JP2004315330A - Dielectric ceramic composition and its preparation method - Google Patents

Dielectric ceramic composition and its preparation method Download PDF

Info

Publication number
JP2004315330A
JP2004315330A JP2003114705A JP2003114705A JP2004315330A JP 2004315330 A JP2004315330 A JP 2004315330A JP 2003114705 A JP2003114705 A JP 2003114705A JP 2003114705 A JP2003114705 A JP 2003114705A JP 2004315330 A JP2004315330 A JP 2004315330A
Authority
JP
Japan
Prior art keywords
dielectric
dielectric ceramic
crystal phase
ceramic composition
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003114705A
Other languages
Japanese (ja)
Other versions
JP4494725B2 (en
Inventor
Masato Yamazaki
正人 山崎
Takashi Kasashima
崇 笠島
Yoshito Mizoguchi
義人 溝口
Katsuya Yamagiwa
勝也 山際
Kazue Obayashi
和重 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003114705A priority Critical patent/JP4494725B2/en
Publication of JP2004315330A publication Critical patent/JP2004315330A/en
Application granted granted Critical
Publication of JP4494725B2 publication Critical patent/JP4494725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric ceramic composition which is excellent in dielectric characteristics, particularly having a large Qu, and its preparation method. <P>SOLUTION: The dielectric ceramic composition is represented by general formula: (1-α)M(M'<SB>1/3</SB>M''<SB>2/3</SB>)O<SB>3</SB>-αM<SB>1-β</SB>M''<SB>β</SB>O<SB>δ</SB>, wherein M is a group IIa element (Ca, Sr, Ba or the like); M' is a bivalent metal element (Mg, Co, Ni, Zn or the like) or a combination of metal elements having a valency of 2 as a whole [Mg<SB>a</SB>Co<SB>b</SB>Ni<SB>c</SB>Zn<SB>d</SB>(wherein a+b+c+d=1; 0≤a; and b, c and d are each<1)]; and M'' is a pentavalent metal element (Nb, Ta or the like) or a combination of metal elements having a valency of 5 as a whole [Nb<SB>e</SB>Ta<SB>f</SB>Sb<SB>g</SB>(wherein e+f+g=1; 0≤e; and f and g are each <1)]. Here, α and β satisfy the relations: 0.01≤α≤0.1 and 0.3≤β≤0.6, respectively, or satisfy the relations: 0.1≤α≤0.8 and 0.41≤β≤0.48, respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、誘電体磁器組成物及びその製造方法に関する。更に詳しくは、高周波領域において優れた誘電特性を有し、比誘電率(ε)が高く、特に、無負荷品質係数(Qu)が大きい誘電体磁器組成物、及び簡易な装置、操作による誘電体磁器組成物の製造方法に関する。
本発明は、高周波領域において使用される共振器、フィルタ、多層回路基板、及び各種マイクロ波回路のインピーダンス整合部材等において利用することができる。
【0002】
【従来の技術】
近年、自動車電話、携帯電話、及び衛星放送等のマイクロ波領域の電磁波を利用した各種の通信システムが急速に発展している。これにともなって多くの誘電材料が開発されており、Quの大きい高周波用誘電体磁器組成物として、従来から複合ペロブスカイト化合物が知られている。
【0003】
しかし、この複合ペロブスカイト化合物では、Quが大きい領域は化学量論の近傍の組成に限られている。例えば、Ba成分を化学量論より少なくすることにより誘電体磁器組成物のQuを大きくする方法が知られているが、一般式Ba1−x(Zn1/3Ta2/3)Oで表した場合に、Quが十分に大きいのは0.004≦x≦0.01の領域に限られている(例えば、特許文献1参照。)。
【0004】
また、化学量論の近傍の組成では焼結性が低下することがある。これに対処するため、焼結助剤としてMn成分を配合する方法が提案されているが、焼結助剤により誘電特性が低下することがある(例えば、特許文献2参照。)。更に、焼成時に急速に昇温させる特殊な焼成方法等も提案されているが、製造装置及び操作が煩雑になる(例えば、特許文献3参照。)。
【0005】
【特許文献1】
特開平2−51464号公報
【特許文献2】
特開昭58−206003号公報
【特許文献3】
特開昭61−107609号公報
【0006】
【発明が解決しようとする課題】
本発明は、上記問題点を解決するものであり、高周波領域において優れた誘電特性を有し、20〜40のεが得られ、Quが大きい誘電体磁器組成物、及び簡易な装置、操作による誘電体磁器組成物の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は以下のとおりである。
1.IIa族元素をM、2価の金属元素(但し、該Mで表されるIIa族元素と同一の元素ではない。)又は全体として2価に相当する金属元素の組み合わせをM’、5価の金属元素又は全体として5価に相当する金属元素の組み合わせをM”とした場合に、一般式M(M’1/3M”2/3)Oで表される主結晶相と、一般式M1−βM”βδで表される副結晶相とを有することを特徴とする誘電体磁器組成物。
2.一般式(1−α)M(M’1/3M”2/3)O−αM1−βM”βδで表され、0.01≦α≦0.1であるときは0.3≦β≦0.6であり、0.1<α≦0.8であるときは0.41≦β≦0.48である上記1.に記載の誘電体磁器組成物。
3.上記MがCa、Sr及びBaのうちの少なくとも1種、上記M’がMg、Co、Ni及びZnのうちの少なくとも1種、上記M”がNb及びTaのうちの少なくとも一方である上記1.又は2.に記載の誘電体磁器組成物。
4.上記MがCa、Sr及びBaのうちの少なくとも1種、上記M’がMg、Co、Ni及びZnのうちの少なくとも1種、上記M”がNbである上記1.又は2.に記載の誘電体磁器組成物。
5.上記1.乃至4.のうちのいずれか1項に記載の誘電体磁器組成物の製造方法であって、上記主結晶相を生成させるために必要な量を越える上記Mを含む原料、及び該主結晶相を生成させるために必要な量を越える上記M”を含む原料の各々を配合した原料組成物を使用し、該主結晶相とともに上記副結晶相を生成させることを特徴とする誘電体磁器組成物の製造方法。
【0008】
【発明の効果】
本発明の誘電体磁器組成物は、特定の主結晶相と副結晶相とを有するものであり、本発明の誘電体磁器組成物の別の一態様は、主結晶相と副結晶相との量比が特定されたものである。これらの誘電体磁器組成物は、高周波領域において優れた誘電特性を有し、εが高く、特に、Quが大きいという利点がある。
また、本発明の誘電体磁器組成物は、副結晶相のβによりQuを調整することができ、別の一態様では、αによりεを調整することができる。
更に、MがCa、Sr及びBaのうちの少なくとも1種、M’がMg、Co、Ni及びZnのうちの少なくとも1種、M”がNb及びTaのうちの少なくとも一方である場合、及びMがCa、Sr及びBaのうちの少なくとも1種、M’がMg、Co、Ni及びZnのうちの少なくとも1種、M”がNbである場合は、より大きなQuを有する誘電体磁器組成物とすることができる。
本発明の誘電体磁器組成物の製造方法は、高周波領域において優れた誘電特性を有し、εが高く、特に、Quが大きい誘電体磁器組成物を簡易な装置、操作により容易に製造することができ、低温での焼成も可能であるという利点がある。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。
上記「IIa族元素」としてはMg、Ca、Sr及びBa等が挙げられ、これらのうちではBa、Sr、Caが好ましく、Baが特に好ましい。
上記「2価の金属元素」は2価の酸化物が安定な金属元素であり、IIa族元素及びCo、Ni、Zn等が挙げられる。この2価の金属元素がIIa族元素である場合はMgが好ましい。更に、上記「全体として2価に相当する金属元素の組み合わせ」としては、MgCoNiZn(a+b+c+d=1であり、0≦a、b、c、d<1である。)が挙げられる。
これらの組み合わせのうちでは、Quが十分に向上するCoZn、CoNi、NiZn、CoMg、NiMg、ZnMg等が好ましい。
【0010】
上記「5価の金属元素」は5価の酸化物が安定な金属元素であり、Nb、Ta等が挙げられる。また、上記「全体として5価に相当する金属元素の組み合わせ」としては、NbTaSb(e+f+g=1であり、0≦e、f、g<1である。)が挙げられる。
これらの組み合わせのうちでは、Quが十分に向上するNbTa、NbSb、TaSb等が好ましい。
【0011】
本発明の誘電体磁器組成物は、IIa族元素をM、2価の金属元素(但し、Mで表されるIIa族元素と同一の元素ではない。)又は全体として2価に相当する金属元素の組み合わせをM’、5価の金属元素又は全体として5価に相当する金属元素の組み合わせをM”とした場合に、一般式M(M’1/3M”2/3)Oで表される主結晶相と、M1−βM”βδで表される副結晶相とを有する。この主結晶相と副結晶相のモル比と、副結晶相におけるMとM”のモル比との相関は、誘電体磁器組成物を、一般式(1−α)M(M’1/3M”2/3)O−αM1−βM”βδで表した場合に、0.01≦α≦0.1であるときは0.3≦β≦0.6であり、0.3≦β≦0.48であることが好ましい。更に、0.1<α≦0.8であるときは0.41≦β≦0.48であり、0.43≦β≦0.48であることが好ましい。一方、0.01≦α≦0.1であるときにβが0.6を越えるとQuが低下するため好ましくない。また、0.1<α≦0.8であるときにβが0.48を越えるとやはりQuが低下するため好ましくない。
尚、2価の金属元素M’は、上記の金属元素Mで表されるII族元素と同一の元素でなければ、IIa族元素であってもよい。
また、上記「δ」は、上記一般式における酸素原子が過剰又は欠損していることを表すものである。即ち、上記一般式における酸素原子がM(M’1/3M”2/3)又はM1−βM”βに対してモル比で正確に3倍量ではなく、過剰又は欠損していることを表わすものである。
【0012】
本発明の誘電体磁器組成物は、主結晶相を生成させるために必要な量を越える上記M及び上記M”を含む原料の各々を配合した原料組成物を使用し、主結晶相とともに副結晶相を生成させることにより製造することができる。例えば、各々の原料を秤量し、それらを有機媒体を用いて湿式混合し、得られた泥漿を乾燥した後、仮焼し、次いで、仮焼物に有機バインダ、分散剤及びエタノール等の有機媒体を配合して湿式混合し、その後、この泥漿を乾燥させて造粒し、一軸加圧法等により成形し、次いで、冷間等方静水圧プレス処理を行った後、1400〜1650℃で1〜5時間保持して焼成することにより製造することができる。仮焼及び焼成の際の雰囲気は特に限定されないが、通常、大気雰囲気とすることができる。
【0013】
原料としては、それぞれの元素の酸化物、炭酸塩、水酸化物、炭酸水素塩及び硝酸塩等が挙げられ、有機金属化合物を用いることもできる。これらの原料は粉末であってもよく、液状であってもよい。更に、各々の原料に含まれる金属元素は1種のみであってもよく、2種以上であってもよい。
【0014】
本発明の誘電体磁器組成物は優れた誘電特性を有し、εを20〜40とすることができる。また、Quと共振周波数(f)との積Qu×fを10000GHz以上、特に15000GHz以上、更には20000GHz以上(例えば、30000GHz)とすることができる。更に、共振周波数の温度係数τを−70〜+40ppm/℃、特に−10〜+10ppm/℃、更には−5〜+5ppm/℃とすることができる。
【0015】
【実施例】
以下、実施例により本発明を具体的に説明する。
(1)誘電体磁器組成物の製造
市販のBaCO粉末、CaCO粉末、SrCO粉末、MgO粉末、ZnO粉末、CoO粉末、NiO粉末、Nb粉末及びTa粉末のうちの所要粉末を、誘電体磁器組成物が表1〜3の組成になるように、それぞれ酸化物換算で秤量した。その後、各々の粉末をエタノールを溶媒として湿式混合し、得られた混合粉末を大気雰囲気において1100℃で2時間仮焼した。次いで、仮焼物にワックス系バインダ、分散剤及びエタノールを配合し、ボールミルにより粉砕してスラリーとした。その後、このスラリーを乾燥させ、造粒し、10〜20MPaの圧力で一軸プレスして直径19mm、高さ12mmの円柱状に成形した。次いで、150MPaの圧力で冷間等方静水圧プレス処理を行い、この成形体を大気雰囲気において1400〜1650℃で4時間保持し、焼成して、実験例1〜57の誘電体磁器組成物を製造した。
【0016】
【表1】

Figure 2004315330
【0017】
【表2】
Figure 2004315330
【0018】
【表3】
Figure 2004315330
【0019】
(2)誘電特性の測定
実験例1〜57の各々の誘電体磁器組成物の表面を研磨した後、平行導体板型誘電体共振器法により、測定周波数4〜6GHzにおいて、ε(実験例19〜38は測定していない。)及びQuを測定した。尚、Quは共振周波数fとの積[Qu×f(GHz)]で表した。実験例1〜18のεを図1、Qu×fを図2、実験例19〜25のQu×fを図3、実験例26〜32のQu×fを図4、実験例33〜38のQu×fを図5にそれぞれ示す。また、実験例39〜57のεとQu×fを表3に示す。
【0020】
(3)実施例の結果
図1、2によれば、MがBa、M’がMg、M”がNbであり、βが0.450である実験例1〜11では、αが0.053〜0.720の範囲で、十分に高いεと大きいQu×fが得られていることが分かる。更に、図1によればαが大きくなるとともにεが大きくなり、図2によればαが小さくなるとともにQu×fがやや大きくなる傾向にあり、α、即ち、副結晶相の質量比によってεとQu×fとを調整し得ることが分かる。
【0021】
また、図3のMがBa、M’がCo、M”がNbである実験例19〜25の場合、図4のMがBa、M’がNi、M”がNbである実験例26〜32の場合、及び図5のMがBa、M’がZn、M”がNbである実験例33〜38の場合には、βが0.450であるときは、αが0.2以上の範囲において十分なQu×fが安定して得られていることが分かる。尚、図3、4及び5において、βが0.500であるときは、αが0.1以下の範囲では十分なQu×fが得られているが、αが0.1を越えるとQu×fが大きく低下することが分かる。
【0022】
更に、表3によれば、M、M’、M”が異なる他の誘電体磁器組成物の場合も、α及びβがそれぞれ好ましい範囲にあるときは、組成により差異はあるものの、十分に高いεと大きなQu×fとが得られていることが分かる。
【0023】
(4)走査型電子顕微鏡(SEM)による組織の観察
実験例7及び11の誘電体磁器組成物の表面を研磨し、SEMにより観察して組織を確認した。実験例7の二次電子像を図6、反射電子像を図7、実験例11の二次電子像を図8、反射電子像を図9にそれぞれ示す。
図7と図9によれば、主結晶相と、この主結晶相に分散して含有されている副結晶相とを確認することができる。
【0024】
尚、本発明においては、上記の具体的な実施例に記載されたものに限られず、目的、用途に応じて、本発明の範囲内で種々変更した実施例とすることができる。例えば、本発明の誘電体磁器組成物の誘電特性に、実質的に影響を及ぼさない範囲で他の成分、或いは、不可避不純物等が含まれていてもよい。
【図面の簡単な説明】
【図1】MがBa、M’がMg、M”がNbである場合の誘電体磁器組成物のαとεrとの相関を表すグラフである。
【図2】MがBa、M’がMg、M”がNbである場合の誘電体磁器組成物のαとQu×fとの相関を表すグラフである。
【図3】MがBa、M’がCo、M”がNbである場合の誘電体磁器組成物のαとQu×fとの相関を表すグラフである。
【図4】MがBa、M’がNi、M”がNbである場合の誘電体磁器組成物のαとQu×fとの相関を表すグラフである。
【図5】MがBa、M’がZn、M”がNbである場合の誘電体磁器組成物のαとQu×fとの相関を表すグラフである。
【図6】MがBa、M’がMg、M”がNb、αが0.3、βが0.45である実験例7の誘電体磁器組成物のSEM観察における二次電子像による説明図である。
【図7】図6と同様のSEM観察における反射電子像による説明図である。
【図8】MがBa、M’がMg、M”がNb、αが0.72、βが0.5である実験例11の誘電体磁器組成物のSEM観察における二次電子像による説明図である。
【図9】図8と同様のSEM観察における反射電子像による説明図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dielectric ceramic composition and a method for producing the same. More specifically, a dielectric ceramic composition having excellent dielectric properties in a high frequency region, a high relative permittivity (ε r ), and particularly a large unloaded quality factor (Qu), and a dielectric device using a simple device and operation. The present invention relates to a method for producing a body porcelain composition.
INDUSTRIAL APPLICABILITY The present invention can be used in a resonator, a filter, a multilayer circuit board, an impedance matching member of various microwave circuits, and the like used in a high frequency region.
[0002]
[Prior art]
2. Description of the Related Art In recent years, various communication systems using electromagnetic waves in a microwave region such as a mobile phone, a mobile phone, and satellite broadcasting have been rapidly developed. Along with this, many dielectric materials have been developed, and a composite perovskite compound has been conventionally known as a high-frequency dielectric ceramic composition having a large Qu.
[0003]
However, in this composite perovskite compound, the region where the Qu is large is limited to the composition near the stoichiometry. For example, a method of increasing the Qu of the dielectric ceramic composition by making the Ba component less than the stoichiometry is known, but the general formula Ba 1-x (Zn 1/3 Ta 2/3 ) O 3 is used. When expressed, Qu is sufficiently large only in the region of 0.004 ≦ x ≦ 0.01 (for example, see Patent Document 1).
[0004]
In addition, sinterability may decrease with a composition near the stoichiometry. To cope with this, a method of blending a Mn component as a sintering aid has been proposed, but the sintering aid may lower the dielectric properties (see, for example, Patent Document 2). Further, a special firing method for rapidly raising the temperature during firing has been proposed, but the manufacturing apparatus and operation are complicated (for example, see Patent Document 3).
[0005]
[Patent Document 1]
JP-A-2-51464 [Patent Document 2]
JP-A-58-206003 [Patent Document 3]
JP-A-61-107609
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems, and has excellent dielectric properties in a high-frequency region, a ε r of 20 to 40 is obtained, and a large-Qu dielectric ceramic composition. It is an object of the present invention to provide a method for producing a dielectric porcelain composition according to the present invention.
[0007]
[Means for Solving the Problems]
The present invention is as follows.
1. The group IIa element is represented by M, a divalent metal element (however, not the same element as the group IIa element represented by M) or a combination of metal elements equivalent to divalent as a whole M ′, pentavalent When a metal element or a combination of metal elements equivalent to pentavalent as a whole is M ″, a main crystal phase represented by a general formula M (M ′ 1/3 M ″ 2/3 ) O 3 A dielectric porcelain composition having a sub-crystal phase represented by M 1-β M ″ β O δ .
2. Formula represented by (1-α) M (M '1/3 M "2/3) O 3 -αM 1-β M" β O δ, when a 0.01 ≦ α ≦ 0.1 0 0.3 ≦ β ≦ 0.6, and 0.41 ≦ β ≦ 0.48 when 0.1 <α ≦ 0.8. 2. The dielectric ceramic composition according to item 1.
3. Wherein M is at least one of Ca, Sr and Ba, M ′ is at least one of Mg, Co, Ni and Zn, and M ″ is at least one of Nb and Ta. Or the dielectric ceramic composition according to 2.
4. 3. The dielectric material according to 1. or 2., wherein M is at least one of Ca, Sr and Ba, M ′ is at least one of Mg, Co, Ni and Zn, and M ″ is Nb. Body porcelain composition.
5. The above 1. To 4. The method for producing a dielectric porcelain composition according to any one of the above, wherein the raw material containing M exceeds an amount necessary to generate the main crystal phase, and the main crystal phase is formed. A method for producing a dielectric ceramic composition, comprising using a raw material composition containing each of the above-mentioned raw materials containing M ″ in excess of the amount required for the production, and producing the sub-crystalline phase together with the main crystalline phase. .
[0008]
【The invention's effect】
The dielectric porcelain composition of the present invention has a specific main crystal phase and a sub-crystal phase, and another embodiment of the dielectric porcelain composition of the present invention includes a main crystal phase and a sub-crystal phase. The quantitative ratio is specified. These dielectric porcelain compositions have excellent dielectric properties in a high frequency range, have a high ε r , and particularly have an advantage of a large Qu.
In the dielectric ceramic composition of the present invention, Qu can be adjusted by β of the sub-crystal phase, and in another aspect, ε r can be adjusted by α.
Further, when M is at least one of Ca, Sr and Ba, M ′ is at least one of Mg, Co, Ni and Zn, M ″ is at least one of Nb and Ta, and M Is at least one of Ca, Sr and Ba, M ′ is at least one of Mg, Co, Ni and Zn, and M ″ is Nb, a dielectric ceramic composition having a larger Qu, can do.
The method for producing a dielectric porcelain composition of the present invention has excellent dielectric properties in a high frequency range, has a high ε r , and particularly easily produces a dielectric porcelain composition having a large Qu by a simple apparatus and operation. This has the advantage that firing at a low temperature is also possible.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
Examples of the “IIa group element” include Mg, Ca, Sr, and Ba, among which Ba, Sr, and Ca are preferable, and Ba is particularly preferable.
The “divalent metal element” is a metal element in which a divalent oxide is stable, and examples thereof include Group IIa elements, Co, Ni, and Zn. When the divalent metal element is a Group IIa element, Mg is preferable. Further, the “combination of metal elements equivalent to divalent as a whole” is Mg a Co b Ni c Zn d (a + b + c + d = 1, and 0 ≦ a, b, c, d <1). No.
Among these combinations, CoZn, CoNi, NiZn, CoMg, NiMg, ZnMg, etc., whose Qu is sufficiently improved, are preferable.
[0010]
The “pentavalent metal element” is a metal element in which a pentavalent oxide is stable, and examples thereof include Nb and Ta. Further, as the "combination of the metal elements corresponding to the overall pentavalent" (a e + f + g = 1, 0 ≦ e, f, g < a 1.) Nb e Ta f Sb g are exemplified.
Among these combinations, NbTa, NbSb, TaSb, etc., which sufficiently improve Qu, are preferable.
[0011]
In the dielectric ceramic composition of the present invention, the group IIa element is M, a divalent metal element (however, it is not the same element as the group IIa element represented by M) or a metal element equivalent to divalent as a whole. Table with a combination of M ', a combination of metal elements "in the case of the general formula M (M M corresponding to pentavalent metal element or as a whole pentavalent' 1/3 M" 2/3) O 3 And a sub-crystal phase represented by M 1−β M ″ β O δ . The molar ratio between the main crystal phase and the sub-crystal phase, and the moles of M and M ″ in the sub-crystal phase correlation between the ratio is a dielectric ceramic composition represented by the general formula (1-α) M (M '1/3 M when expressed in "2/3) O 3 -αM 1- β M" β O δ , 0.01 ≦ α ≦ 0.1, 0.3 ≦ β ≦ 0.6, and preferably 0.3 ≦ β ≦ 0.48. Further, when 0.1 <α ≦ 0.8, 0.41 ≦ β ≦ 0.48, and preferably 0.43 ≦ β ≦ 0.48. On the other hand, if β exceeds 0.6 in the case of 0.01 ≦ α ≦ 0.1, Qu is unpreferably decreased. If β exceeds 0.48 when 0.1 <α ≦ 0.8, the value of Qu also decreases, which is not preferable.
Note that the divalent metal element M ′ may be a Group IIa element as long as it is not the same element as the Group II element represented by the above-described metal element M.
Further, the above “δ” indicates that the oxygen atom in the above general formula is excessive or missing. That is, the oxygen atom in the above general formula is not exactly three times in molar ratio to M (M'1 / 3M " 2/3 ) or M1 -βM " β , but is excess or missing. It represents that.
[0012]
The dielectric porcelain composition of the present invention uses a raw material composition in which each of the raw materials containing the above-mentioned M and the above-mentioned M ″ in excess of the amount necessary for forming the main crystal phase is used, and the sub-crystal is added together with the main crystal phase. For example, each raw material is weighed, wet-mixed using an organic medium, and the obtained slurry is dried, calcined, and then calcined. An organic medium such as an organic binder, a dispersant, and ethanol is blended and wet-mixed. Thereafter, the slurry is dried and granulated, molded by a uniaxial pressing method or the like, and then subjected to cold isostatic pressing. After performing, it can be manufactured by baking while holding at 1400 to 1650 ° C. for 1 to 5 hours.The atmosphere during calcination and baking is not particularly limited, but can be usually an air atmosphere.
[0013]
Examples of the raw materials include oxides, carbonates, hydroxides, bicarbonates, and nitrates of the respective elements, and organometallic compounds can also be used. These raw materials may be powders or liquids. Further, each raw material may contain only one kind of metal element or two or more kinds of metal elements.
[0014]
The dielectric ceramic composition of the present invention has excellent dielectric properties, and can have an ε r of 20 to 40. Further, the product Qu × f of Qu and the resonance frequency (f) can be set to 10,000 GHz or more, especially 15000 GHz or more, and further 20,000 GHz or more (for example, 30000 GHz). Further, the temperature coefficient τ f of the resonance frequency can be −70 to +40 ppm / ° C., particularly −10 to +10 ppm / ° C., and further −5 to +5 ppm / ° C.
[0015]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
(1) Production of dielectric porcelain composition Among commercially available BaCO 3 powder, CaCO 3 powder, SrCO 3 powder, MgO powder, ZnO powder, CoO powder, NiO powder, Nb 2 O 5 powder and Ta 2 O 5 powder The required powder was weighed in terms of oxide so that the dielectric ceramic composition had the composition shown in Tables 1 to 3. Thereafter, each powder was wet-mixed using ethanol as a solvent, and the obtained mixed powder was calcined at 1100 ° C. for 2 hours in an air atmosphere. Next, a wax-based binder, a dispersant, and ethanol were added to the calcined product, and the mixture was pulverized by a ball mill to form a slurry. Thereafter, the slurry was dried, granulated, and uniaxially pressed at a pressure of 10 to 20 MPa to form a column having a diameter of 19 mm and a height of 12 mm. Next, cold isostatic pressing is performed at a pressure of 150 MPa, and the molded body is held at 1400 to 1650 ° C. for 4 hours in an air atmosphere, and baked to obtain the dielectric ceramic compositions of Experimental Examples 1 to 57. Manufactured.
[0016]
[Table 1]
Figure 2004315330
[0017]
[Table 2]
Figure 2004315330
[0018]
[Table 3]
Figure 2004315330
[0019]
(2) Measurement of dielectric properties After polishing the surface of each dielectric ceramic composition of Experimental Examples 1 to 57, ε r was measured at a measurement frequency of 4 to 6 GHz by a parallel conductor plate type dielectric resonator method (Experimental Examples). 19 to 38 were not measured.) And Qu were measured. Note that Qu is represented by the product [Qu × f (GHz)] of the resonance frequency f. FIG. 1 shows ε r of Experimental Examples 1 to 18, FIG. 2 shows Qu × f, FIG. 3 shows Qu × f of Experimental Examples 19 to 25, FIG. 4 shows Qu × f of Experimental Examples 26 to 32, and Experimental Examples 33 to 38. Are shown in FIG. Table 3 shows ε r and Qu × f of Experimental Examples 39 to 57.
[0020]
(3) Results of Examples According to FIGS. 1 and 2, according to Experimental Examples 1 to 11 in which M is Ba, M ′ is Mg, M ″ is Nb, and β is 0.450, α is 0.053. in the range of ~0.720, it can be seen that sufficiently high epsilon r greater Qu × f is obtained. in addition, epsilon r increases with α increases according to FIG. 1, according to FIG. 2 As α decreases, Qu × f tends to increase slightly, and it can be seen that ε r and Qu × f can be adjusted by α, that is, the mass ratio of the subcrystal phase.
[0021]
In addition, in the case of Experimental Examples 19 to 25 in which M is Ba, M ′ is Co and M ″ is Nb in FIG. 3, Experimental Examples 26 to 25 in which M is Ba, M ′ is Ni, and M ″ is Nb in FIG. In the case of Experimental Examples 33 to 38 in which M is Ba, M ′ is Zn, and M ″ is Nb in FIG. 5, α is 0.2 or more when β is 0.450. 3, 4 and 5, when β is 0.500 and when α is 0.1 or less, sufficient Qu × f is obtained. Although Qu × f is obtained, it can be seen that when α exceeds 0.1, Qu × f is greatly reduced.
[0022]
Furthermore, according to Table 3, in the case of other dielectric porcelain compositions having different M, M ', and M ", when α and β are respectively within the preferable ranges, the composition is different but is sufficiently high. It can be seen that ε r and a large Qu × f are obtained.
[0023]
(4) Observation of Microstructure by Scanning Electron Microscope (SEM) The surface of the dielectric ceramic composition of Experimental Examples 7 and 11 was polished and observed by SEM to confirm the microstructure. FIG. 6 shows the secondary electron image of Experimental Example 7, FIG. 7 shows the reflected electron image, FIG. 8 shows the secondary electron image of Experimental Example 11, and FIG. 9 shows the reflected electron image.
According to FIG. 7 and FIG. 9, the main crystal phase and the sub-crystal phase dispersed and contained in the main crystal phase can be confirmed.
[0024]
It should be noted that the present invention is not limited to those described in the above specific embodiments, but may be variously modified within the scope of the present invention according to the purpose and application. For example, other components or unavoidable impurities may be contained within a range that does not substantially affect the dielectric properties of the dielectric ceramic composition of the present invention.
[Brief description of the drawings]
FIG. 1 is a graph showing the correlation between α and εr of a dielectric ceramic composition when M is Ba, M ′ is Mg, and M ″ is Nb.
FIG. 2 is a graph showing the correlation between α and Qu × f of a dielectric ceramic composition when M is Ba, M ′ is Mg, and M ″ is Nb.
FIG. 3 is a graph showing the correlation between α and Qu × f of a dielectric ceramic composition when M is Ba, M ′ is Co, and M ″ is Nb.
FIG. 4 is a graph showing the correlation between α and Qu × f of a dielectric ceramic composition when M is Ba, M ′ is Ni, and M ″ is Nb.
FIG. 5 is a graph showing the correlation between α and Qu × f of a dielectric ceramic composition when M is Ba, M ′ is Zn, and M ″ is Nb.
FIG. 6 is a description by a secondary electron image in the SEM observation of the dielectric ceramic composition of Experimental Example 7 in which M is Ba, M ′ is Mg, M ″ is Nb, α is 0.3, and β is 0.45. FIG.
FIG. 7 is an explanatory diagram using a backscattered electron image in SEM observation similar to FIG.
FIG. 8 is a description by a secondary electron image in the SEM observation of the dielectric ceramic composition of Experimental Example 11 in which M is Ba, M ′ is Mg, M ″ is Nb, α is 0.72, and β is 0.5. FIG.
FIG. 9 is an explanatory diagram based on a backscattered electron image in SEM observation similar to FIG.

Claims (5)

IIa族元素をM、2価の金属元素(但し、該Mで表されるIIa族元素と同一の元素ではない。)又は全体として2価に相当する金属元素の組み合わせをM’、5価の金属元素又は全体として5価に相当する金属元素の組み合わせをM”とした場合に、一般式M(M’1/3M”2/3)Oで表される主結晶相と、一般式M1−βM”βδで表される副結晶相とを有することを特徴とする誘電体磁器組成物。A group IIa element is represented by M, a divalent metal element (however, not the same element as the group IIa element represented by M) or a combination of metal elements equivalent to divalent M ′ and pentavalent When a metal element or a combination of metal elements equivalent to pentavalent as a whole is M ″, a main crystal phase represented by a general formula M (M ′ 1/3 M ″ 2/3 ) O 3 A dielectric porcelain composition having a sub-crystal phase represented by M 1-β M ″ β O δ . 一般式(1−α)M(M’1/3M”2/3)O−αM1−βM”βδで表され、0.01≦α≦0.1であるときは0.3≦β≦0.6であり、0.1<α≦0.8であるときは0.41≦β≦0.48である請求項1に記載の誘電体磁器組成物。Formula represented by (1-α) M (M '1/3 M "2/3) O 3 -αM 1-β M" β O δ, when a 0.01 ≦ α ≦ 0.1 0 2. The dielectric ceramic composition according to claim 1, wherein 0.3 ≦ β ≦ 0.6 and 0.41 ≦ β ≦ 0.48 when 0.1 <α ≦ 0.8. 上記MがCa、Sr及びBaのうちの少なくとも1種、上記M’がMg、Co、Ni及びZnのうちの少なくとも1種、上記M”がNb及びTaのうちの少なくとも一方である請求項1又は2に記載の誘電体磁器組成物。The M is at least one of Ca, Sr and Ba, the M 'is at least one of Mg, Co, Ni and Zn, and the M "is at least one of Nb and Ta. Or the dielectric porcelain composition according to 2. 上記MがCa、Sr及びBaのうちの少なくとも1種、上記M’がMg、Co、Ni及びZnのうちの少なくとも1種、上記M”がNbである請求項1又は2に記載の誘電体磁器組成物。The dielectric according to claim 1, wherein the M is at least one of Ca, Sr, and Ba, the M ′ is at least one of Mg, Co, Ni, and Zn, and the M ″ is Nb. 4. Porcelain composition. 請求項1乃至4のうちのいずれか1項に記載の誘電体磁器組成物の製造方法であって、上記主結晶相を生成させるために必要な量を越える上記Mを含む原料、及び該主結晶相を生成させるために必要な量を越える上記M”を含む原料の各々を配合した原料組成物を使用し、該主結晶相とともに上記副結晶相を生成させることを特徴とする誘電体磁器組成物の製造方法。The method for producing a dielectric ceramic composition according to any one of claims 1 to 4, wherein the raw material containing M exceeds an amount necessary to generate the main crystal phase, and A dielectric ceramic, comprising using a raw material composition containing each of the raw materials containing M ", which exceeds an amount necessary for generating a crystal phase, and generating the sub-crystal phase together with the main crystal phase. A method for producing the composition.
JP2003114705A 2003-04-18 2003-04-18 Dielectric ceramic composition and manufacturing method thereof Expired - Fee Related JP4494725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003114705A JP4494725B2 (en) 2003-04-18 2003-04-18 Dielectric ceramic composition and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003114705A JP4494725B2 (en) 2003-04-18 2003-04-18 Dielectric ceramic composition and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004315330A true JP2004315330A (en) 2004-11-11
JP4494725B2 JP4494725B2 (en) 2010-06-30

Family

ID=33474198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003114705A Expired - Fee Related JP4494725B2 (en) 2003-04-18 2003-04-18 Dielectric ceramic composition and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4494725B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100463878C (en) * 2006-12-15 2009-02-25 重庆工学院 Niobium-based microwave dielectric ceramic with near-zero resonance frequency temperature coefficient and preparation method thereof
JP2012051738A (en) * 2010-08-31 2012-03-15 National Institute For Materials Science Ceramic dielectric and method for producing the same
CN114804867A (en) * 2022-04-29 2022-07-29 厦门松元电子股份有限公司 Ceramic dielectric material suitable for hot-pressing sintering, ceramic device and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210704A (en) * 1990-01-11 1991-09-13 Nikko Co Manufacture of sintered body for high frequency dielectric
JPH08319162A (en) * 1995-03-17 1996-12-03 Ngk Insulators Ltd Dielectric ceramic and its production
JPH09183656A (en) * 1995-12-28 1997-07-15 Ngk Insulators Ltd Dielectric porcelain and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210704A (en) * 1990-01-11 1991-09-13 Nikko Co Manufacture of sintered body for high frequency dielectric
JPH08319162A (en) * 1995-03-17 1996-12-03 Ngk Insulators Ltd Dielectric ceramic and its production
JPH09183656A (en) * 1995-12-28 1997-07-15 Ngk Insulators Ltd Dielectric porcelain and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100463878C (en) * 2006-12-15 2009-02-25 重庆工学院 Niobium-based microwave dielectric ceramic with near-zero resonance frequency temperature coefficient and preparation method thereof
JP2012051738A (en) * 2010-08-31 2012-03-15 National Institute For Materials Science Ceramic dielectric and method for producing the same
CN114804867A (en) * 2022-04-29 2022-07-29 厦门松元电子股份有限公司 Ceramic dielectric material suitable for hot-pressing sintering, ceramic device and preparation method thereof

Also Published As

Publication number Publication date
JP4494725B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
JP5322429B2 (en) Composite sintered body of magnetic body and dielectric body and LC composite electronic component
KR20170002301A (en) Dielectric composition and electronic component
JP2005200232A (en) Dielectric ceramic composition
JP4870920B2 (en) Dielectric ceramic composition and electronic component
JP4494725B2 (en) Dielectric ceramic composition and manufacturing method thereof
WO2010050514A1 (en) Dielectric ceramic and resonator using the same
JP2006273703A (en) Dielectric ceramic composition
JP4654558B2 (en) Dielectric material and method of manufacturing the dielectric material
WO1996008019A1 (en) Dielectric procelain composition and its manufacture
JP2003146752A (en) Dielectric ceramic composition
JP2009249244A (en) Dielectric ceramic composition, method for producing the same and dielectric ceramic capacitor
JP4494756B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JP4541692B2 (en) Dielectric porcelain composition
JP2010100511A (en) Composite sintered compact of magnetic substance and dielectric substance, and lc composite electronic component
JP3704424B2 (en) Dielectric material
JPH0817053B2 (en) Method for manufacturing sintered body for high frequency dielectric
KR100823217B1 (en) Dielectric porcelain composition and method for production thereof
JP4383951B2 (en) High frequency dielectric ceramic composition and method for producing the same
JPH10330159A (en) Microwave dielectric ceramic composition
JP4678569B2 (en) Dielectric ceramic composition for electronic devices
JP2006273617A (en) Dielectric ceramic composition
JP2005029407A (en) Dielectric ceramic composition and method for producing the same
JP2006117448A (en) Dielectric ceramic composition and electronic component using the same
JP2007063076A (en) Dielectric ceramic composition
JP2002308670A (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees