JP2004314511A - Injection molding method for insert-molded article - Google Patents

Injection molding method for insert-molded article Download PDF

Info

Publication number
JP2004314511A
JP2004314511A JP2003113387A JP2003113387A JP2004314511A JP 2004314511 A JP2004314511 A JP 2004314511A JP 2003113387 A JP2003113387 A JP 2003113387A JP 2003113387 A JP2003113387 A JP 2003113387A JP 2004314511 A JP2004314511 A JP 2004314511A
Authority
JP
Japan
Prior art keywords
temperature
insert
insert member
mold
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003113387A
Other languages
Japanese (ja)
Other versions
JP4311967B2 (en
Inventor
Tomomi Ishikawa
智美 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2003113387A priority Critical patent/JP4311967B2/en
Publication of JP2004314511A publication Critical patent/JP2004314511A/en
Application granted granted Critical
Publication of JP4311967B2 publication Critical patent/JP4311967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an insert injection-molded article having no deformation without making a heating medium contact an insert directly by an easy method. <P>SOLUTION: The insert-molded article in which the arrangement of insert members is unsymmetrical is injection-molded while a mold temperature Tn and an insert member temperature Ti at the start of the injection of the member are controlled so that the difference D(%) between the shrinkage rates of a thermoplastic resin and the insert member meets the formula: -0.01%≤D=Ai(Ti-T)×100-Sr(Tn-T)≤0.01% [Ti (°C) is an insert member temperature at the start of the injection of the member; T (°C) is an atmosphere temperature after the demolding of the molding; Ai (1/°C) is the coefficient of thermal expansion of the insert member; and Sr(Tn-T) is the molding shrinkage (%) of the thermoplastic resin when the temperature of the resin is changed from a mold temperature Tn to T]. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、変形の無いインサート成形品の成形方法に関し、詳しくは、インサート部材の配置が非対称配置であるインサート成形品を、熱可塑性樹脂の成形収縮率とインサート部材の熱膨張係数により定まる特定の値に、インサート部材の射出開始時温度を制御して、そり変形の無い状態で射出成形する方法に関する。
【0002】
【従来の技術】
一般に、インサート部材を金型内に装着してインサート射出成形を行う場合には、金型温度を均一にして行う。その時、インサート部材の温度は、金型温度近くまで変動し、金型装着前と装着後の温度差に応じてインサート部材は熱膨張あるいは熱収縮する。
一方で熱可塑性樹脂は成形時に溶融状態から冷却固化される際に収縮が生じ、金型寸法よりも小さな成形品になる。インサート部材の温度差による寸法変化と、熱可塑性樹脂の成形収縮による寸法変化が異なる時には、そのことが原因となってインサート成形品に変形が生じる問題があった。
【0003】
特開平10−116934号公報には、封止樹脂の成型時の温度(Tm(℃))における金型の寸法を規準とした封止樹脂の硬化収縮率をSp、硬化した封止樹脂の熱膨張係数をKp(/℃)および放熱板の熱膨張係数をKb(/℃)として、温度Tm−Sp/(Kp−Kb)が−10℃以上、50℃以下となるような封止樹脂と放熱板との組み合わせとすることにより、樹脂封止半導体装置の変形を防止する方法が開示されている(例えば特許文献1参照。)。
しかしこの技術は、熱硬化性樹脂で封止する半導体装置を対象としており、金属インサートが非対称に配置された熱可塑性樹脂成形品については、何も教えていない。
【0004】
特開平11−105076号公報には、金型内に熱媒体を導入し、導入された熱媒体によって、金型内に載置されたインサート物を、樹脂の加熱変形温度以上に加熱し、加熱されたインサート物が載置されている金型内に樹脂を射出するインサート成形品の製造方法により、成形収縮率の差により生じる応力割れを防止する方法が開示されている。(例えば特許文献2参照。)。
しかしこの技術では、媒体によってインサート物を直接加熱する方法がとられているが、その方法では媒体の気密性確保や装置の複雑化、さらにはインサート物の材質や媒体の物質によっては両者が化学反応を起こして、インサートが腐食する等の問題がある。
【0005】
特開平8−230008号公報には、樹脂の収縮率、熱膨張係数のデータを用いて、有限要素法により射出成形品のそり変形予測方法、特に、異方性挙動が顕著な薄肉成形品のそり変形予測方法が開示されている(例えば特許文献3参照。)。
しかしこの技術では、インサート成形品に関するそり変形予測が示されていない。
【0006】
【特許文献1】
特開平10−116934号公報(請求項1、実施例)
【特許文献2】
特開平11−105076号公報(請求項5、実施例)
【特許文献3】
特開平8−230008号公報(請求項1)
【0007】
【発明が解決しようとする課題】
本発明の目的は、加熱媒体を直接インサートへ接触させることなく、変形のないインサート射出成形品を容易な方法で得ることである。
【0008】
【課題を解決するための手段】
本発明者は、熱可塑性樹脂とインサート部材との収縮率差が特定の関係にあり、例えばインサート部材が装着される側の金型温度と装着されない側の金型温度に温度差を設けて、インサート部材の温度を制御することにより、インサート部材の配置が非対称であるインサート成形品をそり変形無く、容易に射出成形できることを見い出し、本発明を完成するに至った。
【0009】
即ち、本発明の第1は、インサート部材(1)の配置が非対称であるインサート成形品(20)をそり変形無く射出成形する方法において、熱可塑性樹脂(21)とインサート部材(1)との下記式(i)で表される収縮率差D(%)が下記式(ii)を満たすように、金型温度Tnとインサート部材(1)の射出開始時温度Tiを制御して射出成形することを特徴とする成形方法を提供する。
D=Ai(Ti−T)×100−Sr[Tn〜T] (i)
−0.01% ≦ D ≦ 0.01% (ii)
(式(i)において、Tiはインサート部材の射出開始時温度(℃)、Tは成形品取出し後の雰囲気温度(℃)、Aiはインサート部材の熱膨張係数(1/℃)、及びSr[Tn〜T]は金型温度Tn(℃)からT(℃)までの熱可塑性樹脂の成形収縮率(%)を表す。)
本発明の第2は、インサート部材(1)が装着される側の金型温度と装着されない側の金型温度に温度差を設けて、インサート部材の射出開始時温度Tiを制御する本発明の第1に記載の成形方法を提供する。
本発明の第3は、別途設けられた局部加熱装置(16)の温度を調節して、インサート部材(1)の射出開始時温度Tiを制御する本発明の第1に記載の成形方法を提供する。
【0010】
【発明の実施の形態】
本発明に係るインサート成形品20は、インサート部材1の配置が非対称配置であるために、通常用いられる均一な温度に設定した金型を単純に使用してインサート成形する方法では反りなどの変形が発生する。
図1にインサート部材1の配置が非対称配置であるインサート成形品20の一例を示す。1はインサート部材、2は樹脂部分である。インサート部材1は樹脂部分2の片面にのみ存在するので非対称配置であり、インサート部材1に較べて樹脂部分2の収縮率や厚みに応じて、図3に示すようにインサート成形品20には、反りを生じる。
上記において、もし、インサート部材1が樹脂部分2の両面に同一に存在する対称配置であれば、インサート部材1に較べて樹脂部分2の膨張係数や収縮率や厚みが異なっていても、打ち消し合って反りは生じない。
本発明において、反りなどの変形が発生する原因となる非対称配置であれば特に制限はない。
【0011】
図2に、上記成形品用の金型の略図を示す。なお、図2は左右で金型の異なる断面を示している。射出成形時に溶融樹脂21(図示せず)は、スプル5からランナ4、ゲート3を通過してキヤビテイ22ヘ充填され、インサート成形品の樹脂部分2を形成する。一方金型は、温調孔15へ流された水や油等の媒体やヒータ等によって一定の温度に管理されている。熱可塑性樹脂は充填後、金型内で冷却固化された後に、固定側型板7と可動側型板8が型開きされ、成形品はスプルロックピン13やエジェクタピン14によって金型から突出される。
【0012】
本発明で使用するインサート部材1は、材質、形状には特に制限はない。材質としては、金属、無機材料、有機材料などが挙げられ、具体的には、鋼、鋳鉄、ステンレス、銅、金、銀、真鍮などの金属、セラミックや炭素材などの無機材料、木材などの有機材料が挙げられる。なお、インサート部材とは金属、無機材料などの単体のみならず複数の金属や樹脂等を有する複合体のことを言う場合もある。
熱膨張係数(単位×10−5/℃)は、鋼1.1〜2.0、鋳鉄1.0〜1.1、黄銅1.2〜2.0、青銅1.5〜1.8、銅1.5〜1.7等である。
【0013】
本発明で使用する熱可塑性樹脂21の材質には特に制限はなく、結晶性樹脂であっても非結晶性樹脂であってもよい。具体的には、汎用熱可塑性樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ4−メチル−ペンテン−1、ポリ環状オレフィン等のポリオレフィン、ポリスチレン(PS)、AS樹脂、ABS樹脂、ポリ塩化ビニル(PVC)、ポリアクリロニトリル(PAN)、(メタ)アクリル樹脂、セルロース系樹脂、エラストマー等が挙げられ、エンジニアリング樹脂としては、ナイロン6、同6,6、同12、同6,12のような各種脂肪族ポリアミドまたは芳香族ポリアミド(PA)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、のような芳香族ポリエステル樹脂、ポリカーボネート(PC)、ポリアセタール、ポリフェニレンエーテル(PPE)、ポリフェニレンスルフィド(PPS)、ポリスルフォン(PSu)、ポリイミド(PI)、液晶ポリエステル、液晶アミド等が挙げられる。その他、脂肪族ジカルボン酸、脂肪族ジオール、脂肪族ヒドロキシカルボン酸もしくはその環状化合物からの脂肪族ポリエステル、さらにはこれらがジイソシアネートなどにより分子量が増加した脂肪族ポリエステル等の生分解性樹脂などであってもよい。
熱可塑性樹脂21は樹脂単体であっても、充填剤や強化材入りなどであってもよい。
樹脂の溶融時と固化時の樹脂流動方向の成形収縮率は、樹脂温度や金型温度にもよるが、通常、ナイロン13〜15%、PET0.2〜1.3%、PC0.4%、PPE0.65%、グラスファイバー入りPPE0.2〜0.4%、PPS1〜2%、グラスファイバー入りPPS0.04〜1.0%などである。
【0014】
本発明では、熱可塑性樹脂21とインサート部材1との収縮率差Dが±0.01%以内になるように、インサート部材の射出開始時温度Tiを制御すると、反りなどの変形が実質的に問題にならないことを見出した。
ここで、収縮率差D(%)は下記式(i)で表される。
D=Ai(Ti−T)×100−Sr[Tn〜T] (i)
(式(i)において、Tiはインサート部材の射出開始時温度(℃)、Tは成形品取出し後の雰囲気温度(℃)、Aiはインサート部材の熱膨張係数(1/℃)、及びSr[Tn〜T]は金型温度Tn(℃)からT(℃)までの熱可塑性樹脂の成形収縮率(%)を表す。)
【0015】
上記温度Tiを制御する方法としては、(a)射出成形時に、インサート部材1が装着される側の金型温度を調節する方法、(b)射出成形用金型の温度調節装置とは別に局部加熱装置16を設けて、金型温度と異なるようにインサート部材の射出開始時温度Tiを制御する方法などが挙げられる。
【0016】
上記(a)の方法では、インサート部材1が装着される側の金型温度Tiと装着されない側(反対側という)の金型温度Tnに温度差を設けて、インサート部材の金型装着時温度Tiを制御する。インサート部材1が装着される側の金型は、可動側でも固定側でもよい。
例えば、インサート部材に銅板を用い、熱可塑性樹脂にグラスファイバー入りPPSを使用した場合には、インサート部材1が装着される側の可動側金型温度を140℃に設定し、反対側の固定側金型温度を120℃に設定するようにすればよい。前記式(i)を適用する場合、Sr[Tn〜T]は熱可塑性樹脂が金型に接する面積が大きい方の金型温度TnからTまでの熱可塑性樹脂の成形収縮率(%)を表す。このため、インサート部材1が装着される側の高温度の金型に樹脂が接触する面積よりも、反対側の低温度の金型に樹脂が接触する面積を増加させるようにすることが好ましい。
なお、温度の異なる固定側金型と可動側金型が接触すると、両者の温度が変わり、それぞれ元の温度へ戻るまで金型を開いて放置する時間が必要であるが、両者の間に断熱材を設けることにより、両者の温度は変わらず、放置が不要になる。
【0017】
上記(b)の方法では、例えば図4に示すような棒ヒータ入り金型を使用する。図4では、インサート部材1が接触する部分に、入れ子17を設け、その中に加熱用の棒ヒータ16’を設ける。
金型温度は120℃に設定し、インサート部材1が接触する部分が140℃になるように棒ヒータ16’を加熱する。
この方法でも、(a)の方法と同様に金型の開き方向へほとんど変形することのない成形品が得られる。この方法では、両金型の間に断熱材を設ける必要はなく、成形時にそれぞれの温度へ戻るまで金型を開いて放置する時間が不要である。さらに、インサート部材の一部が加熱されれば熱伝導でインサート部材全体が加熱されるので、インサート形状や成形品形状の制約はない。また、各インサート部材の材質が異なる場合には、各インサート部材に接触する場所へ局部加熱装置を設置して、各インサート部材毎に温度設定を行えばよい。局部加熱装置16としては棒ヒータ16’の代りに、熱媒体を流通させる孔を設けて加熱したり、熱伝導の代りに輻射熱で加熱する等その他の方式の加熱手段であってもよい。
【0018】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
【0019】
[比較例1]
通常成形として金型温度を固定側、可動側ともに120℃に設定した。インサート部材1として銅板(厚さ1mm)を使用し、熱可塑性樹脂としてグラスファイバー入りポリフェニレンスルフィド(以下単にPPS樹脂という。)を使用して、図1に示すようなインサート成形品を得た。ここで、成形品全長185mm、最大幅20mm、最大厚み4mm(銅板がインサートされた部分の樹脂厚みは3mm)である。
銅板を装着しない場合には、成形品は熱可塑性樹脂の成形収縮率分だけ金型キャビティ形状よりも小さくなるが、金型の開き方向には顕著な変形は生じない。
しかし、銅板を可動側金型に装着して一体化成形を行うと、図3に示すように成形品両端に比べて成形品中央を最大として0.12mm銅板側へ凸変形した。
変形要因として、インサート成形品の長手方向の収縮変形、つまり熱可塑性樹脂では流動方向の成形収縮率が考えられる。
上記結果より、金型温度120℃、成形品取出し後の雰囲気温度23℃、PPS樹脂の金型温度から雰囲気温度までの樹脂流動方向の成形収縮率0.21%として、前記(i)式を用いて収縮率差D(%)を求めると以下のようになる。
1.7×10−5(120−23)×100−0.21=0.16−0.21=−0.05(%)
従って、熱可塑性樹脂の成形収縮量の方が銅板の熱収縮量よりも大きすぎて、凸変形が大きかったことがわかる。
【0020】
[比較例2]
金型温度を固定側可動側ともに146℃へ変更した以外は比較例1と同様に行った。
その結果、比較例1と同様に、成形品両端に比べて成形品中央を最大として0.10mm銅板側へ凸変形する現象が確認された。
上記結果より、金型温度146℃、成形品取出し後の雰囲気温度23℃、PPS樹脂の金型温度から雰囲気温度までの樹脂流動方向の成形収縮率0.24%として、前記(i)式を用いて収縮率差D(%)を求めると以下のようになる。
1.7×10−5(146−23)×100−0.24=0.21−0.24=−0.03(%)
従って、比較例1と同様に熱可塑性樹脂の成形収縮量の方がインサート銅板の熱収縮量よりも大きいが、比較例1に較べて、収縮率差Dは小さくなっており、凸変形量が減少したことがわかる。
【0021】
[実施例1]
インサート部材1及び熱可塑性樹脂は比較例1と同じである。
固定側の金型温度を120℃、銅板が装着される可動側の金型温度を140℃に設定した。銅板を可動側へ装着してから金型を開いた状態で表面温度計により銅板と固定側キャビティ温度を測定し、それぞれの温度が140℃および120℃へ到達した段階で樹脂の充填を開始した。その結果、銅板側への変形量が0.02mmの良好なインサート成形品を得ることができた。
上記結果より、インサート部材温度140℃、成形品取出し後の雰囲気温度23℃、PPS樹脂の固定側の金型温度120℃から雰囲気温度までの樹脂流動方向の成形収縮率0.21%として、前記(i)式を用いて収縮率差D(%)を求めると以下のようになる。
1.7×10−5(140−23)×100−0.21=0.20−0.21=−0.01(%)
従来のように、成形条件を種々に変更して経験的に、良好なインサート成形品を得るのではなく、本発明では、前記式(i)及び(ii)の関係を利用して、極めて容易な条件設定で変形のないインサート成形品を得ることができる。
【0022】
【発明の効果】
本発明によれば、変形のないインサート射出成形品を、多数回の経験的な試作を経ることなく、容易に得ることができる。
【図面の簡単な説明】
【図1】本発明及び従来技術に係るインサート成形品の一例である。
【図2】本発明及び従来技術に係るインサート成形に使用する金型の一例である。
【図3】本発明及び従来技術に係るインサート成形品の反りを示す一例である。
【図4】本発明に係る、局部加熱装置を有するインサート成形用金型の一例である。
【符号の説明】
1:インサート部材
2:(インサート成形品の)樹脂部分
3:ゲート
4:ランナ
5:スプル
6:固定側取付板
7:固定側型板
8:可動側型板
9:スペーサブロック
10:可動側取付板
11:エジェククタプレート上
12:エジェククタプレート下
13:スプルロッククピン
14:エジェクタピン
15:温調孔
16:局部加熱装置
16’:棒ヒータ
17:入れ子
18:リード線
19:リード線逃がし孔
20:インサート成形品
21:熱可塑性樹脂
22:キャビティ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for molding an insert molded product having no deformation.Specifically, an insert molded product in which the arrangement of insert members is asymmetrical is determined by a specific shrinkage rate of thermoplastic resin and a coefficient of thermal expansion determined by the coefficient of thermal expansion of the insert member. The present invention relates to a method of performing injection molding without warping by controlling the temperature at the start of injection of an insert member to a value.
[0002]
[Prior art]
Generally, when performing insert injection molding by mounting an insert member in a mold, the mold temperature is made uniform. At that time, the temperature of the insert member fluctuates to near the mold temperature, and the insert member thermally expands or contracts depending on the temperature difference between before and after the mold is mounted.
On the other hand, the thermoplastic resin contracts when it is cooled and solidified from a molten state during molding, and becomes a molded product smaller than the dimensions of the mold. When the dimensional change due to the temperature difference of the insert member is different from the dimensional change due to the molding shrinkage of the thermoplastic resin, this causes a problem that the insert molded product is deformed.
[0003]
Japanese Patent Application Laid-Open No. 10-116934 discloses that the curing shrinkage of a sealing resin at the temperature (Tm (° C.)) at the time of molding the sealing resin (Tm (° C.)) is Sp, and the heat of the cured sealing resin is Sp. A sealing resin having a temperature Tm-Sp / (Kp-Kb) of −10 ° C. or more and 50 ° C. or less, where Kp (/ ° C.) is the expansion coefficient and Kb (/ ° C.) is the thermal expansion coefficient of the heat sink. A method of preventing deformation of a resin-encapsulated semiconductor device by combining it with a heat radiating plate is disclosed (for example, see Patent Document 1).
However, this technique is intended for a semiconductor device sealed with a thermosetting resin, and does not teach anything about a thermoplastic resin molded product in which metal inserts are arranged asymmetrically.
[0004]
Japanese Patent Application Laid-Open No. H11-105076 discloses that a heat medium is introduced into a mold, and the inserted heat medium is heated by the introduced heat medium to a temperature equal to or higher than the heat deformation temperature of the resin. A method for preventing stress cracking caused by a difference in molding shrinkage by a method of manufacturing an insert molded product in which a resin is injected into a mold on which a set insert is placed is disclosed. (For example, see Patent Document 2).
However, in this technique, a method of directly heating the insert with the medium is used.However, in this method, depending on the material of the insert or the material of the medium, both may be chemically sealed depending on the airtightness of the medium and the complexity of the device. There is a problem that the insert is corroded due to a reaction.
[0005]
Japanese Patent Application Laid-Open No. Hei 8-230008 discloses a method of predicting warpage of an injection molded product by a finite element method using data of a resin shrinkage and a thermal expansion coefficient. A warp deformation prediction method is disclosed (for example, see Patent Document 3).
However, this technique does not show the warpage prediction of the insert molded product.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 10-116934 (Claim 1, Example)
[Patent Document 2]
Japanese Patent Application Laid-Open No. H11-105076 (Claim 5, Example)
[Patent Document 3]
JP-A-8-230008 (Claim 1)
[0007]
[Problems to be solved by the invention]
An object of the present invention is to obtain a deformable insert injection-molded article by an easy method without bringing a heating medium into direct contact with the insert.
[0008]
[Means for Solving the Problems]
The present inventor has a specific relationship between the difference in shrinkage between the thermoplastic resin and the insert member, for example, providing a temperature difference between the mold temperature on the side where the insert member is mounted and the mold temperature on the side where the insert member is not mounted, It has been found that by controlling the temperature of the insert member, it is possible to easily injection-mold an insert-shaped product in which the arrangement of the insert member is asymmetrical without warping, thereby completing the present invention.
[0009]
That is, a first aspect of the present invention is a method for injection-molding an insert molded product (20) in which the arrangement of the insert member (1) is asymmetric without warp deformation, wherein the thermoplastic resin (21) and the insert member (1) are combined. Injection molding is performed by controlling the mold temperature Tn and the injection start temperature Ti of the insert member (1) so that the difference in shrinkage D (%) represented by the following equation (i) satisfies the following equation (ii). A molding method is provided.
D = Ai (Ti−T) × 100−Sr [Tn to T] (i)
-0.01% ≦ D ≦ 0.01% (ii)
(In the formula (i), Ti is the temperature (° C.) at the start of injection of the insert member, T is the ambient temperature (° C.) after removing the molded product, Ai is the coefficient of thermal expansion (1 / ° C.) of the insert member, and Sr [ Tn to T] represent the molding shrinkage (%) of the thermoplastic resin from the mold temperature Tn (° C) to T (° C).)
A second aspect of the present invention is to control the injection start temperature Ti of the insert member by providing a temperature difference between the mold temperature on the side where the insert member (1) is mounted and the mold temperature on the side where the insert member (1) is not mounted. A molding method according to the first aspect is provided.
A third aspect of the present invention provides the molding method according to the first aspect of the present invention, wherein the temperature of a separately provided local heating device (16) is adjusted to control the injection start temperature Ti of the insert member (1). I do.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In the insert molded product 20 according to the present invention, since the arrangement of the insert members 1 is asymmetrical, deformation such as warpage or the like is not likely to occur in a method of insert molding using a generally used mold set at a uniform temperature. appear.
FIG. 1 shows an example of an insert molding 20 in which the arrangement of the insert members 1 is asymmetric. 1 is an insert member, 2 is a resin part. Since the insert member 1 exists only on one surface of the resin portion 2, the insert member 1 is asymmetrically arranged. In accordance with the shrinkage ratio and the thickness of the resin portion 2 as compared with the insert member 1, as shown in FIG. Causes warpage.
In the above, if the insert member 1 has the same symmetrical arrangement on both surfaces of the resin portion 2, even if the expansion coefficient, the shrinkage ratio and the thickness of the resin portion 2 are different from those of the insert member 1, they cancel each other out. No warping occurs.
In the present invention, there is no particular limitation as long as it is an asymmetric arrangement that causes deformation such as warpage.
[0011]
FIG. 2 shows a schematic view of a mold for the molded article. FIG. 2 shows different cross sections of the mold on the left and right. At the time of injection molding, a molten resin 21 (not shown) is filled from the sprue 5 through the runner 4 and the gate 3 into the cavity 22 to form the resin portion 2 of the insert molded product. On the other hand, the mold is maintained at a constant temperature by a medium such as water or oil flowing into the temperature control hole 15 or a heater. After the thermoplastic resin is filled and cooled and solidified in the mold, the fixed mold plate 7 and the movable mold plate 8 are opened, and the molded product is projected from the mold by the sprue lock pin 13 and the ejector pin 14. You.
[0012]
The material and shape of the insert member 1 used in the present invention are not particularly limited. Examples of the material include metals, inorganic materials, organic materials, and the like.Specifically, steel, cast iron, stainless steel, copper, gold, silver, metals such as brass, inorganic materials such as ceramics and carbon materials, wood and the like Organic materials are mentioned. Note that the insert member may refer to not only a simple substance such as a metal and an inorganic material but also a composite including a plurality of metals, resins, and the like.
The thermal expansion coefficient (unit × 10 −5 / ° C.) is steel 1.1 to 2.0, cast iron 1.0 to 1.1, brass 1.2 to 2.0, bronze 1.5 to 1.8, Copper is 1.5 to 1.7 or the like.
[0013]
The material of the thermoplastic resin 21 used in the present invention is not particularly limited, and may be a crystalline resin or an amorphous resin. Specifically, general-purpose thermoplastic resins include polyolefins such as polyethylene (PE), polypropylene (PP), poly-4-methyl-pentene-1, and polycyclic olefin, polystyrene (PS), AS resin, ABS resin, and polyolefin. Examples include vinyl chloride (PVC), polyacrylonitrile (PAN), (meth) acrylic resin, cellulosic resin, and elastomer, and engineering resins such as nylon 6, 6, 6, 12, and 6, 12. Various aromatic polyamide resins such as aliphatic polyamides or aromatic polyamides (PA), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polycarbonate (PC), polyacetal, polyphenylene ether (PPE , Polyphenylene sulfide (PPS), polysulfone (PSu), polyimide (PI), liquid crystal polyester, liquid crystal amide. In addition, aliphatic polyesters derived from aliphatic dicarboxylic acids, aliphatic diols, aliphatic hydroxycarboxylic acids or cyclic compounds thereof, and biodegradable resins such as aliphatic polyesters whose molecular weight is increased by diisocyanate or the like. Is also good.
The thermoplastic resin 21 may be a resin alone, or may contain a filler or a reinforcing material.
The molding shrinkage in the resin flow direction during the melting and solidification of the resin depends on the resin temperature and the mold temperature, but is usually 13 to 15% for nylon, 0.2 to 1.3% for PET, 0.4% for PC, PPE 0.65%, glass fiber containing PPE 0.2 to 0.4%, PPS 1 to 2%, glass fiber containing PPS 0.04 to 1.0%, and the like.
[0014]
In the present invention, when the injection start temperature Ti of the insert member is controlled so that the difference in shrinkage ratio D between the thermoplastic resin 21 and the insert member 1 is within ± 0.01%, deformation such as warpage substantially occurs. I found that it was not a problem.
Here, the contraction rate difference D (%) is represented by the following equation (i).
D = Ai (Ti−T) × 100−Sr [Tn to T] (i)
(In the formula (i), Ti is the temperature (° C.) at the start of injection of the insert member, T is the ambient temperature (° C.) after removing the molded product, Ai is the coefficient of thermal expansion (1 / ° C.) of the insert member, and Sr [ Tn to T] represent the molding shrinkage (%) of the thermoplastic resin from the mold temperature Tn (° C) to T (° C).)
[0015]
The method of controlling the temperature Ti includes (a) a method of adjusting the temperature of the mold on the side where the insert member 1 is mounted at the time of injection molding, and (b) a method of controlling the temperature separately from the temperature control device of the mold for injection molding. There is a method in which the heating device 16 is provided to control the injection start temperature Ti of the insert member so as to be different from the mold temperature.
[0016]
In the above method (a), a temperature difference is provided between the mold temperature Ti on the side where the insert member 1 is mounted and the mold temperature Tn on the side where the insert member 1 is not mounted (referred to as the opposite side), and the temperature when the insert member is mounted on the die. Controls Ti. The mold on the side where the insert member 1 is mounted may be a movable side or a fixed side.
For example, when a copper plate is used for the insert member and PPS containing glass fiber is used for the thermoplastic resin, the movable mold temperature on the side where the insert member 1 is mounted is set to 140 ° C., and the opposite fixed side is set. The mold temperature may be set to 120 ° C. When applying the formula (i), Sr [Tn to T] represents the molding shrinkage rate (%) of the thermoplastic resin from the mold temperature Tn to T where the area where the thermoplastic resin is in contact with the mold is larger. . For this reason, it is preferable to increase the area where the resin contacts the low-temperature mold on the opposite side than the area where the resin contacts the high-temperature mold on the side where the insert member 1 is mounted.
When the fixed mold and the movable mold that have different temperatures come into contact with each other, the temperatures of both molds change, and it is necessary to open and leave the molds to return to their original temperatures. By providing the material, the temperature of both does not change, and it is not necessary to leave the material.
[0017]
In the above method (b), for example, a mold with a rod heater as shown in FIG. 4 is used. In FIG. 4, a nest 17 is provided at a portion where the insert member 1 contacts, and a bar heater 16 'for heating is provided therein.
The mold temperature is set to 120 ° C., and the bar heater 16 ′ is heated so that the temperature of the part where the insert member 1 contacts is 140 ° C.
Also in this method, a molded product that is hardly deformed in the opening direction of the mold as in the method (a) can be obtained. In this method, there is no need to provide a heat insulating material between the two dies, and there is no need to leave the dies open and left until they return to their respective temperatures during molding. Furthermore, if a part of the insert member is heated, the entire insert member is heated by heat conduction, and there is no restriction on the insert shape or the shape of the molded product. Further, when the material of each insert member is different, a local heating device may be installed at a place where it comes into contact with each insert member, and the temperature may be set for each insert member. As the local heating device 16, instead of the bar heater 16 ′, a heating means may be provided by providing a hole through which a heat medium flows, or may be heating means of another type such as heating by radiant heat instead of heat conduction.
[0018]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
[0019]
[Comparative Example 1]
In normal molding, the mold temperature was set to 120 ° C. for both the fixed side and the movable side. Using a copper plate (thickness: 1 mm) as the insert member 1 and glass fiber-containing polyphenylene sulfide (hereinafter, simply referred to as PPS resin) as the thermoplastic resin, an insert molded product as shown in FIG. 1 was obtained. Here, the molded article has a total length of 185 mm, a maximum width of 20 mm, and a maximum thickness of 4 mm (the resin thickness of the portion where the copper plate is inserted is 3 mm).
When the copper plate is not mounted, the molded product becomes smaller than the mold cavity shape by the molding shrinkage of the thermoplastic resin, but no significant deformation occurs in the mold opening direction.
However, when the copper plate was mounted on the movable mold and integrated molding was performed, as shown in FIG. 3, the center of the molded product was deformed toward the copper plate side with a maximum of 0.12 mm as compared with both ends of the molded product.
As the deformation factor, the shrinkage deformation in the longitudinal direction of the insert molded product, that is, the molding shrinkage ratio in the flow direction of the thermoplastic resin can be considered.
From the above results, assuming that the mold temperature is 120 ° C., the ambient temperature after taking out the molded product is 23 ° C., and the molding shrinkage of the PPS resin in the resin flow direction from the mold temperature to the ambient temperature is 0.21%, the above equation (i) is obtained. The difference in shrinkage ratio D (%) is obtained as follows.
1.7 × 10 −5 (120−23) × 100−0.21 = 0.16−0.21 = −0.05 (%)
Accordingly, it can be seen that the molding shrinkage of the thermoplastic resin was too large compared to the thermal shrinkage of the copper plate, and the convex deformation was large.
[0020]
[Comparative Example 2]
The procedure was performed in the same manner as in Comparative Example 1 except that the mold temperature was changed to 146 ° C. on both the fixed side and the movable side.
As a result, similarly to Comparative Example 1, a phenomenon in which the center of the molded product was deformed toward the copper plate side by 0.10 mm as a maximum compared to both ends of the molded product was confirmed.
From the above results, the above equation (i) was defined assuming that the mold temperature was 146 ° C., the ambient temperature was 23 ° C. after removing the molded product, and the molding shrinkage was 0.24% in the resin flow direction from the mold temperature of the PPS resin to the ambient temperature. The difference in shrinkage ratio D (%) is obtained as follows.
1.7 × 10 −5 (146-23) × 100−0.24 = 0.21−0.24 = −0.03 (%)
Therefore, as in Comparative Example 1, the molding shrinkage of the thermoplastic resin is larger than the thermal shrinkage of the insert copper plate, but the shrinkage difference D is smaller than that of Comparative Example 1, and the convex deformation is smaller. It can be seen that it has decreased.
[0021]
[Example 1]
The insert member 1 and the thermoplastic resin are the same as in Comparative Example 1.
The fixed-side mold temperature was set to 120 ° C., and the movable-side mold temperature to which the copper plate was mounted was set to 140 ° C. The copper plate and the fixed-side cavity temperature were measured by a surface thermometer with the mold opened after the copper plate was mounted on the movable side, and when the respective temperatures reached 140 ° C. and 120 ° C., resin filling was started. . As a result, it was possible to obtain a good insert molded product having a deformation amount toward the copper plate of 0.02 mm.
From the above results, the insert member temperature was 140 ° C., the ambient temperature after removing the molded product was 23 ° C., and the molding shrinkage in the resin flow direction from the mold temperature of the PPS resin fixed side of 120 ° C. to the ambient temperature was 0.21%. When the shrinkage ratio difference D (%) is obtained using the equation (i), the following is obtained.
1.7 × 10 −5 (140−23) × 100−0.21 = 0.20−0.21 = −0.01 (%)
Rather than empirically obtaining a good insert molded product by changing the molding conditions in various ways as in the prior art, the present invention utilizes the relationship of the above formulas (i) and (ii) to make it extremely easy. An insert-molded product without deformation can be obtained by setting appropriate conditions.
[0022]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, an insert injection molded article without a deformation | transformation can be easily obtained, without going through many empirical trial manufactures.
[Brief description of the drawings]
FIG. 1 is an example of an insert molded product according to the present invention and the prior art.
FIG. 2 is an example of a mold used for insert molding according to the present invention and the prior art.
FIG. 3 is an example showing warpage of an insert molded product according to the present invention and the prior art.
FIG. 4 is an example of an insert molding die having a local heating device according to the present invention.
[Explanation of symbols]
1: insert member 2: resin portion (of an insert molded product) 3: gate 4: runner 5: sprue 6: fixed side mounting plate 7: fixed side die plate 8: movable side die plate 9: spacer block 10: movable side mounting Plate 11: upper ejector plate 12: lower ejector plate 13: sprue lock pin 14: ejector pin 15: temperature control hole 16: local heater 16 ': rod heater 17: nest 18: lead wire 19: lead wire escape Hole 20: Insert molded product 21: Thermoplastic resin 22: Cavity

Claims (3)

インサート部材(1)の配置が非対称であるインサート成形品(20)をそり変形無く射出成形する方法において、熱可塑性樹脂(21)とインサート部材(1)との下記式(i)で表される収縮率差D(%)が下記式(ii)を満たすように、金型温度Tnとインサート部材(1)の射出開始時温度Tiを制御して射出成形することを特徴とする成形方法。
D=Ai(Ti−T)×100−Sr[Tn〜T] (i)
−0.01% ≦ D ≦ 0.01% (ii)
(式(i)において、Tiはインサート部材の射出開始時温度(℃)、Tは成形品取出し後の雰囲気温度(℃)、Aiはインサート部材の熱膨張係数(1/℃)、及びSr[Tn〜T]は金型温度Tn(℃)からT(℃)までの熱可塑性樹脂の成形収縮率(%)を表す。)
In a method for injection-molding an insert molded product (20) in which the arrangement of the insert member (1) is asymmetrical without warping, the thermoplastic resin (21) and the insert member (1) are represented by the following formula (i). A molding method characterized by controlling the mold temperature Tn and the injection start temperature Ti of the insert member (1) so that the difference in shrinkage D (%) satisfies the following equation (ii).
D = Ai (Ti−T) × 100−Sr [Tn to T] (i)
-0.01% ≦ D ≦ 0.01% (ii)
(In the formula (i), Ti is the temperature (° C.) at the start of injection of the insert member, T is the ambient temperature (° C.) after removing the molded product, Ai is the coefficient of thermal expansion (1 / ° C.) of the insert member, and Sr [ Tn to T] represent the molding shrinkage (%) of the thermoplastic resin from the mold temperature Tn (° C) to T (° C).)
インサート部材(1)が装着される側の金型温度と装着されない側の金型温度に温度差を設けて、インサート部材の射出開始時温度Tiを制御する請求項1に記載の成形方法。The molding method according to claim 1, wherein a temperature difference is provided between a mold temperature on a side where the insert member (1) is mounted and a mold temperature on a side where the insert member (1) is not mounted to control the injection start temperature Ti of the insert member. 別途設けられた局部加熱装置(16)の温度を調節して、インサート部材(1)の射出開始時温度Tiを制御する請求項1に記載の成形方法。The molding method according to claim 1, wherein the temperature of the injection member (1) at the start of injection is controlled by adjusting the temperature of a separately provided local heating device (16).
JP2003113387A 2003-04-17 2003-04-17 Injection molding method for insert molded products Expired - Fee Related JP4311967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113387A JP4311967B2 (en) 2003-04-17 2003-04-17 Injection molding method for insert molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113387A JP4311967B2 (en) 2003-04-17 2003-04-17 Injection molding method for insert molded products

Publications (2)

Publication Number Publication Date
JP2004314511A true JP2004314511A (en) 2004-11-11
JP4311967B2 JP4311967B2 (en) 2009-08-12

Family

ID=33473346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113387A Expired - Fee Related JP4311967B2 (en) 2003-04-17 2003-04-17 Injection molding method for insert molded products

Country Status (1)

Country Link
JP (1) JP4311967B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285991A (en) * 2008-05-29 2009-12-10 Lenovo Singapore Pte Ltd Manufacturing method of enclosure for electronic apparatus and enclosure for electronic apparatus
KR101242991B1 (en) * 2009-12-28 2013-03-12 가부시키가이샤 후지세이코 Injection molding method and injection molding equipment
JP2014237301A (en) * 2013-06-10 2014-12-18 三菱重工業株式会社 Method of manufacturing rotor of fluid machinery
JP2017119441A (en) * 2017-03-28 2017-07-06 三菱重工業株式会社 Method of manufacturing impeller rotor of fluid machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285991A (en) * 2008-05-29 2009-12-10 Lenovo Singapore Pte Ltd Manufacturing method of enclosure for electronic apparatus and enclosure for electronic apparatus
JP4555874B2 (en) * 2008-05-29 2010-10-06 レノボ・シンガポール・プライベート・リミテッド Manufacturing method of electronic device casing and electronic device casing
KR101242991B1 (en) * 2009-12-28 2013-03-12 가부시키가이샤 후지세이코 Injection molding method and injection molding equipment
JP2014237301A (en) * 2013-06-10 2014-12-18 三菱重工業株式会社 Method of manufacturing rotor of fluid machinery
JP2017119441A (en) * 2017-03-28 2017-07-06 三菱重工業株式会社 Method of manufacturing impeller rotor of fluid machine

Also Published As

Publication number Publication date
JP4311967B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP3977565B2 (en) Mold for synthetic resin molding, mold temperature control device and mold temperature control method
US7445743B2 (en) Molding tool, and method of making plastic articles
US20060246166A1 (en) Injection molding system and method for using the same
EP0920969B1 (en) Injection molding means
JP4311967B2 (en) Injection molding method for insert molded products
CN106029323B (en) Injection molding with thermoelectric element
JPH06315961A (en) Method and apparatus for injection molding without causing visible sink mark on product
JP4684423B2 (en) Synthetic resin injection mold and injection molding method using the same
US20200086537A1 (en) Injection mold for producing injection-molded components, and method for producing injection-molded components
CN110202765B (en) Forming device
JP4255045B2 (en) Manufacturing method of molded products
JP4323125B2 (en) Resin molding method, mold used in the molding method, and molded product from the molding method
JP2672733B2 (en) Mold for molding and molding method
JP4627888B2 (en) Mold for plastic injection molding
CN214163861U (en) Injection mold convenient to shaping mould embryo
WO2002020244A1 (en) Injection moulding method, mould and die
JPH06218784A (en) Injection molding device
JP2023007628A (en) Injection molding die
JP2001260185A (en) Hot runner system for molding machine of injection through parting surface for plastic, and its manifold structure
KR200273508Y1 (en) manifold for injection molding machine
JP3232222B2 (en) Hot runner mold for injection molding of metal materials
KR100469526B1 (en) Mold of valve gate hotrunner for injection molding
JP2000313042A (en) Apparatus and method for producing synthetic resin molded article
JPH11277597A (en) Molding method of injection-molded article
JPH10305437A (en) Cavity temperature control device in mold

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees