820A (en) Ventilated disc rotor and its method of manufacture
JP2002346694A (en) Metallic mold for multi-gate casting and casting method
WO2004101197A3 (en) Method for centrifugal casting
JP2001198663A (en) Low-pressure casting method for wheel for vehicle
JPH1099953A (en) Centrifugal casting method
JP2799449B2 (en) Mold structure of vehicle wheel
KR100227355B1 (en) Method for manufacturing aluminium brake disk
JP2008309181A (en) Caliper body for disc brakes, casting mould for its manufacture, and method of manufacturing caliper body for disc brake using its casting mould
JPS5857529A (en) Brake rotor of disc brake
JP2010227965A (en) Method for controlling solidification of casting
CN110657175A (en) Composite material brake drum and preparation method thereof
JP5499619B2 (en) Manufacturing method of grinding wheel core and manufacturing method of grinding wheel
JP4091808B2 (en) Casting mold for vehicle wheel
JPH09132003A (en) Drum hub made from casting
JP2018158363A (en) Metal mold cooling mechanism
JPH0718462B2 (en) Disc brake rotor and manufacturing method
JP5060458B2 (en) Die-cast mold and die-cast method
JP3435936B2 (en) Lightweight composite brake disc and method of manufacturing the same
JP2007211828A (en) Brake disk rotor and method of manufacturing brake disk rotor
JPS5910445A (en) Chiller for casting