JP2004315660A - Porous polyamideimide film and its manufacturing method - Google Patents

Porous polyamideimide film and its manufacturing method Download PDF

Info

Publication number
JP2004315660A
JP2004315660A JP2003111656A JP2003111656A JP2004315660A JP 2004315660 A JP2004315660 A JP 2004315660A JP 2003111656 A JP2003111656 A JP 2003111656A JP 2003111656 A JP2003111656 A JP 2003111656A JP 2004315660 A JP2004315660 A JP 2004315660A
Authority
JP
Japan
Prior art keywords
film
porous
polyamide
imide
polyamideimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003111656A
Other languages
Japanese (ja)
Other versions
JP4288566B2 (en
Inventor
Kazutake Okamoto
和丈 岡本
Keizo Kawahara
恵造 河原
Tadashi Inukai
忠司 犬飼
Jun Yamada
潤 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2003111656A priority Critical patent/JP4288566B2/en
Publication of JP2004315660A publication Critical patent/JP2004315660A/en
Application granted granted Critical
Publication of JP4288566B2 publication Critical patent/JP4288566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous film useful as a member of a cell and the like having a specified porosity which is excellent in heat resistance and chemical resistance and satisfies pore characteristics, and its manufacturing method. <P>SOLUTION: The porous polyamideimide film has a porosity of 10-95 vol%. Preferably, the surface of the porous polyamideimide film has an average pore size of 0.3-10 μm. More preferably, the polyamideimide resin constituting the film comprises a component having an o-tolidine structure as a diamine component. The manufacturing method of the porous polyamideimide film comprises forming a solution, obtained by dissolving the polyamideimide resin in a solvent, into a sheet by a casting method, coagulating the sheet by an aqueous coagulant solvent and subsequently drying the film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、多孔質ポリアミドイミドフイルムに関する。さらに詳しくは空孔率が特定された電池部材などに有用な多孔質ポリアミドイミドフイルムに関するものである。
【0002】
【従来の技術】
多孔質ポリアミドイミド薄膜は、耐熱性、耐薬品性、耐γ線性等に優れており、特開平6−165819号公報、特開平7−100201号公報、特開平10−94721号公報、特開平11−216344号公報、特開2000−288370号公報等で血液浄化用膜、限外濾過膜、除湿膜等としての応用が開示されている。
【0003】
一方、近年電池の高性能化、小型化、安全性向上等の市場要求に答えるために、該電池用部材であるセパレーターや電解質を保持するための多孔質フイルムとして、耐熱性や耐薬品性の高い素材よりなる多孔質フイルムの開発要望がでている。前記した多孔質ポリアミドイミド膜は耐熱性や耐薬品性の点ではその要求に答えられる。しかし、前記した公知の多孔質ポリアミドイミドフイルムは、空孔率が低く、かつ孔径が小さいため、上記の電池用の部材等の分野に展開することはできなかった。
【0004】
他方、ポリアクリロニトリル系ポリマー、ポリビニルフルオライドポリマー、エラストマー系ポリマー、ポリオレフィン系ポリマーおよびポリアクリロニトリル系ポリマーよりなる電池部材用の多孔質フイルムが特開平10−255840号公報、特開平11−102686号公報、特開平11−329395号公報、特開2000−239426号公報、特開2001−196045号公報等に開示されている。これらの多孔質シートは、空孔率等では上記した市場要求に答えるものであるが、耐熱性が不足しており市場要求の全てを満足していなかった。そのため、これらの分野等に展開できる耐熱性や耐薬品性に優れ、かつ開孔特性を満足する多孔質フイルムの開発が嘱望されていた。
【0005】
【特許文献1】
特開平6−165819号公報
【特許文献2】
特開平7−100201号公報
【特許文献3】
特開平10−94721号公報
【特許文献4】
特開平11−216344号公報
【特許文献5】
特開2000−288370号公報
【特許文献6】
特開平10−255840号公報
【特許文献7】
特開平11−102686号公報
【特許文献8】
特開平11−329395号公報
【特許文献9】
特開平2000−239426号公報
【特許文献10】
特開2001−196045号公報
【0006】
【発明が解決しようとする課題】
本発明は、かかる事情に鑑みてなされたものであって、前記した電池部材用などに展開できる耐熱性や耐薬品性に優れ、かつ開孔特性を満足する多孔質フイルムを提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明は、空孔率が10〜95体積%であることを特徴とする多孔質ポリアミドイミドフイルムである。好ましい態様は、前記多孔質ポリアミドイミドフイルムの表面の平均孔径が0.3〜10μmである。更に好ましい態様は、フイルムを構成するポリアミドイミド樹脂のジアミン成分としてo−トリジン構造を有した成分を含む。また本発明は、ポリアミドイミド樹脂を溶媒に溶解した溶液を流延法でシート状に成形した後、水系の凝固溶剤で凝固させ、次いで乾燥することで形成されたことを特徴とする前記多孔質ポリアミドイミドフイルムの製造法である。
【0008】
【発明の実施の形態】
本発明の多孔質ポリアミドイミドフイルムを構成するポリアミドイミド樹脂について説明する。
本発明に用いられる前記ポリアミドイミド樹脂の製造法は限定なく任意である。例えば、トリメリット酸クロリドとジアミンを用いる酸クロリド法やトリメリット酸無水物とジイソシアネートを用いるジイソシアネート法等の通常の方法が例示される。製造コストの点からジイソシアネート法が好ましい。
【0009】
本発明に用いられるポリアミドイミド樹脂の合成に用いられる酸成分は、トリメリット酸無水物(クロリド)が望ましいが、その一部を他の多塩基酸またはその無水物に置き換えることができる。例えば、ピロメリット酸、ビフェニルテトラカルボン酸、ビフェニルスルホンテトラカルボン酸、ベンゾフェノンテトラカルボン酸、ビフェニルエーテルテトラカルボン酸、エチレングリコールビストリメリテート、プロピレングリコールビストリメリテート等のテトラカルボン酸及びこれらの無水物、シュウ酸、アジピン酸、マロン酸、セバチン酸、アゼライン酸、ドデカンジカルボン酸、ジカルボキシポリブタジエン、ジカルボキシポリ(アクリロニトリル−ブタジエン)、ジカルボキシポリ(スチレン−ブタジエン)等の脂肪族ジカルボン酸、1,4−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、4,4’−ジシクロヘキシルメタンジカルボン酸、ダイマー酸等の脂環族ジカルボン酸、テレフタル酸、イソフタル酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸が挙げられる。
【0010】
本発明においては、請求項4に記載のごとく末端にカルボキシル基、水酸基およびアミノ基の何れかを有するブタジエン系ゴム、ポリアルキレンエーテルおよびポリエステルのうち1種又は2種以上を共重合することが好ましい実施態様である。ブタジエン系ゴム成分は、分子量が1000以上のジカルボキシポリブタジエン、ジカルボキシポリ(アクリロニトリル−ブタジエン)、ジカルボキシポリ(スチレン−ブタジエン)、ジアミノポリブタジエン、ジアミノポリ(アクリロニトリル−ブタジエン)、ジアミノポリ(スチレン−ブタジエン)を用いるのが好ましい。
【0011】
また、トリメリット酸化合物の一部をグリコールに置き換えることでポリアルキレンエーテルやポリエステル共重合体を得ることができる。グリコールとしてはエチレングリコール、プロピレングリコール、テトラメチレングリコール、ネオペンチルグリコール、ヘキサンジオール等のアルキレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコールや上述のジカルボン酸の1種又は2種以上と上記グリコールの1種又は2種以上とから合成される、末端水酸基のポリエステル等が挙げられる。分子量が1000以上のポリエチレングリコール、または末端水酸基のポリエステルを共重合することが好ましい。それらの共重合量は全酸成分を100モル%としたときに2〜30モル%であることが好ましい。上記した共重合により多孔質ポリアミドイミドフイルムの強靭性を高めることができる。
【0012】
ポリアミドイミド樹脂の合成に用いられるジアミン(ジイソシアネート)成分としては、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン等の脂肪族ジアミン及びこれらのジイソシアネート、1,4−シクロヘキサンジアミン、1,3−シクロヘキサンジアミン、イソホロンジアミン、4,4’−ジシクロヘキシルメタンジアミン等の脂環族ジアミン及びこれらのジイソシアネート、m−フェニレンジアミン、p−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、ベンジジン、o−トリジン、2,4−トリレンジアミン、2,6−トリレンジアミン、キシリレンジアミン等の芳香族ジアミン及びこれらのジイソシアネート等が挙げられ、これらの中では反応性、コスト、耐薬品性の点から4,4’−ジアミノジフェニルメタン、o−トリジン及びこれらに対応するジイソシアネートが好ましい。中でも請求項3に記載のごとく、o−トリジン及びこれに対応するジイソシアネートを共重合することが好ましい実施態様である。その共重合量は全アミン成分を100モル%としたときに、その両成分が30〜80モル%であることが好ましく、該共重合により多孔質ポリアミドイミドフイルムの強度を上げることができる。
【0013】
上記したポリアミドイミド樹脂は、対数粘度が0.5dl/g以上であり、かつガラス転移温度が100℃以上であるものが、耐熱性や強度の点で好ましい。
【0014】
本発明においては、フイルムの空孔率を10〜95体積%にする必要がある。20〜85体積%が好ましく、30〜80体積%が特に好ましい。該空孔率の最適値は、フイルムの使用目的によって異なるが、例えば電池のセパレーター等の隔離膜や電池の電解質の保持膜等の含浸フイルムとして使用する場合、10体積%未満では、通気量、通液量および含浸液量が少なくなるので好ましくない。一方、95体積%を越えた場合はフイルムの強度が低下するので好ましくない。
【0015】
また、本発明においては、請求項2に記載のごとく、フイルム表面の平均孔径が0.3〜10μmであることが好ましい実施態様である。0.5〜9μmが好ましく、1〜8μmが特に好ましい。電池部材の用途に適用した場合、0.3μm未満では、通気量、通液量および含浸液量が少なくなるので好ましくない。一方、10μmを越えた場合はフイルムの強度が低下するので好ましくない。該孔径はフイルムの両面が本特性を満足するのが好ましいが、片面のみが満足するものも本発明の範囲に含まれる。
【0016】
本発明においては、上記した特性を付与する方法は限定されず任意である。例えば、後述するフイルムの製造法において、ポリアミドイミド樹脂溶液の樹脂組成、孔径調整剤、溶媒の種類、樹脂濃度、成形時の膜厚み、凝固液の種類および凝固条件等により制御することができる。市場要求の特性の製品が得られる組成や条件を適宜設定することで対応するのが好ましい実施態様である。
【0017】
本発明の多孔質ポリアミドイミドフイルムは、前記した液体用用途のみでなく気体用の隔離膜としても適用できる。該用途に展開する場合は、通気度が0.5〜5000sec/100ccAirであることが好ましい。
【0018】
本発明の多孔質ポリアミドイミドフイルムは、請求項5に記載のごとくポリアミドイミド樹脂を該樹脂を溶媒に溶解した溶液を流延法で薄膜状に成形した後、水系の凝固液で凝固させ、次いで乾燥することで形成される。
【0019】
上記した製造法において用いられるポリアミドイミド樹脂を溶解させることのできる溶媒は、本機能を有したものであれば限定なく任意であるが、N,N’−ジメチルホルムアミド、N,N’−ジメチルアセトアミド、N−メチル−2−ピロリドン、γ―ブチロラクトン等の極性溶剤が挙げられる。また、必要に応じてトリエチルアミン、ジエチレントリアミン等のアミン類、フッ化ナトリウム、フッ化カリウム、フッ化セシウム、ナトリウムメトキシド等のアルカリ金属塩等の助剤を用いることもできる。
【0020】
上記した溶媒に溶解した溶液は、ポリアミドイミド樹脂を前記した溶媒に溶解しても良いし、該ポリアミドイミド樹脂を溶液法で重合した場合は、該重合で得られた溶液をそのまま用いても良い。該方法の場合、重合時あるいは重合終了後に孔径調整剤等の配合剤を添加することや樹脂濃度の調整等を実施することも何ら制限を受けない。
【0021】
本発明においては、上記した溶液を用いて流延法で薄膜状に成形されるが、該成形法の限定はなく任意である。例えば、上記した溶液をスリットダイよりポリエステルフイルム等の支持体の表面に押し出して薄膜化する等の方法が挙げられる。
【0022】
本発明においては、上記シートを水系の凝固液と接触させることにより凝固される。該凝固液の組成は限定なく、任意であるが水または水とメタノール、エタノール、プロパノール等の低級アルコールとの混合体を挙げることができる。また、ポリアルキレングリコール等の凝固遅延剤等の配合剤を添加する等も何ら制限を受けない。
【0023】
次いで行われる乾燥方法も限定なく任意であるが、例えばフイルムに熱風をあてる熱風乾燥法が挙げられる。
【0024】
本発明においては、上記した製造法の条件は、前記したごとく市場要求の特性の製品が得られる組成や条件を適宜設定することことができる。
【0025】
本発明の多孔質ポリアミドイミドフイルムの厚みは、限定なく市場要求に従って任意に設定できるが、一般的には3〜200μmである。
【0026】
本発明の多孔質ポリアミドイミドフイルムは、該フイルム単独で用いても良いし、他の材質の多孔質フイルムやシートと複合して用いても良い。また、他の機能性のフイルムやシートと複合して使用することも何ら制限を受けない。
【0027】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。実施例中で示される特性は、以下の方法で測定、評価したものである。
【0028】
(1)空孔率
測定対象のフイルムを直径60mmの円状に切り抜き、その体積と重量を求め、
得られる結果から次式を用いて計算する。
空孔率(体積%)=100×{体積(cm)−重量(g)/樹脂の平均密度(g/cm)}/体積(cm
【0029】
(2)フイルム表面の平均孔径
測定対象のフイルム表面を5000倍の倍率で走査型電子顕微鏡を用いて観察し、孔の直径(最大径)を測定し、その平均値を求めた。
【0030】
(3)対数粘度
ポリアミドイミド樹脂0.5gを100mlのN−メチル−2−ピロリドンに溶解した溶液を30℃に保ちウベローデ粘度管を用いて測定した。
【0031】
(4)ガラス転移温度
測定幅4mm、長さ15mmのポリアミドイミドフィルムをレオロジー社製DVE−V4レオスペクトラーを用い、周波数110Hzの振動を与えて測定した動的粘弾性の損失弾性率の変曲点をガラス転移温度とした。
【0032】
(実施例1)
温度計、冷却管、窒素ガス導入管のついた4ツ口フラスコにトリメリット酸無水物(TMA)1モル、ジフェニルメタンジイソシアネート(MDI)1モル、フッ化カリウム0.01モルを固形分濃度が20重量%となるようにN−メチル−2−ピロリドンと共に仕込み、120℃で1.5時間攪拌した後180℃に昇温して更に約3時間攪拌を行いポリアミドイミド樹脂を合成した。得られたポリアミドイミド樹脂の対数粘度は0.86dl/g、ガラス転移温度は290℃であった。
【0033】
このポリアミドイミド樹脂溶液を100μm厚みのポリエステルフィルム上に塗布し、得られた複層フイルムを25℃の水/メタノール(3/1容量比)よりなる凝固液に浸漬しポリアミドイミド樹脂を凝固させた後、ポリエステルフィルムからポリアミドイミドフイルムを剥がし取り、緊張下、130℃で乾燥し、厚み25μmの多孔質ポリアミドイミドフイルムを得た。得られたフイルムの評価結果を表1に示す。
【0034】
(実施例2)
実施例1において、酸成分をTMA0.9モルとジカルボキシポリ(アクリロニトリル−ブタジエン)ゴム(宇部興産製ハイカーCTBN1300X13:分子量3500)を0.1モルとした以外は、実施例1と同様にして実施例2の多孔質ポリアミドイミドフイルムを得た。得られたフイルムの評価結果を表1に示す。なお、本実施例で得られたポリアミドイミド樹脂の対数粘度は0.65dl/g、ガラス転移温度は203℃であった。上記方法で得られたポリアミドイミド樹脂溶液を用いて、実施例1と同様にして実施例2の多孔質ポリアミドイミドフイルムを得た。得られたフイルムの評価結果を表1に示した。
【0035】
(実施例3)
実施例1と同じ装置を用い、TMA0.94モル、分子量2000のポリプロピレングリコール0.06モル、イソホロンジイソシアネート1.02モルを固形分濃度が50%となるようにγ−ブチロラクトンと共に仕込み200℃で3時間反応させた後、固形分濃度が20重量%となるようにN−メチル−2−ピロリドンで希釈してポリアミドイミド樹脂溶液を合成した。得られたポリアミドイミド樹脂の対数粘度は0.63dl/g、ガラス転移温度は198℃であった。上記方法で得られたポリアミドイミド樹脂溶液を用いて、実施例1と同様にして実施例3の多孔質ポリアミドイミドフイルムを得た。得られたフイルムの評価結果を表1に示した。
【0036】
(実施例4)
実施例1と同じ装置を用い、TMA0.93モル、ポリカプロラクトン(ダイセル化学製プラクセル220:分子量2000)0.07モル、MDI1.02モル、フッ化カリウム0.02モルを固形分濃度が50重量%となるようにγ−ブチロラクトンと共に仕込み、200℃で約5時間反応させた後固形分濃度が20重量%となるようにN−メチル−2−ピロリドンで希釈しポリアミドイミド樹脂溶液を得た。得られたポリアミドイミド樹脂の対数粘度は0.71dl/g、ガラス転移温度は175℃であった。上記方法で得られたポリアミドイミド樹脂溶液を用いて、実施例1と同様にして実施例4の多孔質ポリアミドイミドフイルムを得た。得られたフイルムの評価結果を表1に示した。
【0037】
(実施例5)
実施例1と同じ装置を用い、TMA0.5モル、ダイマー酸0.5モル、o−トリジンジイソシアネート(3,3’−ジメチル−4,4’−ビフェニルジイソシアネ−ト)0.5モル、MDI0.5モルを固形分濃度が30重量%となるようにN−メチル−2−ピロリドンと共に仕込み、120℃で1.5時間、180℃で3時間反応させた後、固形分濃度が20重量%となるようにN−メチル−2−ピロリドンで希釈しポリアミドイミド樹脂溶液を得た。得られたポリアミドイミド樹脂の対数粘度は0.70dl/g、ガラス転移温度は153℃であった。前記方法で得られたポリアミドイミド樹脂溶液を用いて、凝固液を水/イソプロパノール(2/1容量比)とする以外は、実施例1と同様にして実施例5の多孔質ポリアミドイミドフイルムを得た。得られたフイルムの評価結果を表1に示した。
【0038】
(比較例1)
市販のポリアミドイミド樹脂(アモコ・ジャパン社製、トーロン4000T)20重量%および市販のポリエーテルスルホン樹脂(アモコ・ジャパン社製、レーデルA100)6重量%となるようN−メチルピロリドンに溶解しポリアミドイミド樹脂組成物の溶液を得た。得られた溶液を、室温条件下でガラス基板上に流延し、風乾させたの後、水中に浸漬して凝固させ、ガラス基板から剥がして厚み70μmの多孔質ポリアミドイミドフイルムを得た。得られたフイルムの評価結果を表1に示した。
【0039】
【表1】

Figure 2004315660
【0040】
【発明の効果】
以上のとおり、本発明の多孔質ポリアミドイミドフイルムは特定された空孔率を有し、かつ耐熱性等に優れているので、例えば電池のセパレーター等の隔離膜や電池の電解質の保持膜等の含浸フイルムとして好適に使用することができる。また、経済的に製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a porous polyamide-imide film. More specifically, the present invention relates to a porous polyamide-imide film useful for a battery member having a specified porosity.
[0002]
[Prior art]
The porous polyamideimide thin film is excellent in heat resistance, chemical resistance, γ-ray resistance, etc., and is disclosed in JP-A-6-165819, JP-A-7-100201, JP-A-10-94721, and JP-A-11-94721. JP-A-216344 and JP-A-2000-288370 disclose applications as blood purification membranes, ultrafiltration membranes, dehumidification membranes, and the like.
[0003]
On the other hand, in recent years, in order to respond to market demands for higher performance, smaller size, improved safety, etc. of the battery, as a porous film for holding the separator or electrolyte which is a member for the battery, heat resistance and chemical resistance are required. There has been a demand for the development of porous films made of high materials. The above-mentioned porous polyamide-imide film can meet the requirements in terms of heat resistance and chemical resistance. However, the above-mentioned known porous polyamide-imide film has a low porosity and a small pore diameter, and thus cannot be applied to the field of the above-mentioned battery member and the like.
[0004]
On the other hand, a porous film for a battery member composed of a polyacrylonitrile-based polymer, a polyvinyl fluoride polymer, an elastomer-based polymer, a polyolefin-based polymer, and a polyacrylonitrile-based polymer is disclosed in JP-A-10-255840, JP-A-11-102686, It is disclosed in JP-A-11-329395, JP-A-2000-239426, JP-A-2001-196045 and the like. These porous sheets meet the above-mentioned market requirements in terms of porosity and the like, but have insufficient heat resistance and do not satisfy all of the market requirements. Therefore, development of a porous film which is excellent in heat resistance and chemical resistance and can satisfy the opening characteristics, which can be applied to these fields and the like, has been demanded.
[0005]
[Patent Document 1]
JP-A-6-165819 [Patent Document 2]
JP-A-7-100201 [Patent Document 3]
JP-A-10-94721 [Patent Document 4]
JP-A-11-216344 [Patent Document 5]
Japanese Patent Application Laid-Open No. 2000-288370 [Patent Document 6]
JP-A-10-255840 [Patent Document 7]
JP-A-11-102686 [Patent Document 8]
JP-A-11-329395 [Patent Document 9]
Japanese Patent Application Laid-Open No. 2000-239426 [Patent Document 10]
JP 200119645 A
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a porous film that is excellent in heat resistance and chemical resistance that can be developed for a battery member and the like and that satisfies opening characteristics. And
[0007]
[Means for Solving the Problems]
The present invention is a porous polyamide-imide film having a porosity of 10 to 95% by volume. In a preferred embodiment, the average pore diameter on the surface of the porous polyamideimide film is 0.3 to 10 μm. A further preferred embodiment includes a component having an o-tolidine structure as a diamine component of the polyamideimide resin constituting the film. Further, the present invention is characterized in that the porous material is formed by forming a solution obtained by dissolving a polyamideimide resin in a solvent into a sheet by a casting method, coagulating with a water-based coagulating solvent, and then drying. This is a method for producing a polyamide-imide film.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The polyamide imide resin constituting the porous polyamide imide film of the present invention will be described.
The method for producing the polyamideimide resin used in the present invention is not limited and is optional. For example, ordinary methods such as an acid chloride method using trimellitic acid chloride and diamine and a diisocyanate method using trimellitic anhydride and diisocyanate are exemplified. The diisocyanate method is preferred from the viewpoint of production cost.
[0009]
The acid component used for synthesizing the polyamideimide resin used in the present invention is desirably trimellitic anhydride (chloride), but a part thereof can be replaced with another polybasic acid or its anhydride. For example, pyromellitic acid, biphenyltetracarboxylic acid, biphenylsulfonetetracarboxylic acid, benzophenonetetracarboxylic acid, biphenylethertetracarboxylic acid, ethylene glycol bistrimellitate, tetracarboxylic acids such as propylene glycol bistrimellitate and anhydrides thereof, Aliphatic dicarboxylic acids such as oxalic acid, adipic acid, malonic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, dicarboxypolybutadiene, dicarboxypoly (acrylonitrile-butadiene) and dicarboxypoly (styrene-butadiene); Alicyclic dicarboxylic acids such as -cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 4,4'-dicyclohexylmethanedicarboxylic acid, dimer acid, terephthalic acid, isophthalic acid And aromatic dicarboxylic acids such as sulfonic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, and naphthalenedicarboxylic acid.
[0010]
In the present invention, it is preferable to copolymerize one or more of butadiene rubber, polyalkylene ether and polyester having a carboxyl group, a hydroxyl group or an amino group at the terminal as described in claim 4. It is an embodiment. The butadiene rubber component includes dicarboxypolybutadiene, dicarboxypoly (acrylonitrile-butadiene), dicarboxypoly (styrene-butadiene), diaminopolybutadiene, diaminopoly (acrylonitrile-butadiene) and diaminopoly (styrene-butadiene) having a molecular weight of 1,000 or more. Preferably, it is used.
[0011]
Further, a polyalkylene ether or a polyester copolymer can be obtained by replacing a part of the trimellitic acid compound with glycol. Examples of the glycol include ethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol, alkylene glycols such as hexanediol, polyalkylene glycols such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol, and one or two kinds of the above dicarboxylic acids. Examples include polyesters having terminal hydroxyl groups, which are synthesized from the above and one or more of the above glycols. It is preferable to copolymerize a polyethylene glycol having a molecular weight of 1,000 or more or a polyester having a terminal hydroxyl group. The copolymerization amount thereof is preferably 2 to 30 mol% when the total acid component is 100 mol%. By the above copolymerization, the toughness of the porous polyamideimide film can be increased.
[0012]
Examples of the diamine (diisocyanate) component used in the synthesis of the polyamideimide resin include aliphatic diamines such as ethylenediamine, propylenediamine, and hexamethylenediamine, and diisocyanates thereof, 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, and isophoronediamine. , Alicyclic diamines such as 4,4'-dicyclohexylmethanediamine and diisocyanates thereof, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylether, 4,4 ' Aromatic diamines such as diaminodiphenylsulfone, benzidine, o-tolidine, 2,4-tolylenediamine, 2,6-tolylenediamine, xylylenediamine, and diisocyanates thereof; Among them, 4,4'-diaminodiphenylmethane, o-tolidine and the corresponding diisocyanate are preferred in view of reactivity, cost and chemical resistance. In particular, as described in claim 3, it is a preferred embodiment to copolymerize o-tolidine and a corresponding diisocyanate. The copolymerization amount is preferably from 30 to 80 mol% when the total amine component is 100 mol%, and the copolymerization can increase the strength of the porous polyamideimide film.
[0013]
The above polyamideimide resin preferably has a logarithmic viscosity of 0.5 dl / g or more and a glass transition temperature of 100 ° C. or more in terms of heat resistance and strength.
[0014]
In the present invention, the porosity of the film needs to be 10 to 95% by volume. It is preferably from 20 to 85% by volume, particularly preferably from 30 to 80% by volume. The optimum value of the porosity varies depending on the purpose of use of the film. For example, when the film is used as an impregnated film such as a separator for a battery or a retaining film for an electrolyte of a battery, if it is less than 10% by volume, the air permeability is It is not preferable because the flow rate and the impregnation rate are reduced. On the other hand, if it exceeds 95% by volume, the strength of the film is undesirably reduced.
[0015]
Further, in the present invention, as described in claim 2, it is a preferred embodiment that the average pore diameter on the film surface is 0.3 to 10 μm. It is preferably from 0.5 to 9 μm, particularly preferably from 1 to 8 μm. When it is applied to the use of a battery member, if the thickness is less than 0.3 μm, the amount of ventilation, the amount of liquid passing, and the amount of impregnating liquid decrease, which is not preferable. On the other hand, if the thickness exceeds 10 μm, the strength of the film is undesirably reduced. The pore size is preferably such that both sides of the film satisfy the characteristics, but those having only one side are also included in the scope of the present invention.
[0016]
In the present invention, the method for imparting the above-mentioned properties is not limited and is arbitrary. For example, in the film production method described later, the control can be performed by the resin composition of the polyamideimide resin solution, the pore size adjusting agent, the type of solvent, the resin concentration, the film thickness at the time of molding, the type of coagulating liquid, coagulation conditions, and the like. It is a preferable embodiment to cope with this by appropriately setting the composition and conditions for obtaining a product having the characteristics required by the market.
[0017]
The porous polyamide-imide film of the present invention can be applied not only to the above-described liquid use but also to a gas separation membrane. When developed for such applications, the air permeability is preferably 0.5 to 5000 sec / 100 cc Air.
[0018]
The porous polyamide-imide film of the present invention is obtained by forming a solution prepared by dissolving a polyamide-imide resin in a solvent into a thin film by a casting method as described in claim 5, and then coagulating with a water-based coagulating liquid. It is formed by drying.
[0019]
The solvent capable of dissolving the polyamideimide resin used in the above-mentioned production method is not limited as long as it has this function, and N, N′-dimethylformamide, N, N′-dimethylacetamide , N-methyl-2-pyrrolidone, γ-butyrolactone and the like. If necessary, auxiliary agents such as amines such as triethylamine and diethylenetriamine, and alkali metal salts such as sodium fluoride, potassium fluoride, cesium fluoride and sodium methoxide can be used.
[0020]
The solution dissolved in the solvent described above may dissolve the polyamide-imide resin in the solvent described above, or when the polyamide-imide resin is polymerized by a solution method, the solution obtained by the polymerization may be used as it is. . In the case of this method, addition of a compounding agent such as a pore size adjusting agent at the time of polymerization or after completion of polymerization or adjustment of resin concentration is not limited at all.
[0021]
In the present invention, a thin film is formed by a casting method using the solution described above, but the forming method is not limited and is optional. For example, there is a method in which the above solution is extruded from a slit die onto the surface of a support such as a polyester film to form a thin film.
[0022]
In the present invention, the sheet is coagulated by bringing the sheet into contact with an aqueous coagulating liquid. The composition of the coagulation liquid is not limited, and may be water, or a mixture of water and a lower alcohol such as methanol, ethanol, and propanol. Further, there is no limitation on the addition of a compounding agent such as a coagulation retarder such as polyalkylene glycol.
[0023]
The drying method to be performed subsequently is not limited, and includes, for example, a hot air drying method in which hot air is applied to the film.
[0024]
In the present invention, for the conditions of the above-mentioned production method, the composition and conditions for obtaining a product having the characteristics required by the market as described above can be appropriately set.
[0025]
The thickness of the porous polyamideimide film of the present invention can be arbitrarily set according to market requirements without limitation, but is generally 3 to 200 μm.
[0026]
The porous polyamide-imide film of the present invention may be used alone or in combination with a porous film or sheet of another material. Also, there is no restriction on the use of the film in combination with other functional films or sheets.
[0027]
Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples. The characteristics shown in the examples were measured and evaluated by the following methods.
[0028]
(1) A film to be measured for porosity is cut out into a circle having a diameter of 60 mm, and its volume and weight are obtained.
Calculate from the obtained result using the following equation.
Porosity (vol%) = 100 × {volume (cm 3 ) −weight (g) / average density of resin (g / cm 3 )} / volume (cm 3 )
[0029]
(2) Average Hole Diameter of Film Surface The film surface to be measured was observed at 5000 times magnification using a scanning electron microscope, the diameter (maximum diameter) of the holes was measured, and the average value was obtained.
[0030]
(3) Logarithmic viscosity A solution prepared by dissolving 0.5 g of polyamideimide resin in 100 ml of N-methyl-2-pyrrolidone was kept at 30 ° C. and measured using an Ubbelohde viscosity tube.
[0031]
(4) Glass transition temperature measurement Inflection of dynamic viscoelasticity loss elastic modulus measured by applying a vibration of frequency 110 Hz to a polyamideimide film having a width of 4 mm and a length of 15 mm using a DVE-V4 rheospector manufactured by Rheology. The point was taken as the glass transition temperature.
[0032]
(Example 1)
In a four-necked flask equipped with a thermometer, a cooling pipe, and a nitrogen gas inlet pipe, 1 mol of trimellitic anhydride (TMA), 1 mol of diphenylmethane diisocyanate (MDI), and 0.01 mol of potassium fluoride having a solid content of 20 mol. The mixture was charged together with N-methyl-2-pyrrolidone so as to obtain a weight%, stirred at 120 ° C. for 1.5 hours, heated to 180 ° C. and further stirred for about 3 hours to synthesize a polyamideimide resin. The logarithmic viscosity of the obtained polyamideimide resin was 0.86 dl / g, and the glass transition temperature was 290 ° C.
[0033]
This polyamide-imide resin solution was applied on a polyester film having a thickness of 100 μm, and the obtained multilayer film was immersed in a coagulation liquid of water / methanol (3/1 volume ratio) at 25 ° C. to coagulate the polyamide-imide resin. Thereafter, the polyamide-imide film was peeled off from the polyester film and dried at 130 ° C. under tension to obtain a porous polyamide-imide film having a thickness of 25 μm. Table 1 shows the evaluation results of the obtained films.
[0034]
(Example 2)
Example 1 was carried out in the same manner as in Example 1 except that the acid component was changed to 0.9 mol of TMA and 0.1 mol of dicarboxypoly (acrylonitrile-butadiene) rubber (Hiker CTBN1300X13 manufactured by Ube Industries, Ltd., molecular weight: 3500). A porous polyamide-imide film of Example 2 was obtained. Table 1 shows the evaluation results of the obtained films. The logarithmic viscosity of the polyamide-imide resin obtained in this example was 0.65 dl / g, and the glass transition temperature was 203 ° C. Using the polyamideimide resin solution obtained by the above method, a porous polyamideimide film of Example 2 was obtained in the same manner as in Example 1. Table 1 shows the evaluation results of the obtained films.
[0035]
(Example 3)
Using the same apparatus as in Example 1, 0.94 mol of TMA, 0.06 mol of polypropylene glycol having a molecular weight of 2,000, and 1.02 mol of isophorone diisocyanate were charged together with γ-butyrolactone so as to have a solid concentration of 50%. After reacting for an hour, the mixture was diluted with N-methyl-2-pyrrolidone so that the solid content concentration was 20% by weight to synthesize a polyamideimide resin solution. The logarithmic viscosity of the obtained polyamideimide resin was 0.63 dl / g, and the glass transition temperature was 198 ° C. Using the polyamideimide resin solution obtained by the above method, a porous polyamideimide film of Example 3 was obtained in the same manner as in Example 1. Table 1 shows the evaluation results of the obtained films.
[0036]
(Example 4)
Using the same apparatus as in Example 1, 0.93 mol of TMA, 0.07 mol of polycaprolactone (Placcel 220, manufactured by Daicel Chemical Industries, Ltd., molecular weight 2000), 1.02 mol of MDI, and 0.02 mol of potassium fluoride having a solid concentration of 50 wt. % With γ-butyrolactone, reacted at 200 ° C. for about 5 hours, and diluted with N-methyl-2-pyrrolidone so as to have a solid concentration of 20% by weight to obtain a polyamideimide resin solution. The logarithmic viscosity of the obtained polyamideimide resin was 0.71 dl / g, and the glass transition temperature was 175 ° C. Using the polyamideimide resin solution obtained by the above method, a porous polyamideimide film of Example 4 was obtained in the same manner as in Example 1. Table 1 shows the evaluation results of the obtained films.
[0037]
(Example 5)
Using the same apparatus as in Example 1, 0.5 mol of TMA, 0.5 mol of dimer acid, 0.5 mol of o-tolidine diisocyanate (3,3′-dimethyl-4,4′-biphenyldiisocyanate), 0.5 mol of MDI was charged together with N-methyl-2-pyrrolidone so as to have a solid concentration of 30% by weight, and reacted at 120 ° C. for 1.5 hours and at 180 ° C. for 3 hours. %, And diluted with N-methyl-2-pyrrolidone to obtain a polyamideimide resin solution. The logarithmic viscosity of the obtained polyamideimide resin was 0.70 dl / g, and the glass transition temperature was 153 ° C. A porous polyamide-imide film of Example 5 was obtained in the same manner as in Example 1 except that the coagulating liquid was changed to water / isopropanol (2/1 volume ratio) using the polyamide-imide resin solution obtained by the above method. Was. Table 1 shows the evaluation results of the obtained films.
[0038]
(Comparative Example 1)
The polyamideimide was dissolved in N-methylpyrrolidone so as to be 20% by weight of a commercially available polyamideimide resin (manufactured by Amoco Japan, Torlon 4000T) and 6% by weight of a commercially available polyethersulfone resin (manufactured by Amoco Japan, Radel A100). A solution of the resin composition was obtained. The resulting solution was cast on a glass substrate under room temperature conditions, air-dried, immersed in water to solidify, and peeled from the glass substrate to obtain a porous polyamideimide film having a thickness of 70 μm. Table 1 shows the evaluation results of the obtained films.
[0039]
[Table 1]
Figure 2004315660
[0040]
【The invention's effect】
As described above, the porous polyamide-imide film of the present invention has the specified porosity, and is excellent in heat resistance and the like, for example, such as a separator for a battery, a separator for a battery, and a film for holding an electrolyte of a battery. It can be suitably used as an impregnated film. In addition, it can be manufactured economically.

Claims (5)

空孔率が10〜95体積%であることを特徴とする多孔質ポリアミドイミドフイルム。A porous polyamide-imide film having a porosity of 10 to 95% by volume. フイルム表面の平均孔径が0.3〜10μmであることを特徴とする請求項1に記載の多孔質ポリアミドイミドフイルム。The porous polyamide-imide film according to claim 1, wherein the average pore diameter of the film surface is 0.3 to 10 µm. フイルムを構成するポリアミドイミド樹脂のジアミン成分としてo−トリジン構造を有した成分を含むことを特徴とした請求項1または2に記載の多孔質ポリアミドイミドフイルム。3. The porous polyamide-imide film according to claim 1, further comprising a component having an o-tolidine structure as a diamine component of the polyamide-imide resin constituting the film. フイルムを構成するポリアミドイミド樹脂が、末端にカルボキシル基、水酸基およびアミノ基のいずれかを有するブタジエン系ゴム、ポリアルキレンエーテルおよびポリエステルのうち1種又は2種以上を共重合した共重合体であることを特徴とした請求項1〜3に記載の多孔質ポリアミドイミドフイルム。The polyamideimide resin constituting the film is a copolymer obtained by copolymerizing at least one of butadiene rubber, polyalkylene ether and polyester having a carboxyl group, a hydroxyl group, or an amino group at a terminal. The porous polyamide-imide film according to claim 1, wherein: ポリアミドイミド樹脂を溶解した溶液を流延法で薄膜状に成形した後、水系の凝固液で凝固させ、次いで乾燥することで形成されたことを特徴とする請求項1〜4に記載の多孔質ポリアミドイミドフイルムの製造法。The porous material according to any one of claims 1 to 4, which is formed by forming a solution in which a polyamideimide resin is dissolved into a thin film by a casting method, coagulating with a water-based coagulating liquid, and then drying. A method for producing a polyamide-imide film.
JP2003111656A 2003-04-16 2003-04-16 Porous polyamideimide film and process for producing the same Expired - Fee Related JP4288566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111656A JP4288566B2 (en) 2003-04-16 2003-04-16 Porous polyamideimide film and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111656A JP4288566B2 (en) 2003-04-16 2003-04-16 Porous polyamideimide film and process for producing the same

Publications (2)

Publication Number Publication Date
JP2004315660A true JP2004315660A (en) 2004-11-11
JP4288566B2 JP4288566B2 (en) 2009-07-01

Family

ID=33472146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111656A Expired - Fee Related JP4288566B2 (en) 2003-04-16 2003-04-16 Porous polyamideimide film and process for producing the same

Country Status (1)

Country Link
JP (1) JP4288566B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162885A (en) * 2003-12-03 2005-06-23 Daicel Chem Ind Ltd Polyamide-imide-based porous film excellent in chemical resistance and method for producing the same
WO2005080487A1 (en) * 2004-02-23 2005-09-01 Toyo Boseki Kabushiki Kaisha Porous film, process for producing the same, and lithium-ion secondary cell made with the same
JP2007002054A (en) * 2005-06-22 2007-01-11 Toyobo Co Ltd Composite ion exchange membrane and method for producing the same
WO2011145470A1 (en) * 2010-05-21 2011-11-24 Canon Kabushiki Kaisha Polymer porous film and method of producing the same
EP2469543A4 (en) * 2009-08-20 2015-09-09 Toyo Boseki Electrically insulating sheet and method for producing same
WO2016104309A1 (en) * 2014-12-24 2016-06-30 ユニチカ株式会社 Porous polyimide film and method for producing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162885A (en) * 2003-12-03 2005-06-23 Daicel Chem Ind Ltd Polyamide-imide-based porous film excellent in chemical resistance and method for producing the same
JP4530652B2 (en) * 2003-12-03 2010-08-25 ダイセル化学工業株式会社 Polyamideimide porous film with excellent chemical resistance and method for producing the same
WO2005080487A1 (en) * 2004-02-23 2005-09-01 Toyo Boseki Kabushiki Kaisha Porous film, process for producing the same, and lithium-ion secondary cell made with the same
JP2007002054A (en) * 2005-06-22 2007-01-11 Toyobo Co Ltd Composite ion exchange membrane and method for producing the same
EP2469543A4 (en) * 2009-08-20 2015-09-09 Toyo Boseki Electrically insulating sheet and method for producing same
WO2011145470A1 (en) * 2010-05-21 2011-11-24 Canon Kabushiki Kaisha Polymer porous film and method of producing the same
WO2016104309A1 (en) * 2014-12-24 2016-06-30 ユニチカ株式会社 Porous polyimide film and method for producing same
JP5944613B1 (en) * 2014-12-24 2016-07-05 ユニチカ株式会社 Porous polyimide film and method for producing the same
CN107001681A (en) * 2014-12-24 2017-08-01 尤尼吉可株式会社 Porous polyimide film and its manufacture method
CN107001681B (en) * 2014-12-24 2018-10-12 尤尼吉可株式会社 Porous polyimide film and its manufacturing method

Also Published As

Publication number Publication date
JP4288566B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP6179507B2 (en) Laminated porous membrane, battery separator and battery
JP5636619B2 (en) Composite porous membrane and method for producing the same
JP4983256B2 (en) Porous membrane, method for producing the same, and lithium ion secondary battery using the same
JP5944613B1 (en) Porous polyimide film and method for producing the same
AU2003275623B8 (en) Heat-resistant film and composite ion-exchange membrane
WO2011161837A1 (en) Composite porous membrane, method for producing composite porous membrane and battery separator using same
JP6558363B2 (en) Polyolefin laminated porous membrane, battery separator using the same, and production method thereof
WO2007049571A1 (en) Polyarylene sulfide film
JP2017212201A (en) Porous film and laminated porous film
KR101423104B1 (en) Battery separator, and battery separator manufacturing method
JP4288566B2 (en) Porous polyamideimide film and process for producing the same
JP2016145300A (en) Porous polyamideimide film and manufacturing method therefor
JP2015228358A (en) Polyolefin laminated porous membrane, battery separator using the same, and method for manufacturing them
JP2010155204A (en) Method of producing composite hollow fiber membrane
JP2018100395A (en) Aromatic polyamide film
JP2007002054A (en) Composite ion exchange membrane and method for producing the same
JP4530652B2 (en) Polyamideimide porous film with excellent chemical resistance and method for producing the same
JP4892819B2 (en) Porous membrane, method for producing the same, and lithium ion secondary battery using the same
JP5636618B2 (en) Composite porous membrane and method for producing the same
JP4154665B2 (en) Method for producing polyamide-imide film
JP4069725B2 (en) Porous aromatic polyamide film and method for producing the same
JPH09188740A (en) Para-oriented aromatic polyamide porous film and production thereof
JPH08173778A (en) Manufacture of fluorine containing polyimide gas separating membrane
JP2002358979A (en) Polymer solid electrolyte compound membrane
JPH08230124A (en) Laminated film roll

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090305

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090318

R151 Written notification of patent or utility model registration

Ref document number: 4288566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees