JPH02255591A - Method and device for producing silicon single crystal - Google Patents

Method and device for producing silicon single crystal

Info

Publication number
JPH02255591A
JPH02255591A JP7670089A JP7670089A JPH02255591A JP H02255591 A JPH02255591 A JP H02255591A JP 7670089 A JP7670089 A JP 7670089A JP 7670089 A JP7670089 A JP 7670089A JP H02255591 A JPH02255591 A JP H02255591A
Authority
JP
Japan
Prior art keywords
single crystal
silicon
raw material
melt
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7670089A
Other languages
Japanese (ja)
Inventor
Yoshinobu Shima
島 芳延
Kenji Araki
健治 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP7670089A priority Critical patent/JPH02255591A/en
Publication of JPH02255591A publication Critical patent/JPH02255591A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the disturbance of heat convection and to prevent the generation of crystal defects by cooling the high-temp. silicon melt in the raw material melting part on the outer side of the inside partition wall of a crucible to attain a prescribed temp. difference before this melt is mixed with the melt in the single crystal growing part on the inner side. CONSTITUTION:The crucible 1 in which molten silicon 5 is put is partitioned by a partitioning member 4 to the single crystal growing part B on the inner side and the raw material melting part A on the outer side, between which the molten silicon 5 is gently moved. A silicone raw material is continuously supplied via a supply pipe 12 to the above-mentioned melting part A. The high- temp. silicon melt 5 in the above-mentioned melting part A is cooled by a heat exchanger 15 to <=5 deg.C from the melt of the growing part B before this melt is mixed with the melt 5 in the single crystal growing part B on the inner side. The silicon single crystal 6 is then pulled up in the growing part B.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、チョクラルスキー法によるシリコン単結晶の
製造方法及びその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method and apparatus for producing a silicon single crystal using the Czochralski method.

[従来の技術] チョクラルスキー法によるシリコン単結晶引き上げ方法
は従来から行なわれており、はぼ完成された技術となっ
ている。
[Prior Art] A silicon single crystal pulling method using the Czochralski method has been practiced for a long time and has become a nearly perfected technology.

この技術は、周知のように石英製のるつぼに溶融した半
導体原料を入れ、種結晶をこの溶融面に接すると同時に
回転させながら徐々に引き上げると、接触面の凝固とと
もに結晶成長が行なわれ、円柱状の単結晶を得ることが
できる。
As is well known, this technology involves placing a molten semiconductor raw material in a quartz crucible, touching the molten surface of the seed crystal, and at the same time rotating it and gradually pulling it up. As the contact surface solidifies, crystal growth occurs, creating a circular shape. A columnar single crystal can be obtained.

この時、目的に応じて単結晶をP型またはN型の半導体
にするために、溶融原料に適量のボロン、アンチモン、
リン等のドープ剤を混入している。
At this time, in order to make the single crystal a P-type or N-type semiconductor depending on the purpose, an appropriate amount of boron, antimony,
Contains doping agents such as phosphorus.

しかしながら、これらのドープ剤の単結晶への取り込ま
れ方は一定ではなく、下部はど濃度が高くなる。
However, the way these dopants are incorporated into the single crystal is not constant, and the concentration becomes higher in the lower part.

また、この方法ではるつぼ内の溶融した半導体原料が単
結晶の成長とともに減少するため、石英製のるつぼ材よ
り溶融中に溶は込む酸素量が減少し、単結晶中の酸素濃
度は下部はど低くなる。
In addition, with this method, the molten semiconductor raw material in the crucible decreases as the single crystal grows, so the amount of oxygen that enters during melting is reduced compared to quartz crucible material, and the oxygen concentration in the single crystal decreases at the bottom. It gets lower.

上記のようなドープ剤と酸素の偏在により、成分に関す
る使用が厳しい場合は、使用に耐えるウェハーの歩留ま
りが50%以下のこともある。
Due to the uneven distribution of the dopant and oxygen as described above, the yield of usable wafers may be less than 50% if the components are strictly used.

このような問題を解決する効果的な方法として、シリコ
ン原料をるつぼに連続的または間欠的に供給して、溶融
原料の液面を一定に保持する方法が知られている。特に
最近では、高品質の粒状多結晶シリコンが製造できるよ
うになり、この粒状シリコンを連続的かつ一定量ずつ溶
融原料に供給することは比較的簡単であると考えられい
くつか発明および論文が発表されている(特開昭58−
130195号、特開昭63−95195号、実開昭5
9−141578号の発明および論文Ann、Rev、
Mater、Sci、1987.Vol、17゜P27
3−279)。
As an effective method for solving such problems, a method is known in which silicon raw material is continuously or intermittently supplied to a crucible to maintain a constant liquid level of the molten raw material. Especially recently, it has become possible to produce high-quality granular polycrystalline silicon, and it is thought that it is relatively easy to continuously supply a fixed amount of this granular silicon to the molten raw material, and several inventions and papers have been published. (Unexamined Japanese Patent Publication No. 1983-
No. 130195, JP-A-63-95195, U.S. Pat.
9-141578 invention and paper Ann, Rev.
Mater, Sci., 1987. Vol, 17゜P27
3-279).

上記の発明は、溶融シリコンが入れられたるつぼを、溶
融シリコンが移動しうるように内側の単結晶育成部と外
側の原料溶解部とに仕切り、外側の原料溶解部にシリコ
ン原料を連続的に供給しながら、内側の単結晶育成部か
らシリコン単結晶を引き上げようとするものである。
In the above invention, a crucible containing molten silicon is partitioned into an inner single crystal growth section and an outer raw material melting section so that the molten silicon can move, and the silicon raw material is continuously fed into the outer raw material melting section. While supplying the silicon single crystal, the silicon single crystal is pulled up from the inner single crystal growth section.

[発明が解決しようとする課題] 前記のような従来技術をもとに、粒状シリコンを連続的
かつ直接るつぼ内に供給しながら単結晶を引き上げる場
合、次の問題がある。すなわち、原料溶解部の融液は、
供給される粒状シリコン原料を溶解するのに十分な高温
に維持されているるか、この高温融液がシリコンの融点
直上に維持されている単結晶育成部に供給される際に、
熱対流を乱し、単結晶中に熱変動による欠陥を生じさせ
たり、単結晶化を阻害したりする。
[Problems to be Solved by the Invention] When pulling a single crystal while continuously and directly supplying granular silicon into a crucible based on the prior art as described above, the following problem occurs. In other words, the melt in the raw material melting section is
When supplied to the single crystal growth section, which is maintained at a high enough temperature to melt the supplied granular silicon raw material, or where this high temperature melt is maintained just above the melting point of silicon,
It disturbs thermal convection, causes defects in the single crystal due to thermal fluctuations, and inhibits single crystallization.

本発明は、上記の問題点を解決するためになされたもの
で、単結晶の育成を阻害せずに投入した原料を確実に溶
解して、熱変動による欠陥のない、引き上げ方向のドー
プ剤濃度および酸素濃度がほぼ一定の単結晶を製造する
ことのできるシリコン単結晶の製造方法及びその装置を
得ることを目的としたものである。
The present invention was made in order to solve the above problems, and it is possible to reliably melt the input raw material without inhibiting the growth of single crystals, and to reduce the concentration of dopant in the pulling direction without defects due to thermal fluctuations. Another object of the present invention is to provide a silicon single crystal manufacturing method and apparatus capable of manufacturing a single crystal having a substantially constant oxygen concentration.

[課題を解決するための手段] 本発明に係るシリコンの製造方法は、原料溶解部の高温
シリコン融液が、内側の単結晶育成部の融液と混合する
前に、該単結晶育成部の融液との温度差が5℃以下にな
るように冷却するようにしたものである。
[Means for Solving the Problems] In the silicon manufacturing method according to the present invention, before the high-temperature silicon melt in the raw material melting section mixes with the melt in the inner single crystal growth section, It is designed to be cooled so that the temperature difference with the melt is 5° C. or less.

また、本発明に係るシリコンの製造装置は、原料溶解部
の高温シリコン融液を冷却した後、内側の単結晶育成部
の融液に混合させる熱交換器を設け、冷却後の高温シリ
コン融液と単結晶育成部の融液との温度差が5℃以下に
なるようにしたちのである。
In addition, the silicon manufacturing apparatus according to the present invention is provided with a heat exchanger that cools the high-temperature silicon melt in the raw material melting section and then mixes it with the melt in the inner single crystal growth section. The temperature difference between the melt and the melt in the single crystal growth section was set to be 5°C or less.

[作 用] 本発明においては、原料溶解部を供給される粒状シリコ
ン原料が十分溶解されるような高温に保ち、かつ内側の
単結晶育成部をシリコンの融点直上に維持した状態で、
原料溶解部に結晶の引き上げ量に見合った粒状原料が供
給される。原料溶解部で溶解されたシリコン原料は、仕
切りを通過して内側の単結晶育成部に流入する。
[Function] In the present invention, while the raw material melting section is kept at a high temperature that allows the supplied granular silicon raw material to be sufficiently melted, and the inner single crystal growth section is maintained at just above the melting point of silicon,
A granular raw material corresponding to the amount of crystals to be pulled is supplied to the raw material melting section. The silicon raw material melted in the raw material melting section passes through the partition and flows into the inner single crystal growth section.

この単結晶育成部に流入する高温の融液は、内側の単結
晶育成部の融液と混合する前に、単結晶育成部の融液と
の温度差が5℃以下になるように冷却され、この冷却に
より原料溶解部は供給される粒状シリコン原料が十分溶
解されるような高温に保つことができ、かつ熱対流の乱
れを少なくし、熱変動による結晶欠陥や、単結晶化の阻
害を防止する。
The high-temperature melt flowing into this single-crystal growth section is cooled so that the temperature difference between it and the melt in the single-crystal growth section is 5°C or less before mixing with the melt in the inner single-crystal growth section. By this cooling, the raw material melting section can be kept at a high temperature that sufficiently melts the supplied granular silicon raw material, and it also reduces disturbances in thermal convection, preventing crystal defects and inhibition of single crystallization due to thermal fluctuations. To prevent.

[実施例] 第1図は本発明の一実施例を模式的に示した断面図であ
る。図において、1は石英るつぼで、黒鉛るつぼ2の中
にセットされて支持されており、内部にシリコン融液5
を収容している。3はペデスタルで、黒鉛るっぽ2を上
下動及び回転可能に支持している。4は例えば高純度の
シリカガラスからなり、石英るっぽ1に対して同軸上に
設けられたリング状の仕切り部材であり、これにより石
英るつぼ1が原料溶解部Aと単結晶育成部Bとに分離さ
れている。原料溶解部Aと単結晶育成部Bとは、仕切り
部材4に取り付けられた熱交換器15を介して連通して
いる。単結晶育成部Bからシリコン単結晶6が引き上げ
られるとともに、原料溶解部Aには供給管12により粒
状シリコンがシリコン融液5中に供給される。
[Example] FIG. 1 is a sectional view schematically showing an example of the present invention. In the figure, 1 is a quartz crucible, which is set and supported in a graphite crucible 2, with silicon melt 5 inside.
It accommodates. 3 is a pedestal that supports graphite Ruppo 2 so that it can move up and down and rotate. Reference numeral 4 denotes a ring-shaped partition member made of, for example, high-purity silica glass and provided coaxially with respect to the quartz crucible 1, which separates the quartz crucible 1 into a raw material melting section A and a single crystal growth section B. separated into The raw material melting section A and the single crystal growth section B communicate with each other via a heat exchanger 15 attached to the partition member 4. The silicon single crystal 6 is pulled up from the single crystal growth section B, and granular silicon is supplied into the silicon melt 5 through the supply pipe 12 to the raw material melting section A.

また、原料溶解部Aにはドープ剤供給管(図示せず)に
よりドープ剤が供給される。単結晶6の引き上げに対応
して、原料溶解部Aのシリコン融液が単結晶育成部Bに
流入し、単結晶育成部Aのシリコン融液の不純物濃度を
ほぼ一定に保つことが可能になる。これにより、抵抗率
一定の単結晶を連続して引き上げることができ、品質・
歩留いずれの点でも従来のチョクラルスキー法によるシ
リコン単結晶にくらべて著しく優れたシリコン単結晶を
製造することが可能である。
Further, a dopant is supplied to the raw material dissolving section A through a dopant supply pipe (not shown). In response to the pulling of the single crystal 6, the silicon melt in the raw material melting section A flows into the single crystal growing section B, making it possible to maintain the impurity concentration of the silicon melt in the single crystal growing section A almost constant. . This makes it possible to continuously pull single crystals with constant resistivity, improving quality.
It is possible to produce silicon single crystals that are significantly superior to silicon single crystals produced by the conventional Czochralski method in terms of yield.

7は黒鉛るつぼ2を取り囲むヒーター、8はこのヒータ
ー7を取り囲むホットゾーン断熱材である。9は炉チャ
ンバーで、10は炉チヤンバ−9を貫通して取り付けら
れた粒状シリコン供給装置であり、粒状シリコン貯蔵室
11及び供給管12を備えている。
7 is a heater surrounding the graphite crucible 2, and 8 is a hot zone insulation material surrounding this heater 7. 9 is a furnace chamber, and 10 is a granular silicon supply device installed through the furnace chamber 9, and is provided with a granular silicon storage chamber 11 and a supply pipe 12.

本実施例においては、特に、石英ガラス製の熱交換器1
5が仕切り部材4の単結晶育成部B側に設置されており
、原料溶解部Aの溶融原料はこの熱交換器15を通って
単結晶育成部Bに流入する。この仕切り部材4の下縁部
は、石英るっぽ1と予め融着されているか、シリコン原
料を溶融する際の熱により融着しており、原料溶解部A
の高温の溶融原料はこの熱交換器15のみを通って単結
晶育成部Bの融液により冷却された後、単結晶育成部B
に流入する。
In this embodiment, in particular, a heat exchanger 1 made of quartz glass is used.
5 is installed on the single crystal growth section B side of the partition member 4, and the molten raw material in the raw material melting section A flows into the single crystal growth section B through this heat exchanger 15. The lower edge of this partition member 4 is fused to the quartz lupo 1 in advance or is fused by the heat generated when melting the silicon raw material, and the lower edge of the partition member 4 is
The high-temperature molten raw material passes only through this heat exchanger 15 and is cooled by the melt in single crystal growth section B.
flows into.

第2図は熱交換器15の実施例を示す説明図であり、同
図(A)は仕切り部材4の内壁の上下方向に蛇行させた
例である。同図(B)は仕切り部材4の内壁の周方向に
沿って蛇行させた例である。
FIG. 2 is an explanatory diagram showing an embodiment of the heat exchanger 15, and FIG. 2(A) shows an example in which the inner wall of the partition member 4 is meandered in the vertical direction. FIG. 2B shows an example in which the inner wall of the partition member 4 is meandered along the circumferential direction.

更に、同図(C)は石英るつぼ1の底に設置した場合の
例である。
Furthermore, the same figure (C) is an example when it is installed at the bottom of the quartz crucible 1.

第3図は内径5龍、外形10m■の石英ガラス管を熱交
換器15として使用した場合の特性図であり、流入量が
多くなるにしたがって熱交換器15を長くする必要があ
ることがわかる。
Figure 3 is a characteristic diagram when a quartz glass tube with an inner diameter of 5 mm and an outer diameter of 10 m is used as the heat exchanger 15, and it can be seen that as the inflow rate increases, the length of the heat exchanger 15 needs to be made longer. .

第4図は熱交換器15を設置した場合と設置しない場合
での結晶欠陥(O5F)密度を示した特性図であり、熱
交換器15を使用した場合には明らかに欠陥密度が減少
することがわかる。
FIG. 4 is a characteristic diagram showing the crystal defect (O5F) density with and without the heat exchanger 15 installed, and it is clear that the defect density decreases when the heat exchanger 15 is used. I understand.

なお、本発明における熱交換器の構成は上述の実施例に
示された形状に限定されるものではなく、原料溶解部の
高温シリコン融液を、内側の単結晶育成部の融液と混合
する前に、該単結晶育成部の融液との温度差が5℃以下
になるように冷却できるものであれば、他の構成でもよ
いことはいうまでもない。
Note that the configuration of the heat exchanger in the present invention is not limited to the shape shown in the above-mentioned embodiments, and the high temperature silicon melt in the raw material melting section is mixed with the melt in the inner single crystal growth section. It goes without saying that other configurations may be used as long as they can be cooled so that the temperature difference between the single crystal growth section and the melt is 5° C. or less.

[発明の効果] 以上のように本発明によれば、原料溶解部の高温シリコ
ン融液が、内側の単結晶育成部の融液と混合する前に、
該単結晶前、成部の融液との温度差が5℃以下になるよ
うに冷却するようにしたので、この冷却により原料溶解
部は供給される粒状シリコン原料が十分溶解されるよう
な高温に保つことができ、かつ熱対流の乱れを少なくシ
、熱変動による結晶欠陥や、単結晶化の阻害を防止する
ことができた。
[Effects of the Invention] As described above, according to the present invention, before the high temperature silicon melt in the raw material melting section mixes with the melt in the inner single crystal growth section,
Before the single crystal, it was cooled so that the temperature difference with the melt in the forming part was 5°C or less, so that the raw material melting part was heated to a high temperature that sufficiently melted the supplied granular silicon raw material. It was possible to maintain the temperature at a high temperature, reduce disturbances in thermal convection, and prevent crystal defects and inhibition of single crystallization due to thermal fluctuations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を模式的に示した縦断面図、
第2図は熱交換器の実施例を示す説明図、第3図は熱交
換器の特性図、第4図は熱交換器による結晶欠陥の改善
例を示す特性図である。 図において、1は石英るつぼ、2は黒鉛るつぼ、3はる
つぼ支持軸、4は隔壁、5はシリコン融液、6はシリコ
ン単結晶、7はヒーター、8は保温筒、9は炉チヤンバ
−、loは粒状シリコン供給装置、11は粒状シリコン
貯蔵室、12は供給管、15は熱交換器である。
FIG. 1 is a longitudinal sectional view schematically showing an embodiment of the present invention;
FIG. 2 is an explanatory diagram showing an embodiment of the heat exchanger, FIG. 3 is a characteristic diagram of the heat exchanger, and FIG. 4 is a characteristic diagram showing an example of improvement of crystal defects by the heat exchanger. In the figure, 1 is a quartz crucible, 2 is a graphite crucible, 3 is a crucible support shaft, 4 is a partition wall, 5 is a silicon melt, 6 is a silicon single crystal, 7 is a heater, 8 is a heat insulating cylinder, 9 is a furnace chamber, Lo is a granular silicon supply device, 11 is a granular silicon storage chamber, 12 is a supply pipe, and 15 is a heat exchanger.

Claims (2)

【特許請求の範囲】[Claims] (1)溶融シリコン原料が入れられたるつぼを、該溶融
シリコンが静かに移動しうるように内側の単結晶育成部
と外側の原料溶解部とに仕切り、該原料溶解部に粒状又
は塊状のシリコン原料を連続的に供給しながらその内側
においてシリコン単結晶を引き上げてシリコン単結晶を
製造する方法において、 前記原料溶解部の高温シリコン融液が、内側の単結晶育
成部の融液と混合する前に、該単結晶育成部の融液との
温度差が5℃以下になるように冷却することを特徴とす
るシリコン単結晶の製造方法。
(1) A crucible containing molten silicon raw material is divided into an inner single crystal growth zone and an outer raw material melting zone so that the molten silicon can move quietly, and granular or lump silicon is placed in the raw material melting zone. In a method of manufacturing a silicon single crystal by pulling a silicon single crystal inside the raw material while continuously supplying the raw material, before the high temperature silicon melt in the raw material melting section mixes with the melt in the inner single crystal growth zone. A method for producing a silicon single crystal, characterized in that cooling is performed so that the temperature difference between the single crystal growth section and the melt is 5° C. or less.
(2)溶融シリコン原料が入れられたるつぼを、該溶融
シリコンが静かに移動しうるように内側の単結晶育成部
と外側の原料溶解部とに仕切り、該原料溶解部に粒状又
は塊状のシリコン原料を連続的に供給しながらその内側
においてシリコン単結晶を引き上げてシリコン単結晶を
製造する装置において、 前記原料溶解部の高温シリコン融液を冷却した後、内側
の単結晶育成部の融液に混合させる熱交換器に設け、冷
却後の高温シリコン融液と単結晶育成部の融液との温度
差が5℃以下になるようにしたことを特徴とするシリコ
ン単結晶の製造装置。
(2) The crucible containing the molten silicon raw material is divided into an inner single crystal growth section and an outer raw material melting section so that the molten silicon can move quietly, and granular or lump-like silicon is placed in the raw material melting section. In an apparatus for producing a silicon single crystal by pulling a silicon single crystal inside the raw material while continuously supplying the raw material, after cooling the high temperature silicon melt in the raw material melting section, the melt is added to the inner single crystal growth zone. 1. An apparatus for producing a silicon single crystal, characterized in that it is provided in a heat exchanger for mixing, and the temperature difference between the high-temperature silicon melt after cooling and the melt in the single crystal growth section is 5° C. or less.
JP7670089A 1989-03-30 1989-03-30 Method and device for producing silicon single crystal Pending JPH02255591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7670089A JPH02255591A (en) 1989-03-30 1989-03-30 Method and device for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7670089A JPH02255591A (en) 1989-03-30 1989-03-30 Method and device for producing silicon single crystal

Publications (1)

Publication Number Publication Date
JPH02255591A true JPH02255591A (en) 1990-10-16

Family

ID=13612782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7670089A Pending JPH02255591A (en) 1989-03-30 1989-03-30 Method and device for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JPH02255591A (en)

Similar Documents

Publication Publication Date Title
US4659421A (en) System for growth of single crystal materials with extreme uniformity in their structural and electrical properties
US10544517B2 (en) Growth of a uniformly doped silicon ingot by doping only the initial charge
JPH02133389A (en) Production device of silicon single crystal
CN101831697A (en) Method of growing silicon single crystal
KR100758162B1 (en) Method for manufacturing nitrogen-doped silicon single crystal
JP3086850B2 (en) Method and apparatus for growing single crystal
JPH076972A (en) Growth method and device of silicon single crystal
JPH035392A (en) Production device of silicon single crystal
JPH07267776A (en) Growth method of single crystal
JPH01317189A (en) Production of single crystal of silicon and device therefor
JPH02255591A (en) Method and device for producing silicon single crystal
JPS6046073B2 (en) Manufacturing method of semiconductor single crystal
JPH0259494A (en) Production of silicon single crystal and apparatus
US20190136404A1 (en) Method for producing a semiconductor wafer of monocrystalline silicon, device for producing a semiconductor wafer of monocrystalline silicon and semiconductor wafer of monocrystalline silicon
JP3885245B2 (en) Single crystal pulling method
JPH02172885A (en) Production of silicon single crystal
JPH0316989A (en) Production device of silicon single crystal
JPH05139879A (en) Unit and method for growing single crystal
JP2004217504A (en) Graphite heater, apparatus and method for producing single crystal
JPH05294784A (en) Single crystal growth device
JPH01286994A (en) Production of silicon single crystal and apparatus therefor
JPH10279391A (en) Method for growing silicon single crystal
JP3860255B2 (en) Semiconductor single crystal manufacturing method and semiconductor single crystal
JPH06340493A (en) Apparatus for growing single crystal and growing method
JPH0825832B2 (en) Crucible for single crystal production