JP2004315281A - Method for manufacturing single crystal using temperature gradient furnace - Google Patents

Method for manufacturing single crystal using temperature gradient furnace Download PDF

Info

Publication number
JP2004315281A
JP2004315281A JP2003110779A JP2003110779A JP2004315281A JP 2004315281 A JP2004315281 A JP 2004315281A JP 2003110779 A JP2003110779 A JP 2003110779A JP 2003110779 A JP2003110779 A JP 2003110779A JP 2004315281 A JP2004315281 A JP 2004315281A
Authority
JP
Japan
Prior art keywords
temperature
columnar work
temperature gradient
single crystal
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003110779A
Other languages
Japanese (ja)
Inventor
Masateru Nakamura
昌照 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003110779A priority Critical patent/JP2004315281A/en
Publication of JP2004315281A publication Critical patent/JP2004315281A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for continuously manufacturing a single crystal, with which a desired temperature gradient can be formed without necessitating the movement of a heating source, and the temperature distribution in the lateral cross section is made uniform by using a temperature gradient furnace. <P>SOLUTION: In the method, the single crystal is manufactured from a solution by using the temperature gradient furnace for imparting a temperature gradient to a columnar work in the longitudinal direction. The temperature gradient furnace equipped with a heat-insulating wall surrounding the periphery of the columnar work, a heating section for heating the lower end of the columnar work via a heating susceptor, and a cooling section for cooling the upper end of the columnar work via a cooling susceptor is used. The columnar work is constituted by stacking a raw material rod 10, a solvent 12, a seed crystal 14, and a supporting rod 16. The temperature gradient is formed in the columnar work so that the temperature at the upper end surface of the solvent becomes lower than that at the lower end surface of the solvent by heating by the heating section while utilizing the lower end of the raw material rod as the lower end of the columnar work, and at the same time, cooling by the cooling section while utilizing the upper end of the supporting rod as the upper end of the columnar work. Further, the single crystal is continuously grown downward from the seed crystal as a starting point by gradually lowering the heating temperature at the lower end of the columnar work. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、柱状ワークにその長手方向の温度勾配を付与する温度勾配炉を用いて溶液からの析出により連続的に単結晶を製造する方法に関する。
【0002】
【従来の技術】
半導体材料等としての高品位の単結晶の製造においては、モザイシティーや転位などの欠陥を極力少なくする必要がある。欠陥は結晶成長の安定性と密接な関係があるため、結晶の物質に応じた適正な析出速度を維持することが重要である。そのため、析出の駆動力となる結晶析出部と析出物質供給部(気相、液相)の間で結晶成長方向に沿った温度勾配の制御が不可欠である。
従来の代表的な単結晶成長技術として、CZ法(チョクラルスキ−法)、FZ法(帯溶融法)、ブリッジマン法、TSSG法(溶融引上げ法)等が挙げられる。
【0003】
いずれの方法においても、ワークの一部を加熱し他を雰囲気解放として温度勾配を実現しており、温度勾配の制御は加熱源温度、加熱源形状、ワーク(坩堝)形状、加熱源とワークとの相対的位置関係等の調整などにより行なっている。
【0004】
このような従来の方法には下記の点で問題があった。
1)所望の温度勾配を実現することが困難である。上述したように温度勾配の制御因子すなわち変動因子が多様であるため、各因子を最適状態に安定して維持することが至難である。
【0005】
2)ワーク(坩堝)形状や原料の仕込み量といった、装置以外の因子によって温度勾配が変動する。このように、装置因子だけでなく装置外因子も温度勾配制御に関与してくるため、所望の温度勾配を実現するためには、設計段階での計算と、実物の測温を繰り返す試行錯誤が必要である。
【0006】
3)結晶成長方向に垂直な面内の温度分布の均一化が困難である。これは、この垂直面に対する熱流の向きが面内で一定しないためである。
【0007】
また、高バンドギャップを有する半導体材料として注目を浴びている炭化珪素(SiC)等の化合物半導体は、調和融解しない(それ自体で溶融状態を持たない)ため、上記のような融液から析出させる単結晶成長法を適用できない。
【0008】
融液を用いない方法として、昇華法または溶液法がある。昇華法は、高温部で昇華させた単結晶原料物質を低温部に配した種結晶上に気相から析出させる方法である。しかし、希薄相からの析出であるため単結晶成長速度が小さく、種結晶の螺旋転位周辺部のステップから渦巻き状に成長するフランク機構であるため原理上マイクロパイプの形成を回避し難い、といった問題がある。一方、溶液法は、高温部で単結晶原料物質を溶媒に十分溶解させ、低温部に配して種結晶上で過飽和状態を現出させて析出させる方法である。溶媒濃度の調整により前述の昇華法の問題点は克服することができるが、やはり上記1)〜3)の問題があって析出部位により温度勾配が変動してしまうため、均質で高品位の単結晶を得ることが極めて困難であった。
【0009】
そこで、他の元素との共存により融液を形成する方法として、特許文献1(特開2000−264790号公報)には、遷移金属のうち少なくとも1種の金属と、Siと、Cとを含む原料を加熱により溶融させて融液を形成し、この融液を冷却することにより炭化珪素(SiC)の単結晶を析出成長させる方法が提案されている。しかしこの方法では、単結晶を連続的に成長させるには、加熱源を連続的に移動させる必要があり、それに伴う機械的な振動の影響により同時多発的に核発生して多結晶化してしまうという問題があった。
【0010】
【特許文献1】
特開2000−264790号公報(特許請求の範囲)
【0011】
【発明が解決しようとする課題】
本発明は、温度勾配炉を用いて、加熱源の移動を必要とせずに単結晶の成長に適した所望の温度勾配を形成し、かつ、成長方向に対して垂直な面内の温度分布も均一化し、連続的に単結晶を製造する方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記の目的を達成するために、本発明の単結晶製造方法法は、柱状ワークにその長手方向の温度勾配を付与する温度勾配炉を用いて溶液からの析出により単結晶を製造する方法であって、上記温度勾配炉として、上記柱状ワークの外周を取り囲む断熱壁と、加熱用サセプタを介して該柱状ワークの下端を加熱する加熱部と、冷却用サセプタを介して該柱状ワークの上端を冷却する冷却部とを備えた温度勾配炉を用い、
上記炉内に下から順に原料棒と、溶媒と、支持棒の下端に支持された種結晶とを積層して上記柱状ワークを構成して、該原料棒の下端を該柱状ワークの下端として上記加熱部により加熱させると共に該支持棒の上端を該柱状ワークの上端として上記冷却部により冷却させることにより、上記溶媒の下端面に対して上端面が低温になるように上記柱状ワーク内に温度勾配を形成し、
上記柱状ワーク下端の加熱温度を漸減させることにより、上記種結晶を起点として下方へ連続的に単結晶を成長させることを特徴とする。
【0013】
本発明の方法においては、原料棒の単結晶原料物質が溶媒の下端高温部に溶解し溶媒の上端低温部で析出することにより単結晶が下方へ成長する。柱状ワーク下端の加熱温度を降下させるのに伴い、柱状ワーク内の温度勾配線の位置が全体として降下する。同時に、原料棒上端の溶媒中への溶解による原料棒上端位置の降下と種結晶(または成長中の単結晶下端=成長端)への析出による単結晶成長端の下方への伸長とに伴い、原料棒と種結晶(成長端)とに挟まれた溶媒の位置が降下する。この結晶成長による溶媒位置の降下と同期するように、柱状ワーク下端の加熱温度を漸減させて温度勾配線の位置を降下させる。これにより、加熱源を機械的に移動させることなく、溶媒位置(=原料から単結晶への転換場所)の降下により連続的に単結晶を成長させることができる。
【0014】
【発明の実施の形態】
図1を参照して、温度勾配炉を用いて単結晶を製造する本発明の方法の原理を説明する。
【0015】
先ず、本発明の方法に用いる温度勾配炉の構成例を説明する。図示した温度勾配炉100は、円筒形胴体を有し、図の上下方向に沿って円筒形胴体の中心軸があり、図はこの中心軸を含む面における縦断面図である。円筒形胴体104は断熱材料で作られており、その中空部106が実効的な炉空間を構成している。
【0016】
円柱形の中空部106内に、原料棒10、溶媒12、種結晶14、支持棒16から成る円柱形ワークWが上端および下端を中空部106の底面および天井面にそれぞれ密着保持された状態で収容される。これによりワークWの外周を介した熱流は実質的に遮断され、上端および下端を介してのみ熱流が流れ得る。
【0017】
これにより、柱状ワークWの下端(=原料棒10の下端=加熱端)を最高温点とし、柱状ワークWの上端(=支持棒16の上端=冷却端)を最低温点とする温度勾配すなわち柱状ワークWの下方から上方へ向けて単調に温度低下する温度勾配が、柱状ワークWの長手方向に沿って形成される。
【0018】
円柱状ワークWの下端面(原料棒10の下端面)WBは円形平面であり、下方にある誘導加熱コイル108によって加熱される。誘導加熱コイル108とワークWの下端面WBとの間に介在する加熱用サセプタ110は、柱状ワークWの下端面WBに密着する円板状フランジ部110Aと、誘導加熱により加熱される円柱部110Bとから成る。誘導加熱コイル108は、サセプタ110の円柱部110Bを取り巻いて配置される。このような構造とすることにより、サセプタ110を単純な円板状とした構造に比べて、到達温度が高まり、かつ、面内温度分布の均一性も更に向上する。
【0019】
また、円柱部110Bはフランジ部110Aの直近部位以外を中空にした実質的に円筒状にしてある。円柱部110Bが全体的に中実であると、誘導コイル108で直接加熱される円柱部110Bの外周部が高温になり、この外周部からの熱伝導のみで加熱される円柱部110Bの芯部が低温になる傾向があり、横断面内温度分布の均一性確保に望ましくない。本実施例のように、フランジ部110A直近部位以外を中空とすることにより、面内温度分布の均一性を更に高めることができる。
【0020】
このように誘導加熱コイル108とワーク下端面WBとの間には、介在する加熱用サセプタ110によって、抵抗加熱コイル108からワーク下端面WBへの熱流が均等化され、ワーク下端面WB全体が均等に加熱される。加熱用サセプタ110は、高い加熱効率を確保するために銅等の良伝熱性金属の円板で作製する。
【0021】
円柱状ワークWの上端面WTも円形平面であり、これと対向配置した円形冷却平面を持つ水冷式冷却器112によって冷却される。冷却器112は銅等の良熱伝導性金属で作製された冷却ジャケットの形態であり、図示の例では上端に冷却水の流入口CLIと流出口CLOが開口しており、他の部位は水密構造である。冷却器112とワーク上端面WTとの間に介在する冷却用サセプタ114によって、ワーク上端面WTから冷却器112への熱流が均等化され、ワーク上端面WB全体が均等に冷却される。冷却用サセプタ114は、過度の急冷を防止し必要な緩冷却が可能となるように、適度な抜熱作用を確保する必要があるため、耐熱性と適度な断熱性を持つ黒鉛等で作製する。
【0022】
冷却器112は、図中の両頭矢印Xで示したように上下に移動可能であり、これによりサセプタ114との間隔Δtを必要に応じて適宜調節して、必要な抜熱量に設定できるようになっている(図示の例ではΔt=0で、両者密着状態)。
【0023】
加熱されるワーク下端面WBの温度Tbは、加熱コイル108および加熱用サセプタ110の中心を貫通するパイプT1を通して、外部からパイロメータにより観測する(観測光路:矢印PB)。この観測温度値に基づいて、誘導加熱コイル108の出力を調整することにより、加熱温度を制御する。
【0024】
冷却されるワーク上端面WTの温度Ttは、冷却器112および冷却用サセプタ114の中心を貫通するパイプT2を通して、外部からパイロメータにより観測する(観測光路:矢印PT)。この観測値に基づいて、水冷式冷却器112へ供給する冷却水の温度および流量を調整することにより、抜熱量(冷却強度)を調整することができる。
【0025】
以上のように柱状ワークWの下端WBでの加熱と上端WTでの冷却をそれぞれ加熱用サセプタ110と冷却用サセプタ114を用いて行なうことにより、柱状ワークの全長について、横断面(長手方向に対して垂直な面)を通過する熱流を一定にできると同時に横断面内の熱流分布を均一にできるので、柱状ワークWの下方から上方へ単調に温度低下する温度勾配に極めて高い直線性を付与することができると同時に横断面内の温度分布を均一にできる。
【0026】
次に、この温度勾配炉100を用いて、本発明により単結晶を連続的に成長させる方法の原理を説明する。
【0027】
本発明の方法においては、単結晶原料物質が原料棒10から溶媒12を介して種結晶(または結晶成長先端)に析出することにより結晶成長する。これは、上記で説明したように柱状ワークWの下方から上方へ向けて単調かつ直線的に温度低下する温度勾配の下では、溶媒12の下端に接触している原料棒10の上端の方が、溶媒12の上端に接触している種結晶(結晶成長先端)よりも常に一定温度幅だけ高温に維持されることによる。これを以下の説明中で詳述する。
【0028】
先ず操業準備として、下端に種結晶14を装着した支持棒16の上端を炉天井に固定し、新しい原料棒10の下端を炉底に固定し、原料棒10と種結晶14との間隙に、溶媒12として用いる物質の固体を密着させて挿入する。
【0029】
誘導加熱コイル108および冷却器112を作動させ、柱状ワークWの下方から上方へ向かって単調かつ直線的に温度低下する温度勾配を柱状ワークWの長手方向に沿って形成させる。その際に、液状の溶媒12が形成され、原料棒10の上端と種結晶14の下端との間に表面張力によって保持される。これは従来の帯溶融法における溶融帯の状態と同様である。
【0030】
結晶成長の開始時点(経過時間j=0)では、原料棒10の上端と溶媒12との界面は高さZ1にあって、まだ媒質を含んでいないフレッシュな溶媒12に高温Tでの高い溶解度に対応した濃度まで原料棒10から原料物質が溶解する。溶解した原料物質は溶媒12中を拡散して、溶媒12と種結晶14の下端との界面(高さZ2)に到達して、高温Tに対して温度勾配で決まる温度幅ΔTだけ低い低温Tでの低い溶解度に対応した濃度を超える過飽和分の結晶原料物質が溶媒12から種結晶14の下端面に析出して、結晶成長が開始する。
【0031】
なお、柱状ワークWの加熱端(下端)WBと冷却端(上端)WTの初期温度を設定するには、誘導加熱コイル108の出力を調整した状態で、所定温度の冷媒を流通させた冷却器112の高さを調整して冷却用サセプタ114との間隔Δtを空けた状態(Δt=Δt≠0)に保持し、両端の温度が安定するまで待つ。
【0032】
結晶成長開始したら、誘導加熱コイル108の出力を連続的に下げて下端WBの温度を連続的に降下させ、これと同期させて、冷却器112を連続的に降下させることにより冷却用サセプタ114との間隔Δtを初期値Δtから連続的に減少させ、上端WTの温度を連続的に低下させる。これにより、温度勾配を初期設定値に維持したまま、温度勾配線を全体として低温寄りに連続移動させ、すなわち温度勾配線を全体として柱状ワークWの下端WBよりに連続移動させる。この温度勾配線の連続移動の速度は、原料物質の溶解および析出による結晶成長の速度と一致するように設定する。両者の関係は予め実験によって求めておく。
【0033】
このように温度勾配線の連続降下に伴い、原料物質の溶解と析出の場である溶媒12も同速度で連続降下し、単結晶が種結晶を起点として下方へ連続的に成長を続ける。これを図1で説明すると、結晶成長開始から経過時間jの時点においては、温度勾配線は初期位置DからDに平行移動し、同時に溶媒位置は、〔下端高さ/上端高さ〕で表すと、初期の〔Z1/Z2〕から時刻jにおける〔Z1/Z2〕に移動する。ただし溶媒12の下端・上端間の温度差は初期値ΔTに維持されている。
【0034】
図示したように、初期温度勾配線Dは初期の下端温度/上端温度〔Tb/Tt〕で規定され、時刻jでの温度勾配線D1は時刻jでの下端温度/上端温度〔Tb/Tt〕で規定されている。温度勾配線D、Dはいずれも直線であり、上端・下端温度差は常に一定である。
【0035】
このようにして、温度勾配の平行移動に同期して溶媒位置が降下することにより、機械的な移動を必要とせずに連続して単結晶を成長させることができる。
【0036】
溶媒12としては、単結晶原料物質の融点または分解・昇華温度より低い融点を有するものを用いる。溶媒12の温度帯(溶解端T1〜析出端T2)が高いと、炉100の許容操業温度範囲によって溶媒の移動範囲が制限されてしまう。溶媒温度を極力低くすることにより、連続成長可能な単結晶長さが大きくなる。
【0037】
原料棒10として、単結晶原料物質の緻密質焼結体から成り、焼結助剤としてドーパントを含有するものを用いることができる。このようにすると、製造段階で結晶にドーピングが可能になる。原料棒が多孔質であると、溶媒が吸収されたり、表面の凹凸の存在により支持棒側面部に溶媒が登っていったりして、溶媒の減少や消失を誘引し、操業停止の恐れがあるため、原料棒は緻密質とする。
【0038】
柱状ワークWを耐熱性材料から成る円筒内に配置することが望ましい。断熱材104の内周面で規定される炉壁と、柱状ワークWの外周面との間には間隙が存在する。そのため、柱状ワークWの外周面からの輻射による熱損失が発生して、温度勾配の変動や横断面内温度分布の均一性低下の原因になる。この傾向は柱状ワークが大径化するほど顕在化する。その結果、析出状態が不均一になって転位等の欠陥の導入や、著しい場合には多結晶化が発生する。柱状ワークを耐熱性材料製円筒内に配置することで、柱状ワークの外周回りに一定かつ小さな空隙を形成し、温度勾配の安定および横断面内の温度分布均一性が確保され、欠陥導入や多結晶化を防止して高品質な単結晶を成長させることができる。
【0039】
柱状ワークを耐熱性材料から成る密閉容器内に配置することが望ましい。これにより更に温度勾配安定化および横断面内温度均一性が確保される。
【0040】
上記円筒または密閉容器を構成する耐熱材料として、黒鉛焼結体、アルミナ焼結体、ジルコニア焼結体および窒化硼素焼結体から成る群から選択した1種を用いることができる。このうち、特にアルミナ焼結体、ジルコニア焼結体および窒化硼素焼結体は低輻射率であり、輻射損失の低減に有効である。
【0041】
密閉容器を用いる場合、その内部に溶媒供給源を配置することが望ましい。溶媒の種類や操業の温度条件によっては、長時間の操業において揮発による溶媒の減少が顕著になり、製造可能な単結晶長さが制限される場合がある。そのような場合には、柱状ワークを収容した密閉容器内に溶媒供給源を配置することにより、容器内に溶媒蒸気圧を飽和状態に容易に維持できるため、溶媒の揮発損失を防止して長時間操業により長尺の単結晶を製造することができる。
【0042】
柱状ワークの上端と下端との間の電気抵抗を測定し、この測定値に基づいて単結晶成長長さを検出することができる。成長させる単結晶に比べて、支持棒および原料棒に用いる焼結体は存在する粒界の電気抵抗により全体としての電気抵抗が高い。そのため、柱状ワークの軸方向の電気抵抗は単結晶の成長に伴い減少する。これを利用して単結晶の成長長さを常時検出することができる。また電気抵抗の変化率から、溶媒帯域範囲での成長速度(=溶媒位置の降下速度)を求められ、これを利用して溶媒位置移動速度と温度勾配線移動速度とを一致させることができる。
【0043】
電気抵抗の測定を、冷却用サセプタの上端と加熱用サセプタの下端との間で行なうこともできる。成長させる単結晶が大径の場合や操業温度が高温の場合には、測定端子の設置による温度場の乱れの影響により、横断面内の温度分布均一性が低下する場合がある。そのような場合には、柱状ワークの上端・下端ではなく、面内温度均一性の高いサセプタを介して測定することにより、温度場の乱れによる擾乱を回避することができる。
【0044】
溶媒の温度を溶媒の沸点直下に設定することが望ましい。結晶成長速度は過飽和度によって決まる。そして過飽和度は、温度勾配と、溶質(単結晶原料物質)の溶解度の温度による差とによって制御できる。溶解度は温度依存性があり、温度の上昇により増加し、その増加率も温度上昇により増加する。したがって、溶媒の温度を溶媒の沸点直下、すなわち用いる溶媒で使用可能な最高温度とすることにより、その溶媒で達成可能な最大の過飽和度が得られ、結晶成長速度を最大化できる。
【0045】
ここで、上記で図1を参照した説明においては、単結晶の成長開始時点で冷却器112と冷却用サセプタ114との間に間隙Δtを設け、柱状ワークWの下端WBの加熱温度Tbの降下に同期させて冷却器112を降下させて間隙Δtを減少させることで、常時一定の温度勾配を維持した。ただし、これに限定する必要はなく、柱状ワークWの下端WBの加熱温度の降下に同期させて冷却器112に供給する冷媒の温度を降下させることにより常時一定の温度勾配を維持することもできる。
【0046】
温度勾配を常時一定に維持できないと、下記の理由で正常な単結晶成長が行なえなくなる。
【0047】
例えば、冷却器112の冷却能を一定として上端WTの温度を一定としたまま、下端WBの温度設定を変えれば当然のことながら温度勾配は変化する。特に長尺の単結晶を製造する際には温度勾配の変化が大きくなる。本発明においては、温度勾配が実質的な意味を持つのは、原料物質の溶解および析出の場となる溶媒の存在帯域である。上端WTでの温度Tt=一定の条件下では、下端WBの温度Tbを成長開始時温度Tbから成長終了時温度Tbまで低下させると、Tb−Ttの温度差に基づいて形成される温度勾配は、成長開始時の最大値から単調に減少して成長終了時に最小値になる。
【0048】
一般に、単結晶はその構成物質が異なれば成長に最適な過飽和度が異なる。したがって、上記のように温度勾配が漸減する条件下では、成長終了時の小さい温度勾配による小さい過飽和度を最適成長条件とする物質の場合には、成長開始時の大きい温度勾配による大きい過飽和度では過剰に過ぎてしまい、不均一核生成が促進されて他結晶化してしまう。逆に、成長開始時の大きい過飽和度を最適成長条件とする物質の場合には、一定速度で降下する下端温度Tbの降下速度に溶解・析出が追いつかず、溶媒降下速度が低下し、更には原料棒下端(柱状ワーク下端WB)に至る前に溶媒が凝固してしまう。
【0049】
また、種結晶を、支持棒の下端に形成された円錐状凹部の尖端部に生成させることができる。大型の単結晶を成長させるためには、成長の核となる種結晶が必要である。ただし物質によっては種結晶自体の入手が困難な場合がある。そのような場合には、上記のように支持棒下端に円錐座繰り部を設け、先ずその先端部で核生成させた後、この小さな核に連続的に析出させて横断面全体をカバーするサイズの種結晶を形成することが可能である。その際、不均一核生成による多結晶化を防止するために、支持棒下端に設ける円錐座繰り面は鏡面に加工し、更に先端はR面として緩やかに変化する形状とすることが重要である。
【0050】
【実施例】
〔実施例1〕
図1、図2に示した温度勾配炉100、200を用いて、種々の条件にてSiC単結晶の製造実験を行なった。図2の温度勾配炉200は、柱状ワークWを収容する耐熱材料製円筒202を炉内に備えている点以外は、図1の温度勾配炉100と同じ構成である。図1に示した部位と対応する部位には図1中と同じ参照符号を付した。炉の胴体部を構成する断熱性円筒104は内径φ110mm、耐熱材料製円筒202は内径φ50mmである。耐熱性円筒202の材質としては、等方性黒鉛焼結体およびBN焼結体の2種類を用いた。
【0051】
原料棒10および支持棒16は円柱状のSiC焼結体(焼結助剤としてB添加。密度99.5%TD)とした。いずれも、直径はφ12mm、φ20mm、φ35mmの3種類とし、長さは原料棒78mm、支持棒20mmとした。溶媒12として高純度シリコンを用い、直径がφ10mm、φ18mm、φ32mmの3種類で厚さがt1.5mmのペレット状に加工して供した。種結晶14は支持棒16と同径とし、厚さ0.4mmの円板状に加工し、カーボン接着剤で支持棒16の下端に取付けた。
【0052】
初期状態として、柱状ワークWの下端WBの温度Tbを1800℃に設定し、上端WTの温度TtはΔtの初期設定により1400℃とした。温度勾配は常時4℃/mmに維持した。また、上端温度Ttの制御は、冷媒のシリコンオイルの温度を一定にした場合と、下端温度Tbの降下に同期して変化させた場合の2種類の形態で行なった。下端温度Tbの降温速度は1.6、3.2、6.0、10.0℃/hの4水準とし、1780℃まで降温させた。製造条件と得られた単結晶長さを表1に示す。この実験の諸条件下では、溶媒12の移動長さ限界である30mmが単結晶成長長さの上限になる。
【0053】
【表1】

Figure 2004315281
【0054】
成長速度0.4mm/hの場合を比較すると、断熱円筒なし(図1)の場合には柱状ワーク径φ12mmで長さ30mmの高品質なSiC単結晶が得られた。また黒鉛製断熱円筒202(図2)を用いることにより柱状ワーク径φ20mmでも長さ30mmのSiC単結晶を成長させることが可能であった。更に、断熱円筒202(図2)の材質をBNとすることで柱状ワーク径φ35mmでも成長長さ30mmのSiC単結晶が得られた。
【0055】
また、冷却器112の冷媒シリコンオイルの温度を一定にした場合には、BN製の断熱円筒202を用いた場合でも、φ35mmの柱状ワーク径では30mmの成長長さを得られる成長速度は1.5mm/hまでであった。これに対して、冷媒シリコンオイルの温度を下端温度Tbに同期して変化させた場合には、成長速度を2.5mm/hまで高速にしても長さ30mmの高品質なSiC単結晶が得られた。
【0056】
〔実施例2〕
図1、図2、図3に示した温度勾配炉100、200、300を用いてSiC単結晶成長を行なった。図3の温度勾配炉300は、柱状ワークWを収容する耐熱材料製密閉容器204を炉内に備え、かつ溶媒供給源として溶媒容器206を炉底に配置した点以外は、図1の温度勾配炉100と同じ構成である。図1に示した部位と対応する部位には図1中と同じ参照符号を付した。密閉容器204は等方性黒鉛焼結体を用いた。なお、図3の温度勾配炉300については、溶媒容器206を配置しない場合についても実験を行なった。
【0057】
柱状ワーク径φ12mm、溶媒ペレット径φ7mm×厚さt0.6mm、柱状ワーク下端WBの初期設定温度2100℃、降温速度0.4℃/h(成長速度0.1mm/h)とし、長時間の操業で溶媒が揮発して成長が停止するまでのSiC単結晶成長長さを測定した。他の諸条件は実施例1に準ずる。結果を表2に示す。密閉容器204を用いかつ溶媒容器206を配置した場合に最も長時間の操業が可能になることが分かる。
【0058】
【表2】
Figure 2004315281
【0059】
〔実施例3〕
実施例1と同様な装置構成において、SiC単結晶成長過程における柱状ワークWの下端WBと上端WTとの間の電気抵抗率を測定した。結果を図5に示す。なお実施条件は表1に示した諸条件のうち、降温速度10.0℃/h、成長速度2.5mm/h、柱状ワーク径(成長単結晶径)φ35mm、BN製断熱円筒使用の場合である。
【0060】
柱状ワークWの下端WB、上端WTをそれぞれ測定端とした場合(図5(a))は、結晶の成長と共に電気抵抗値が直線的に低下し、成長途中の変曲点(矢印)は、時間の対応から見て多結晶化の開始時点と一致しており、単結晶成長過程での異常発生が明瞭に検出されている。また上下のサセプタ114,110を測定端とした場合(図5(a))でも、同様に異常点が明瞭に検出されている。
【0061】
また、径φ35mm×長さL100mmの黒鉛中実棒をダミーワークとして、各測定点でのワーク下端面きんぶの半径方向の温度分布を測定した。測定は、ダミーワークの下面から1mmの位置に穿孔した測定孔に、φ5mmのW−Re熱電対を挿入して行なった。結果を図6に示す。上下のサセプタを測定端とすることで面内温度分布の均一性が確保されることが分かる。
【0062】
〔実施例4〕
図4に示す温度勾配炉400を用いてSiC単結晶の析出による種結晶の作製を行なった。温度勾配炉400は、図3の温度勾配炉300において種結晶14を用いず、その代わりに支持棒16の下端に円錐形の座繰り凹部208を設け、この凹部先端から単結晶を核生成させ、これを種結晶として長尺の単結晶を成長させるための構成である。表3に示す諸条件で処理を行なった結果、支持棒下端から約1mm(円錐座繰り先端部から7mm)の長さの高品質のSiC単結晶を得ることができ、すなわち装置内部でSiC種結晶を創製することができた。
【0063】
【表3】
Figure 2004315281
【0064】
【発明の効果】
本発明によれば、温度勾配炉を用いて、加熱源の移動を必要とせずに単結晶の成長に適した所望の温度勾配を形成し、かつ、成長方向に対して垂直な面内の温度分布も均一化し、連続的に単結晶を製造する方法が提供される。
【図面の簡単な説明】
【図1】図1は、本発明の方法に用いる温度勾配炉の一実施形態を示す断面図およびプロセスを説明するグラフである。
【図2】図2は、本発明の方法に用いる温度勾配炉の他の実施形態を示す断面図である。
【図3】図3は、本発明の方法に用いる温度勾配炉のもう1つ実施形態を示す断面図である。
【図4】図4は、本発明の方法に用いる温度勾配炉の更にもう1つの実施形態を示す断面図である。
【図5】図5は、本発明の方法により測定した柱状ワークの電気抵抗の経時変化を示すグラフである。
【図6】図6は、本発明の方法により柱状ワーク端およびサセプタ端での半径方向温度分布を示すグラフである。
【符号の説明】
100、200、300、400…温度勾配炉
104…胴体部
106…中空部
108…誘導加熱コイル
110…加熱用サセプタ
112…冷却器
114…冷却用サセプタ
10…原料棒
12…溶媒
14…種結晶
16…支持棒
W…ワーク
WT…ワーク上端面(冷却端面)
WB…ワーク下端面(加熱端面)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for continuously producing a single crystal by precipitation from a solution using a temperature gradient furnace for imparting a longitudinal temperature gradient to a columnar work.
[0002]
[Prior art]
In manufacturing a high-quality single crystal as a semiconductor material or the like, it is necessary to minimize defects such as mosaicity and dislocation. Since defects are closely related to the stability of crystal growth, it is important to maintain an appropriate deposition rate according to the crystal material. Therefore, it is indispensable to control the temperature gradient along the crystal growth direction between the crystal deposition part, which serves as a driving force for the precipitation, and the deposition substance supply part (gas phase, liquid phase).
Conventional typical single crystal growth techniques include the CZ method (Czochralski method), the FZ method (zone melting method), the Bridgman method, and the TSSG method (melt pulling method).
[0003]
In either method, a temperature gradient is realized by heating a part of the work and releasing the other atmosphere, and the temperature gradient is controlled by the temperature of the heat source, the shape of the heat source, the shape of the work (crucible), and the heat source and the work. The adjustment is performed by adjusting the relative positional relationship between them.
[0004]
Such a conventional method has the following problems.
1) It is difficult to achieve a desired temperature gradient. As described above, since the control factors of the temperature gradient, that is, the fluctuation factors are various, it is extremely difficult to stably maintain each factor in an optimum state.
[0005]
2) The temperature gradient fluctuates due to factors other than the apparatus, such as the shape of the work (crucible) and the amount of raw materials charged. As described above, not only the device factors but also the factors outside the device are involved in the temperature gradient control.In order to achieve the desired temperature gradient, the calculation at the design stage and the trial and error of repeating the actual temperature measurement of the actual device are required. is necessary.
[0006]
3) It is difficult to equalize the temperature distribution in a plane perpendicular to the crystal growth direction. This is because the direction of the heat flow with respect to this vertical plane is not constant in the plane.
[0007]
In addition, compound semiconductors such as silicon carbide (SiC), which are attracting attention as a semiconductor material having a high band gap, do not harmonizely melt (have no molten state by themselves), and thus are precipitated from the above-described melt. The single crystal growth method cannot be applied.
[0008]
As a method not using a melt, there is a sublimation method or a solution method. The sublimation method is a method in which a single crystal raw material sublimated in a high temperature part is deposited from a gas phase on a seed crystal arranged in a low temperature part. However, the problem is that the single crystal growth rate is low due to precipitation from a dilute phase, and it is difficult to avoid the formation of micropipes in principle because of the frank mechanism that grows spirally from the step around the screw dislocation of the seed crystal. There is. On the other hand, the solution method is a method in which a single-crystal raw material is sufficiently dissolved in a solvent in a high-temperature part, and is disposed in a low-temperature part to cause a supersaturated state to appear on a seed crystal to precipitate. Although the above-mentioned problem of the sublimation method can be overcome by adjusting the solvent concentration, the temperature gradient fluctuates depending on the deposition site due to the above problems 1) to 3). It was extremely difficult to obtain crystals.
[0009]
Therefore, as a method for forming a melt by coexistence with another element, Patent Document 1 (Japanese Patent Application Laid-Open No. 2000-264790) includes at least one kind of transition metal, Si, and C. A method has been proposed in which a raw material is melted by heating to form a melt, and the melt is cooled to precipitate and grow a single crystal of silicon carbide (SiC). However, in this method, in order to continuously grow a single crystal, it is necessary to move a heating source continuously, and nucleation occurs simultaneously and frequently due to mechanical vibrations, resulting in polycrystallization. There was a problem.
[0010]
[Patent Document 1]
JP-A-2000-264790 (Claims)
[0011]
[Problems to be solved by the invention]
The present invention uses a temperature gradient furnace to form a desired temperature gradient suitable for growing a single crystal without the need to move a heating source, and to also generate a temperature distribution in a plane perpendicular to the growth direction. It is an object of the present invention to provide a method for producing a single crystal uniformly and continuously.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a single crystal production method of the present invention is a method for producing a single crystal by precipitation from a solution using a temperature gradient furnace for imparting a longitudinal temperature gradient to a columnar work. As the temperature gradient furnace, a heat insulating wall surrounding the outer periphery of the columnar work, a heating unit for heating the lower end of the columnar work via a heating susceptor, and cooling the upper end of the columnar work via a cooling susceptor Using a temperature gradient furnace with a cooling unit to
The raw material rod, the solvent, and the seed crystal supported on the lower end of the support rod are stacked in the furnace in order from the bottom to form the columnar work, and the lower end of the raw material rod is set as the lower end of the columnar work. By heating by the heating unit and cooling by the cooling unit using the upper end of the support rod as the upper end of the columnar work, a temperature gradient is formed in the columnar work so that the upper end surface is lower in temperature with respect to the lower end surface of the solvent. To form
By gradually reducing the heating temperature of the lower end of the columnar work, a single crystal is continuously grown downward from the seed crystal as a starting point.
[0013]
In the method of the present invention, the single crystal raw material of the raw material rod dissolves in the high-temperature portion at the lower end of the solvent and precipitates at the low-temperature portion at the upper end of the solvent, whereby the single crystal grows downward. As the heating temperature of the lower end of the columnar work decreases, the position of the temperature gradient line in the columnar work lowers as a whole. At the same time, with the lowering of the position of the upper end of the raw material rod due to the dissolution of the upper end of the raw material rod in the solvent and the downward elongation of the single crystal growth end due to precipitation on the seed crystal (or the lower end of the growing single crystal = growing end), The position of the solvent sandwiched between the raw material rod and the seed crystal (growing edge) drops. The heating temperature of the lower end of the columnar work is gradually reduced so that the position of the temperature gradient line is lowered so as to synchronize with the lowering of the solvent position due to the crystal growth. Thereby, the single crystal can be continuously grown by lowering the solvent position (= the place where the raw material is converted to the single crystal) without mechanically moving the heating source.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The principle of the method of the present invention for producing a single crystal using a temperature gradient furnace will be described with reference to FIG.
[0015]
First, a configuration example of the temperature gradient furnace used in the method of the present invention will be described. The illustrated temperature gradient furnace 100 has a cylindrical body, and has a central axis of the cylindrical body along the vertical direction in the figure, and the figure is a longitudinal sectional view in a plane including the central axis. The cylindrical body 104 is made of a heat-insulating material, and its hollow portion 106 constitutes an effective furnace space.
[0016]
In the cylindrical hollow portion 106, a cylindrical work W composed of the raw material rod 10, the solvent 12, the seed crystal 14, and the support rod 16 is held in a state in which the upper end and the lower end are in close contact with the bottom surface and the ceiling surface of the hollow portion 106, respectively. Will be accommodated. Thereby, the heat flow through the outer periphery of the work W is substantially blocked, and the heat flow can flow only through the upper end and the lower end.
[0017]
Thus, the temperature gradient is such that the lower end of the columnar work W (= the lower end of the raw material rod 10 = heating end) is the highest hot spot, and the upper end of the columnar work W (= the upper end of the support rod 16 = cooling end) is the lowest hot spot. A temperature gradient that monotonously decreases in temperature from below to above the columnar work W is formed along the longitudinal direction of the columnar work W.
[0018]
The lower end surface WB of the cylindrical work W (the lower end surface of the raw material rod 10) is a circular flat surface, and is heated by the induction heating coil 108 below. The heating susceptor 110 interposed between the induction heating coil 108 and the lower end surface WB of the work W includes a disc-shaped flange portion 110A that is in close contact with the lower end surface WB of the columnar work W, and a cylindrical portion 110B that is heated by induction heating. Consisting of The induction heating coil 108 is arranged around the cylindrical portion 110B of the susceptor 110. With such a structure, compared to a structure in which the susceptor 110 has a simple disk shape, the ultimate temperature is increased and the uniformity of the in-plane temperature distribution is further improved.
[0019]
The cylindrical portion 110B has a substantially cylindrical shape in which a portion other than a portion immediately adjacent to the flange portion 110A is hollow. When the cylindrical portion 110B is entirely solid, the outer peripheral portion of the cylindrical portion 110B directly heated by the induction coil 108 has a high temperature, and the core portion of the cylindrical portion 110B heated only by heat conduction from the outer peripheral portion. Tends to be low temperature, which is not desirable for ensuring uniformity of the temperature distribution in the cross section. By making the portion other than the portion immediately adjacent to the flange portion 110A hollow as in this embodiment, the uniformity of the in-plane temperature distribution can be further improved.
[0020]
As described above, the heat flow from the resistance heating coil 108 to the work lower end surface WB is equalized by the intervening heating susceptor 110 between the induction heating coil 108 and the work lower end surface WB, and the entire work lower end surface WB is equalized. Heated. The heating susceptor 110 is made of a disc made of a good heat conductive metal such as copper to secure high heating efficiency.
[0021]
The upper end surface WT of the columnar work W is also a circular flat surface, and is cooled by a water-cooled cooler 112 having a circular cooling flat surface opposed thereto. The cooler 112 is in the form of a cooling jacket made of a good heat conductive metal such as copper. In the illustrated example, the cooling water inlet CLI and the outlet CLO are open at the upper end, and the other parts are watertight. Structure. By the cooling susceptor 114 interposed between the cooler 112 and the work upper end surface WT, the heat flow from the work upper end surface WT to the cooler 112 is equalized, and the entire work upper end surface WB is uniformly cooled. The cooling susceptor 114 is made of graphite or the like having heat resistance and moderate heat insulating properties, since it is necessary to secure an appropriate heat removal effect so as to prevent excessive rapid cooling and allow necessary slow cooling. .
[0022]
The cooler 112 can be moved up and down as indicated by a double-headed arrow X in the figure, so that the distance Δt between the cooler 112 and the susceptor 114 can be appropriately adjusted as necessary to set a required heat removal amount. (In the illustrated example, Δt = 0, both are in close contact with each other).
[0023]
The temperature Tb of the workpiece lower end surface WB to be heated is externally observed by a pyrometer through a pipe T1 penetrating the center of the heating coil 108 and the heating susceptor 110 (observation optical path: arrow PB). The heating temperature is controlled by adjusting the output of the induction heating coil 108 based on the observed temperature value.
[0024]
The temperature Tt of the work upper end surface WT to be cooled is externally observed by a pyrometer through a pipe T2 penetrating the center of the cooler 112 and the cooling susceptor 114 (observation optical path: arrow PT). By adjusting the temperature and flow rate of the cooling water supplied to the water-cooled cooler 112 based on this observation value, the heat removal (cooling strength) can be adjusted.
[0025]
As described above, the heating at the lower end WB and the cooling at the upper end WT of the columnar work W are performed using the heating susceptor 110 and the cooling susceptor 114, respectively. And a uniform heat flow distribution in the cross section, so that a very high linearity is given to a temperature gradient that monotonously decreases in temperature from below to above the columnar work W. At the same time, the temperature distribution in the cross section can be made uniform.
[0026]
Next, the principle of a method for continuously growing a single crystal according to the present invention using the temperature gradient furnace 100 will be described.
[0027]
In the method of the present invention, a single crystal raw material is grown from a raw material rod 10 via a solvent 12 by being deposited on a seed crystal (or a crystal growth tip). This is because the upper end of the raw material rod 10 that is in contact with the lower end of the solvent 12 is lower under a temperature gradient that monotonously and linearly decreases in temperature from below to above the columnar work W as described above. This is because the temperature of the seed crystal (the crystal growth tip) in contact with the upper end of the solvent 12 is always maintained at a higher temperature by a certain temperature width. This will be described in detail in the following description.
[0028]
First, as an operation preparation, the upper end of the support rod 16 having the seed crystal 14 attached to the lower end is fixed to the furnace ceiling, the lower end of the new raw material rod 10 is fixed to the furnace bottom, and the gap between the raw material rod 10 and the seed crystal 14 is A solid of a substance to be used as the solvent 12 is inserted in close contact.
[0029]
By operating the induction heating coil 108 and the cooler 112, a temperature gradient that monotonously and linearly decreases in temperature from below to above the columnar work W is formed along the longitudinal direction of the columnar work W. At this time, a liquid solvent 12 is formed and is held between the upper end of the raw material rod 10 and the lower end of the seed crystal 14 by surface tension. This is the same as the state of the molten zone in the conventional zone melting method.
[0030]
At the start of crystal growth (elapsed time j = 0), the interface between the upper end of the raw material rod 10 and the solvent 12 has a height Z1. 0 In a fresh solvent 12 that does not yet contain a medium 1 The raw material is dissolved from the raw material rod 10 to a concentration corresponding to the high solubility of the raw material. The dissolved raw material is diffused in the solvent 12 to form an interface between the solvent 12 and the lower end of the seed crystal 14 (height Z2). 0 ) And the high temperature T 1 Low temperature T lower by a temperature width ΔT determined by the temperature gradient 2 The crystal raw material of a supersaturated amount exceeding the concentration corresponding to the low solubility in the above is precipitated from the solvent 12 on the lower end face of the seed crystal 14 and crystal growth starts.
[0031]
In order to set the initial temperature of the heating end (lower end) WB and the cooling end (upper end) WT of the columnar work W, a cooler in which a refrigerant of a predetermined temperature is circulated while the output of the induction heating coil 108 is adjusted. The state in which the height of the cooling 112 is adjusted to leave an interval Δt with the cooling susceptor 114 (Δt = Δt 0 ≠ 0) and wait until the temperature at both ends is stabilized.
[0032]
When the crystal growth starts, the output of the induction heating coil 108 is continuously lowered to lower the temperature of the lower end WB continuously, and in synchronism with this, the cooler 112 is continuously lowered so that the cooling susceptor 114 Is the initial value Δt 0 , The temperature of the upper end WT is continuously reduced. Accordingly, the temperature gradient line is continuously moved as a whole toward a lower temperature while the temperature gradient is maintained at the initial setting value, that is, the temperature gradient line is continuously moved as a whole from the lower end WB of the columnar work W. The speed of the continuous movement of the temperature gradient line is set so as to coincide with the speed of crystal growth by dissolution and precipitation of the raw material. The relationship between the two is determined in advance by an experiment.
[0033]
As described above, with the continuous drop of the temperature gradient line, the solvent 12 for dissolving and depositing the raw material also continuously drops at the same speed, and the single crystal continuously grows downward starting from the seed crystal. This will be described with reference to FIG. 1 At the point of time, the temperature gradient line is the initial position D 0 To D 1 And at the same time, the solvent position is expressed as [lower end height / upper end height], and the initial [Z1 0 / Z2 0 ] To time j 1 [Z1 1 / Z2 1 ]. However, the temperature difference between the lower end and the upper end of the solvent 12 is maintained at the initial value ΔT.
[0034]
As shown, the initial temperature gradient line D 0 Is the initial lower end temperature / upper end temperature [Tb 0 / Tt 0 At time j 1 Temperature gradient line D1 at time j 1 Temperature / top temperature [Tb 1 / Tt 1 ]. Temperature gradient line D 0 , D 1 Are straight lines, and the temperature difference between the upper and lower ends is always constant.
[0035]
In this way, by lowering the position of the solvent in synchronization with the parallel movement of the temperature gradient, a single crystal can be grown continuously without requiring mechanical movement.
[0036]
As the solvent 12, a solvent having a melting point lower than the melting point of the single crystal raw material or the decomposition / sublimation temperature is used. If the temperature zone of the solvent 12 (the melting end T1 to the precipitation end T2) is high, the moving range of the solvent is limited by the allowable operating temperature range of the furnace 100. By making the solvent temperature as low as possible, the length of a single crystal that can be continuously grown becomes large.
[0037]
As the raw material rod 10, a material made of a dense sintered body of a single crystal raw material and containing a dopant as a sintering aid can be used. In this way, the crystal can be doped at the manufacturing stage. If the raw material rod is porous, the solvent may be absorbed or the solvent may climb on the side surface of the support rod due to the presence of unevenness on the surface, leading to a decrease or disappearance of the solvent, which may cause a shutdown of the operation. Therefore, the raw material rod is made dense.
[0038]
It is desirable to arrange the columnar work W in a cylinder made of a heat-resistant material. There is a gap between the furnace wall defined by the inner peripheral surface of the heat insulating material 104 and the outer peripheral surface of the columnar work W. Therefore, heat loss due to radiation from the outer peripheral surface of the columnar work W occurs, which causes a change in a temperature gradient and a decrease in uniformity of a temperature distribution in a cross section. This tendency becomes more apparent as the diameter of the columnar workpiece increases. As a result, the precipitation state becomes non-uniform, and defects such as dislocations are introduced, and in a severe case, polycrystallization occurs. By arranging the columnar work in a cylinder made of a heat-resistant material, a constant and small gap is formed around the outer periphery of the columnar work, stable temperature gradients and uniform temperature distribution in the cross section are ensured. Crystallization can be prevented and a high-quality single crystal can be grown.
[0039]
It is desirable to arrange the columnar work in a closed container made of a heat-resistant material. This further ensures temperature gradient stabilization and temperature uniformity in the cross section.
[0040]
As the heat-resistant material constituting the cylinder or the closed container, one selected from the group consisting of graphite sintered bodies, alumina sintered bodies, zirconia sintered bodies, and boron nitride sintered bodies can be used. Among them, the alumina sintered body, the zirconia sintered body and the boron nitride sintered body have low emissivity, and are effective in reducing radiation loss.
[0041]
When using a closed container, it is desirable to arrange a solvent supply source inside. Depending on the type of the solvent and the temperature conditions of the operation, the decrease in the solvent due to volatilization becomes prominent in the operation for a long time, and the length of a single crystal that can be produced may be limited. In such a case, by arranging the solvent supply source in a closed container containing the columnar work, the solvent vapor pressure can be easily maintained in a saturated state in the container. A long single crystal can be manufactured by time operation.
[0042]
The electric resistance between the upper end and the lower end of the columnar work is measured, and the single crystal growth length can be detected based on the measured value. Compared with a single crystal to be grown, the sintered body used for the support rod and the raw material rod has a higher electric resistance as a whole due to the electric resistance of the existing grain boundaries. Therefore, the electrical resistance in the axial direction of the columnar work decreases as the single crystal grows. Using this, the growth length of the single crystal can always be detected. From the rate of change of the electric resistance, a growth rate (= descent rate of the solvent position) in the solvent band range is obtained, and by using this, the solvent position movement speed and the temperature gradient line movement speed can be matched.
[0043]
The measurement of the electric resistance can be performed between the upper end of the cooling susceptor and the lower end of the heating susceptor. If the single crystal to be grown has a large diameter or the operating temperature is high, the uniformity of the temperature distribution in the cross section may be reduced due to the influence of the disturbance of the temperature field due to the installation of the measuring terminal. In such a case, it is possible to avoid the disturbance due to the disturbance of the temperature field by measuring not through the upper end and the lower end of the columnar work but through the susceptor having high in-plane temperature uniformity.
[0044]
It is desirable to set the temperature of the solvent to just below the boiling point of the solvent. The crystal growth rate is determined by the degree of supersaturation. The degree of supersaturation can be controlled by the temperature gradient and the difference in solubility of the solute (single crystal raw material) with temperature. Solubility is temperature-dependent and increases with increasing temperature, and the rate of increase also increases with increasing temperature. Therefore, by setting the temperature of the solvent to just below the boiling point of the solvent, that is, the maximum temperature usable in the solvent used, the maximum degree of supersaturation achievable with the solvent is obtained, and the crystal growth rate can be maximized.
[0045]
Here, in the above description with reference to FIG. 1, at the start of the growth of the single crystal, a gap Δt is provided between the cooler 112 and the cooling susceptor 114, and the heating temperature Tb of the lower end WB of the columnar work W decreases. The constant temperature gradient was always maintained by lowering the cooler 112 in synchronism with the above to reduce the gap Δt. However, the present invention is not limited to this, and a constant temperature gradient can be always maintained by lowering the temperature of the refrigerant supplied to the cooler 112 in synchronization with the lowering of the heating temperature of the lower end WB of the columnar work W. .
[0046]
If the temperature gradient cannot be constantly maintained, normal single crystal growth cannot be performed for the following reasons.
[0047]
For example, if the temperature of the lower end WB is changed while keeping the temperature of the upper end WT constant while keeping the cooling capacity of the cooler 112 constant, the temperature gradient naturally changes. In particular, when a long single crystal is manufactured, the change in the temperature gradient becomes large. In the present invention, a temperature gradient has a substantial meaning in a solvent existing zone where a raw material is dissolved and precipitated. Under the condition that the temperature Tt at the upper end WT = constant, the temperature Tb of the lower end WB is changed to the growth start temperature Tb. 0 From the end of growth Tb 1 Then, the temperature gradient formed based on the temperature difference of Tb-Tt monotonously decreases from the maximum value at the start of growth to the minimum value at the end of growth.
[0048]
In general, a single crystal has a different degree of supersaturation optimum for growth when its constituent materials are different. Therefore, under the condition where the temperature gradient gradually decreases as described above, in the case of a substance having a small degree of supersaturation due to a small temperature gradient at the end of growth as an optimal growth condition, a large supersaturation due to a large temperature gradient at the start of growth is not sufficient. It is too much, and heterogeneous nucleation is promoted to cause another crystallization. Conversely, in the case of a substance having a high degree of supersaturation at the start of growth as an optimal growth condition, the dissolution / precipitation cannot catch up with the lowering rate of the lower end temperature Tb which drops at a constant rate, so that the solvent lowering rate decreases. The solvent solidifies before reaching the lower end of the raw material rod (the lower end of the columnar work WB).
[0049]
Also, the seed crystal can be generated at the tip of a conical recess formed at the lower end of the support rod. In order to grow a large single crystal, a seed crystal serving as a nucleus for growth is required. However, depending on the substance, it may be difficult to obtain the seed crystal itself. In such a case, a conical counterbore is provided at the lower end of the support rod as described above, and nucleation is first generated at the tip, and then continuously deposited on this small nucleus to cover the entire cross section. Can be formed. At that time, in order to prevent polycrystallization due to heterogeneous nucleation, it is important that the conical counterbore provided at the lower end of the support rod be processed into a mirror surface, and that the tip be a shape that gradually changes as an R surface. .
[0050]
【Example】
[Example 1]
Using the temperature gradient furnaces 100 and 200 shown in FIGS. 1 and 2, production experiments of SiC single crystals were performed under various conditions. The temperature gradient furnace 200 in FIG. 2 has the same configuration as the temperature gradient furnace 100 in FIG. 1 except that a temperature-resistant material cylinder 202 for accommodating the columnar work W is provided in the furnace. Parts corresponding to those shown in FIG. 1 are denoted by the same reference numerals as those in FIG. The heat-insulating cylinder 104 constituting the body of the furnace has an inner diameter of 110 mm, and the heat-resistant material cylinder 202 has an inner diameter of 50 mm. As the material of the heat-resistant cylinder 202, two types of isotropic graphite sintered bodies and BN sintered bodies were used.
[0051]
The raw material rods 10 and the support rods 16 were cylindrical SiC sintered bodies (B added as a sintering aid, density 99.5% TD). In each case, the diameter was three types of φ12 mm, φ20 mm, and φ35 mm, and the length was 78 mm for the raw material rod and 20 mm for the support rod. High-purity silicon was used as the solvent 12, and processed into pellets having a diameter of 10 mm, 18 mm, and 32 mm and a thickness of 1.5 mm. The seed crystal 14 had the same diameter as the support rod 16, was processed into a disk shape having a thickness of 0.4 mm, and was attached to the lower end of the support rod 16 with a carbon adhesive.
[0052]
As an initial state, the temperature Tb of the lower end WB of the columnar work W was set to 1800 ° C., and the temperature Tt of the upper end WT was set to 1400 ° C. by the initial setting of Δt. The temperature gradient was always maintained at 4 ° C / mm. Further, the control of the upper end temperature Tt was performed in two forms, that is, when the temperature of the silicon oil of the refrigerant was kept constant and when the temperature was changed in synchronization with the drop of the lower end temperature Tb. The temperature lowering rate of the lower end temperature Tb was set at four levels of 1.6, 3.2, 6.0, and 10.0 ° C./h, and the temperature was lowered to 1780 ° C. Table 1 shows the manufacturing conditions and the obtained single crystal length. Under the conditions of this experiment, the upper limit of the single crystal growth length is 30 mm, which is the movement length limit of the solvent 12.
[0053]
[Table 1]
Figure 2004315281
[0054]
Comparing the case with a growth rate of 0.4 mm / h, a high-quality SiC single crystal having a columnar workpiece diameter of φ12 mm and a length of 30 mm was obtained without the heat insulating cylinder (FIG. 1). Further, by using the heat insulating cylinder 202 made of graphite (FIG. 2), it was possible to grow a SiC single crystal having a length of 30 mm even with a columnar work diameter of 20 mm. Further, by using BN as the material of the heat insulating cylinder 202 (FIG. 2), a SiC single crystal having a growth length of 30 mm was obtained even with a columnar work diameter of 35 mm.
[0055]
Further, when the temperature of the refrigerant silicon oil in the cooler 112 is kept constant, the growth rate at which a growth length of 30 mm can be obtained with a φ35 mm columnar work diameter even when the BN heat insulating cylinder 202 is used is 1. It was up to 5 mm / h. On the other hand, when the temperature of the refrigerant silicon oil is changed in synchronization with the lower end temperature Tb, a high-quality SiC single crystal having a length of 30 mm can be obtained even when the growth rate is increased to 2.5 mm / h. Was done.
[0056]
[Example 2]
The SiC single crystal was grown using the temperature gradient furnaces 100, 200, and 300 shown in FIGS. The temperature gradient furnace 300 shown in FIG. 3 has a temperature gradient shown in FIG. 1 except that a closed container 204 made of a heat-resistant material for accommodating the columnar work W is provided in the furnace, and a solvent container 206 is disposed at the bottom of the furnace as a solvent supply source. It has the same configuration as the furnace 100. Parts corresponding to those shown in FIG. 1 are denoted by the same reference numerals as those in FIG. The closed container 204 was made of an isotropic graphite sintered body. An experiment was also performed on the temperature gradient furnace 300 shown in FIG. 3 when the solvent container 206 was not provided.
[0057]
Column work diameter φ12mm, solvent pellet diameter φ7mm x thickness t0.6mm, initial setting temperature of column work lower end WB 2100 ° C, cooling rate 0.4 ° C / h (growth rate 0.1mm / h), long-term operation , The growth length of the SiC single crystal until the solvent was volatilized and the growth was stopped was measured. Other conditions are the same as in Example 1. Table 2 shows the results. It can be seen that the longest operation is possible when the closed container 204 is used and the solvent container 206 is arranged.
[0058]
[Table 2]
Figure 2004315281
[0059]
[Example 3]
In the same device configuration as in Example 1, the electrical resistivity between the lower end WB and the upper end WT of the columnar workpiece W during the SiC single crystal growth process was measured. FIG. 5 shows the results. The operating conditions are the conditions shown in Table 1, where the temperature drop rate is 10.0 ° C./h, the growth rate is 2.5 mm / h, the columnar work diameter (growth single crystal diameter) is φ35 mm, and the BN heat insulating cylinder is used. is there.
[0060]
In the case where the lower end WB and the upper end WT of the columnar work W are each a measurement end (FIG. 5A), the electric resistance value decreases linearly with the growth of the crystal, and the inflection point (arrow) during the growth is From the time point of view, it coincides with the start point of polycrystallization, and abnormal occurrence in the single crystal growth process is clearly detected. Also, when the upper and lower susceptors 114 and 110 are used as the measurement ends (FIG. 5A), the abnormal point is similarly detected clearly.
[0061]
Further, using a solid graphite rod having a diameter of φ35 mm and a length of L100 mm as a dummy work, the temperature distribution in the radial direction of the bottom end face of the work at each measurement point was measured. The measurement was performed by inserting a φ5 mm W-Re thermocouple into a measurement hole drilled 1 mm from the lower surface of the dummy work. FIG. 6 shows the results. It can be seen that the uniformity of the in-plane temperature distribution is secured by using the upper and lower susceptors as the measurement ends.
[0062]
[Example 4]
Using a temperature gradient furnace 400 shown in FIG. 4, a seed crystal was produced by depositing a SiC single crystal. The temperature gradient furnace 400 does not use the seed crystal 14 in the temperature gradient furnace 300 of FIG. 3, but instead has a conical counterbore recess 208 at the lower end of the support rod 16 and nucleates a single crystal from the tip of the recess. This is a configuration for growing a long single crystal using this as a seed crystal. As a result of performing the treatment under the conditions shown in Table 3, a high-quality SiC single crystal having a length of about 1 mm from the lower end of the support rod (7 mm from the tip of the conical counterbore) can be obtained. Crystals could be created.
[0063]
[Table 3]
Figure 2004315281
[0064]
【The invention's effect】
According to the present invention, a temperature gradient furnace is used to form a desired temperature gradient suitable for growing a single crystal without requiring the movement of a heating source, and the temperature in a plane perpendicular to the growth direction. A method for producing a single crystal continuously with uniform distribution is provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one embodiment of a temperature gradient furnace used in the method of the present invention, and a graph illustrating a process.
FIG. 2 is a sectional view showing another embodiment of the temperature gradient furnace used in the method of the present invention.
FIG. 3 is a sectional view showing another embodiment of the temperature gradient furnace used in the method of the present invention.
FIG. 4 is a sectional view showing still another embodiment of the temperature gradient furnace used in the method of the present invention.
FIG. 5 is a graph showing the change over time in the electrical resistance of a columnar work measured by the method of the present invention.
FIG. 6 is a graph showing a radial temperature distribution at a columnar workpiece end and a susceptor end according to the method of the present invention.
[Explanation of symbols]
100, 200, 300, 400 ... temperature gradient furnace
104 ... body part
106 ... hollow part
108… Induction heating coil
110 ... Heating susceptor
112 ... cooler
114 ... Cooling susceptor
10. Raw material rod
12 ... Solvent
14 ... Seed crystal
16 ... Support rod
W… Work
WT: Work top end (cooling end)
WB: Work bottom surface (heating surface)

Claims (13)

柱状ワークにその長手方向の温度勾配を付与する温度勾配炉を用いて溶液からの析出により単結晶を製造する方法であって、上記温度勾配炉として、上記柱状ワークの外周を取り囲む断熱壁と、加熱用サセプタを介して該柱状ワークの下端を加熱する加熱部と、冷却用サセプタを介して該柱状ワークの上端を冷却する冷却部とを備えた温度勾配炉を用い、
上記炉内に下から順に原料棒と、溶媒と、支持棒の下端に支持された種結晶とを積層して上記柱状ワークを構成して、該原料棒の下端を該柱状ワークの下端として上記加熱部により加熱させると共に該支持棒の上端を該柱状ワークの上端として上記冷却部により冷却させることにより、上記溶媒の下端面に対して上端面が低温になるように上記柱状ワーク内に温度勾配を形成し、
上記柱状ワーク下端の加熱温度を漸減させることにより、上記種結晶を起点として下方へ連続的に単結晶を成長させることを特徴とする温度勾配炉を用いた単結晶の製造方法。
A method for producing a single crystal by precipitation from a solution using a temperature gradient furnace that imparts a temperature gradient in the longitudinal direction to the columnar work, wherein, as the temperature gradient furnace, an insulating wall surrounding the outer periphery of the columnar work, A heating unit that heats the lower end of the columnar work through a heating susceptor, and a temperature gradient furnace including a cooling unit that cools the upper end of the columnar work through a cooling susceptor,
The raw material rod, the solvent, and the seed crystal supported on the lower end of the support rod are stacked in the furnace in order from the bottom to form the columnar work, and the lower end of the raw material rod is set as the lower end of the columnar work. By heating by the heating unit and cooling by the cooling unit using the upper end of the support rod as the upper end of the columnar work, a temperature gradient is formed in the columnar work so that the upper end surface is lower in temperature with respect to the lower end surface of the solvent. To form
A method for producing a single crystal using a temperature gradient furnace, wherein a single crystal is continuously grown downward from the seed crystal as a starting point by gradually decreasing a heating temperature of a lower end of the columnar work.
上記溶媒が、上記単結晶原料物質の融点または分解・昇華温度より低い融点を有することを特徴とする請求項1記載の方法。The method of claim 1 wherein the solvent has a melting point lower than the melting point or decomposition / sublimation temperature of the single crystal source material. 上記原料棒が、上記単結晶原料物質の緻密質焼結体から成り、焼結助剤としてドーパントを含有することを特徴とする請求項1または2記載の方法。3. The method according to claim 1, wherein the raw material rod is made of a dense sintered body of the single crystal raw material, and contains a dopant as a sintering aid. 上記柱状ワークを耐熱性材料から成る円筒内に配置することを特徴とする請求項1から3までのいずれか1項記載の方法。4. The method according to claim 1, wherein the columnar workpiece is arranged in a cylinder made of a heat-resistant material. 上記柱状ワークを耐熱性材料から成る密閉容器内に配置することを特徴とする請求項1から3までのいずれか1項記載の方法。The method according to any one of claims 1 to 3, wherein the columnar work is arranged in a closed container made of a heat-resistant material. 上記耐熱性材料が、黒鉛焼結体、アルミナ焼結体、ジルコニア焼結体および窒化硼素焼結体から成る群から選択した1種から成ることを特徴とする請求項4または5記載の方法。The method according to claim 4 or 5, wherein the heat-resistant material comprises one selected from the group consisting of graphite sintered body, alumina sintered body, zirconia sintered body and boron nitride sintered body. 上記密閉容器内に溶媒供給源を配置することを特徴とする請求項5記載の方法。The method according to claim 5, wherein a solvent supply source is disposed in the closed container. 上記柱状ワークの上端と下端との間の電気抵抗を測定し、この測定値に基づいて単結晶成長長さを検出することを特徴とする請求項1から7までのいずれか1項記載の方法。The method according to any one of claims 1 to 7, wherein an electric resistance between an upper end and a lower end of the columnar work is measured, and a single crystal growth length is detected based on the measured value. . 上記冷却用サセプタの上端と上記加熱用サセプタの下端との間の電気抵抗を測定することを特徴とする請求項8記載の方法。9. The method according to claim 8, wherein an electrical resistance between an upper end of the cooling susceptor and a lower end of the heating susceptor is measured. 上記溶媒の温度を該溶媒の沸点直下に設定することを特徴とする請求項1から9までのいずれか1項記載の方法。10. The method according to claim 1, wherein the temperature of the solvent is set just below the boiling point of the solvent. 単結晶の成長開始時点で上記冷却部と上記冷却用サセプタとの間に間隙を設け、上記柱状ワーク下端の加熱温度の降下に同期させて該冷却部を降下させて該間隙を減少させることを特徴とする請求項1から10までのいずれか1項記載の方法。A gap is provided between the cooling unit and the cooling susceptor at the start of single crystal growth, and the gap is reduced by lowering the cooling unit in synchronization with a decrease in the heating temperature of the lower end of the columnar work. 11. The method according to claim 1, wherein the method comprises: 上記柱状ワーク下端の加熱温度の降下に同期させて上記冷却部に供給する冷媒の温度を降下させることを特徴とする請求項1から11までのいずれか1項記載の方法。The method according to any one of claims 1 to 11, wherein the temperature of the refrigerant supplied to the cooling unit is decreased in synchronization with a decrease in the heating temperature of the lower end of the columnar work. 上記種結晶を、上記支持棒の下端に形成された円錐状凹部の尖端部に生成させることを特徴とする請求項1から12までのいずれか1項記載の方法。The method according to claim 1, wherein the seed crystal is formed at a point of a conical recess formed at a lower end of the support rod.
JP2003110779A 2003-04-15 2003-04-15 Method for manufacturing single crystal using temperature gradient furnace Withdrawn JP2004315281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110779A JP2004315281A (en) 2003-04-15 2003-04-15 Method for manufacturing single crystal using temperature gradient furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110779A JP2004315281A (en) 2003-04-15 2003-04-15 Method for manufacturing single crystal using temperature gradient furnace

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009124717A Division JP5051179B2 (en) 2009-05-22 2009-05-22 Method for producing single crystal using temperature gradient furnace

Publications (1)

Publication Number Publication Date
JP2004315281A true JP2004315281A (en) 2004-11-11

Family

ID=33471541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110779A Withdrawn JP2004315281A (en) 2003-04-15 2003-04-15 Method for manufacturing single crystal using temperature gradient furnace

Country Status (1)

Country Link
JP (1) JP2004315281A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005053003A3 (en) * 2003-11-25 2008-02-14 Toyota Motor Co Ltd Method of production of silicon carbide single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005053003A3 (en) * 2003-11-25 2008-02-14 Toyota Motor Co Ltd Method of production of silicon carbide single crystal
US7588636B2 (en) 2003-11-25 2009-09-15 Toyota Jidosha Kabushiki Kaisha Method of production of silicon carbide single crystal

Similar Documents

Publication Publication Date Title
KR102049710B1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL AND PRODUCTION DEVICE
JP4453348B2 (en) Method for producing silicon carbide single crystal
JP5136970B2 (en) High quality silicon single crystal ingot growth equipment and growth method using the equipment
JP6267303B2 (en) Crystal production method
JP5249498B2 (en) Silicon single crystal growth method, growth apparatus, and silicon wafer manufactured therefrom
JP2009018987A (en) Apparatus for manufacturing crystalline material block by adjusting heat conductivity
US20160230307A1 (en) Apparatus and methods for producing silicon-ingots
JP4389574B2 (en) SiC single crystal manufacturing method and manufacturing apparatus
JP6216060B2 (en) Crystal production method
KR101829981B1 (en) Method for producing sic single crystal
JP6190070B2 (en) Crystal production method
JP5051179B2 (en) Method for producing single crystal using temperature gradient furnace
JP2004315281A (en) Method for manufacturing single crystal using temperature gradient furnace
JP2017193469A (en) After-heater and sapphire single crystal production apparatus
JPH02255591A (en) Method and device for producing silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060329

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080925

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20081007

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

A131 Notification of reasons for refusal

Effective date: 20090324

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090721

Free format text: JAPANESE INTERMEDIATE CODE: A02

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090728