JP2004314508A - Honeycomb structure for sandwich panel - Google Patents

Honeycomb structure for sandwich panel Download PDF

Info

Publication number
JP2004314508A
JP2004314508A JP2003113355A JP2003113355A JP2004314508A JP 2004314508 A JP2004314508 A JP 2004314508A JP 2003113355 A JP2003113355 A JP 2003113355A JP 2003113355 A JP2003113355 A JP 2003113355A JP 2004314508 A JP2004314508 A JP 2004314508A
Authority
JP
Japan
Prior art keywords
resin
frp
sandwich panel
honeycomb structure
resin particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003113355A
Other languages
Japanese (ja)
Other versions
JP4010271B2 (en
Inventor
Hiroyuki Koyama
広幸 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003113355A priority Critical patent/JP4010271B2/en
Publication of JP2004314508A publication Critical patent/JP2004314508A/en
Application granted granted Critical
Publication of JP4010271B2 publication Critical patent/JP4010271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an FRP sandwich panel which is light in weight and can hardly be peeled off. <P>SOLUTION: The plane aggregate of hollow pillar-like cells is provided. Expandable resin particles are set in the hollow parts of the cells. Reinforcing fibers are arranged on the two main surfaces of a honeycomb structure in which a resin for an FRP matrix is packed in the openings of the cells to cover the expandable resin particles and placed in a mold. After mold clamping, the resin is melted by heating, and the expandable resin particles are expanded. The molten resin is extruded into the reinforcing fibers, and the resin is cured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、繊維強化プラスチック(以後FRPとする)サンドイッチパネルの芯材として用いるハニカム構造体、及びこのハニカム構造体を用いるFRPサンドイッチパネルの製造方法に関する。
【0002】
【従来の技術】
FRP製品の成形法として、RI法(レジンインジェクション法)、RTM法(レジントランスファーモールディング法)、S−RIM法(エスリム法:structural reaction injection molding)が知られている。これらの成形法によれば、FRP製品は、強化材である繊維基材を型内にセットし、型を閉じ、型の一部からポンプ圧等で樹脂液(溶融樹脂または一液もしくは二液タイプの硬化性樹脂又は反応性モノマー)を注入して繊維基材に含浸させ、それを常温又は加熱下で硬化させることによって製造される。
【0003】
FRP製品を軽量化するには、製品内部を中空(空洞)にするのが最も効果的であるが、その製造方法は複雑となり実施困難な場合が多い。そのため軽量コア材を内蔵させたFRP製品(以後FRPサンドイッチパネルとする)が作られるようになってきている。特に耐衝撃性が求められるFRP製品では、内部を中空化するよりも、発泡ポリウレタン、発泡ポリスチレン、発泡ポリプロピレン等の軽量コア材を内蔵させたほうが良い。
【0004】
そのようなFRPサンドイッチパネルは、例えば、発泡成形により軽量コア材を作り、このコア材の外面に補強繊維層を設けて型内にセットした後、型内に樹脂液を注入し、補強繊維層に樹脂液を含浸させ、硬化させることにより製造されている。コア材としては軽量の発泡ポリウレタン(ポリウレタンフォーム)がよく使用される。コア材に使う目的で製造された発泡成形体は、アニール処理により、即ち該材料の熱変形温度より5〜10℃低い温度で空気中にて数十分〜数時間加熱したのち徐冷する加熱処理により、残留する内部応力の除去及び未反応分の充分な硬化をしてからコア材として使用される。
【0005】
コア材として発泡ポリウレタンを使用しS−RIM法等の成形法により製造されたFRPサンドイッチパネルは、図1に示されているように比較的厚い発泡ポリウレタンコア層1の周囲をFRP層2で密閉した断面構造となる。発泡ポリウレタンが軽量でも、相対的にその体積が大きいためFRPサンドイッチパネル全体に占めるコア部分の重量割合は大きく、例えばポリウレタンコア部分の重量が全体の25%を占める場合もある。そこで発泡倍率を上げて一段と軽量化された低密度発泡ポリウレタンをコア材として用いてFRPサンドイッチパネルの一層の軽量化を図る試みが為されている。
【0006】
しかしながら、低密度発泡ポリウレタンは特に圧縮強度が低いので、コア材として使用すると注入された樹脂液の圧力によりセルが破壊し、FRP用樹脂が発泡ポリウレタンコアに浸透するという問題があった。このため思う様な軽量化を達成することができなかった。コア材として連通気泡性ポリウレタンを使用する時は特にその傾向が著しい。
【0007】
このような問題を解決するため、発泡ポリウレタンコア層とFRP層からなるFRPサンドイッチパネルにおいて、発泡ポリウレタンコア層とFRP層の間に樹脂層を設けることが提案されている(例えば、特許文献1参照)。発泡ポリウレタンコア層の表面に樹脂層を形成することにより、FRPマトリックス樹脂が発泡ポリウレタンコア層に浸透することが防がれ、FRPサンドイッチパネルの軽量化を達成することができる。
【0008】
【特許文献1】
特開平5−147048号公報(第2−3頁、図1)
【0009】
【発明が解決しようとする課題】
しかしながら、発泡ポリウレタン層の表面に樹脂層を設けると、この樹脂層とFRPマトリックス樹脂との親和性の点から接着強度が期待することができず、得られるFRPサンドイッチパネルにおいて、FRP層が発泡ポリウレタン層から剥離するという問題がある。さらに、このFRPサンドイッチパネルの製造において、型外部からFRP補強繊維に樹脂液を注入し含浸させているが、この樹脂液注入は煩雑で、技術的にも困難な問題である。
【0010】
本発明は、上記問題点を解消し、型外部から樹脂液を注入することなくFRPサンドイッチパネルを製造することができ、またFRP補強繊維からの剥離の問題も起こすことのない、FRPサンドイッチパネル用ハニカム構造体、及びこのハニカム構造体を用いたFRPサンドイッチパネルの製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記問題点を解決するために本発明によれば、中空柱状のセルの平面集合体であって、前記セルの中空部に発泡性樹脂粒子を内装し、かつ前記発泡性樹脂粒子を覆うように前記セルの開口部にFRPマトリックス用樹脂を充填したハニカム構造体が提供される。
【0012】
また、上記問題点を解決するために本発明によれば、上記のハニカム構造体の2つの主要面上に補強繊維を配置し、成形型内に入れ、型締め後、加熱して樹脂を溶融させるとともに発泡性樹脂粒子を発泡させ、補強繊維中に溶融樹脂を押出し、樹脂を硬化させることを特徴とする、FRPサンドイッチパネルの製造方法が提供される。
【0013】
【発明の実施の形態】
以下、本発明を図面を参照して説明する。図2は本発明のハニカム構造体の一態様を示す斜視図であり、図3は図2のA−A’における縦断面図である。このハニカム構造体3は、セル壁4に囲まれた中空柱状のセルの平面集合体(ハニカム基材)9からなり、セルの中空部には発泡性樹脂粒子5が内装され、かつ前記発泡性樹脂粒子5を覆うように前記セルの開口部にFRPマトリックス用樹脂6が充填されている。
【0014】
このハニカム基材9を構成する材質としては、アルミニウム等の金属、アラミド等の樹脂、セルロース(紙)、又は補強繊維に樹脂を含浸させたFRPを用いることができる。セルの形状は特に制限はなく、その横断面が円形、楕円形、多角形(三角、四角、五角、六角等)であってよい。また、セルの大きさ及びセル壁の厚みについても特に制限はなく、目的、用途に応じて適宜設計可能である。このハニカム構造体の厚み(図3におけるd)は、好ましくは5mm以上である。
【0015】
発泡性樹脂粒子5としては、いわゆる発泡スチロール等の原料となるポリスチレンビーズや、その中心にハイドロカーボンを含有する熱可塑性樹脂の球状粒子を用いることができる。この発泡性樹脂粒子5は、好ましくは発泡倍率が100〜500倍であり、粒径が10μm〜1mmであるものである。
【0016】
FRPマトリックス用樹脂6としては、室温においてはゲル状もしくは固体であり、加熱によって溶融流出し、その後硬化するものであればよく、例えば半硬化状態のエポキシ樹脂、不飽和ポリエステル等を用いることができる。この樹脂6中には、硬化剤、難燃剤等を添加してもよい。
【0017】
セルの中空部における発泡性樹脂粒子5及びFRPマトリックス用樹脂6の体積割合は、発泡性樹脂粒子5が好ましくは10〜50%、より好ましくは40%、FRPマトリックス用樹脂6が好ましくは50〜90%、より好ましくは60%である。
【0018】
このハニカム構造体は、例えば図4に示すようにして製造することができる。まず、所定の厚みのFRPマトリックス用樹脂6のシートにハニカム基材9を押し込み(図4a)、ハニカム基材9の片面側のセルの開口部を樹脂6で塞ぐ(図4b)。次いで、セルの中空部に発泡性樹脂粒子5を所定量充填し(図4c)、セルの開口部上に所定の厚みのFRPマトリックス用樹脂6のシートで覆う(図4d)。次いでプレス等によりハニカム基材9が潰れない程度に圧をかけ、開口部を塞ぎ、最後に型内に投入し、加熱、硬化させる(図4e)。
【0019】
図5及び図6は、上記のハニカム構造体を用いたFRPサンドイッチパネルの製造工程を示す。まず、図5に示すように、上記ハニカム構造体3の2つの主要面上に補強繊維7を配置し、型8内に入れる。補強繊維7としては、FRPに一般に用いられている繊維を用いることができ、例えばガラス繊維、炭素繊維、アラミド繊維、セラミック繊維、金属繊維等を用いることができる。これらの繊維に、必要に応じてポリエチレン繊維、ポリプロピレン繊維、ポリアミド繊維等の有機繊維を混合して堆積物を得、それを特定形状に圧縮成形又は吸引濾過成形するか、ニードルパンチでマット状に成形する等して製造したものであってもよい。
【0020】
こうして型8内にハニカム構造体3及び補強繊維7を配置した後、型締めを行い、加熱する。すると、図6に示すように、樹脂6が溶融し、同時にもしくはその後、発泡性樹脂粒子5が150〜200倍に発泡し、セル内の中空部を満たす。この際、セルの開口部を覆っていた樹脂6は溶融状態にあるため、発泡性樹脂粒子5の発泡に伴い、セルの中空部から補強繊維7に向かって押出され、補強繊維を含浸する。その後、粒子5はなおも発泡を続けようとするが、周囲をセル壁面4に拘束されているため、補強繊維7を型8の面に押し付けるように作用する。この状態を保持し、樹脂6を硬化させ、冷却後、型8から取り出すことによってFRPサンドイッチパネルを得ることができる。
【0021】
加熱温度は、使用する発泡性樹脂粒子5及び樹脂6に応じて、すなわち発泡性樹脂粒子5が十分に発泡し、かつ樹脂6が溶融するに十分な温度に達するように決定する。具体的には、発泡性樹脂粒子5としてポリプロピレン樹脂粒子を用い、樹脂6としてエポキシ樹脂を用いた場合、120℃程度に加熱する。
【0022】
【発明の効果】
本発明のハニカム構造体を用いることにより、型の外から樹脂液を注入する必要がなく、簡易にFRPサンドイッチパネルを製造することができる。
【図面の簡単な説明】
【図1】
従来のコア内蔵FRP成形品の断面図である。
【図2】
本発明のハニカム構造体の斜視図である。
【図3】
図2におけるA−A’の断面図である。
【図4】
ハニカム構造体の製造工程を示す図である。
【図5】
本発明のハニカム構造体を用いたFRPサンドイッチパネルの製造工程を示す図である。
【図6】
本発明のハニカム構造体を用いたFRPサンドイッチパネルの製造工程を示す図である。
【符号の説明】
1…発泡ポリウレタンコア層
2…FRP層
3…ハニカム構造体
4…セル壁
5…発泡性樹脂粒子
6…FRP用樹脂
7…補強繊維
8…型
9…ハニカム基材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a honeycomb structure used as a core material of a fiber reinforced plastic (hereinafter referred to as FRP) sandwich panel, and a method for manufacturing an FRP sandwich panel using the honeycomb structure.
[0002]
[Prior art]
As a molding method of an FRP product, an RI method (resin injection method), an RTM method (resin transfer molding method), and an S-RIM method (eslim method: structural reaction injection molding) are known. According to these molding methods, a FRP product is obtained by setting a fiber base material as a reinforcing material in a mold, closing the mold, and applying a resin liquid (a molten resin or a one-liquid or two-liquid (A curable resin or a reactive monomer of a type), and impregnated into a fiber base material, and then cured at room temperature or under heating.
[0003]
The most effective way to reduce the weight of an FRP product is to make the inside of the product hollow (hollow), but the manufacturing method is often complicated and difficult to implement. For this reason, FRP products incorporating a lightweight core material (hereinafter referred to as FRP sandwich panels) have been produced. In particular, in FRP products requiring impact resistance, it is better to incorporate a lightweight core material such as foamed polyurethane, foamed polystyrene, foamed polypropylene, etc., rather than hollowing the inside.
[0004]
Such an FRP sandwich panel is made by, for example, forming a lightweight core material by foam molding, providing a reinforcing fiber layer on the outer surface of the core material, setting it in a mold, injecting a resin liquid into the mold, and reinforcing the reinforcing fiber layer. It is manufactured by impregnating a resin liquid with the resin and curing the resin. As the core material, lightweight polyurethane foam (polyurethane foam) is often used. The foam molded body manufactured for the purpose of use as a core material is heated by annealing, that is, heating in air at a temperature 5 to 10 ° C. lower than the thermal deformation temperature of the material for several tens minutes to several hours, and then gradually cooling. After the treatment, the residual internal stress is removed and the unreacted portion is sufficiently hardened, and then used as a core material.
[0005]
As shown in FIG. 1, an FRP sandwich panel manufactured by a molding method such as an S-RIM method using foamed polyurethane as a core material has a relatively thick foamed polyurethane core layer 1 sealed with an FRP layer 2 around the foamed polyurethane core layer 1. The cross-sectional structure is as follows. Even if the foamed polyurethane is lightweight, the weight ratio of the core portion to the entire FRP sandwich panel is large because the volume is relatively large, and for example, the weight of the polyurethane core portion may occupy 25% of the whole. Therefore, attempts have been made to further reduce the weight of the FRP sandwich panel by using a low-density foamed polyurethane, which is further reduced in weight by increasing the expansion ratio, as a core material.
[0006]
However, since low-density foamed polyurethane has particularly low compressive strength, when used as a core material, there is a problem that cells are broken by the pressure of the injected resin liquid, and the FRP resin permeates into the foamed polyurethane core. For this reason, the desired weight reduction could not be achieved. This tendency is particularly remarkable when using open-celled polyurethane as the core material.
[0007]
In order to solve such a problem, it has been proposed to provide a resin layer between the foamed polyurethane core layer and the FRP layer in an FRP sandwich panel including the foamed polyurethane core layer and the FRP layer (for example, see Patent Document 1). ). By forming a resin layer on the surface of the foamed polyurethane core layer, it is possible to prevent the FRP matrix resin from penetrating into the foamed polyurethane core layer, and to reduce the weight of the FRP sandwich panel.
[0008]
[Patent Document 1]
JP-A-5-147048 (page 2-3, FIG. 1)
[0009]
[Problems to be solved by the invention]
However, if a resin layer is provided on the surface of the foamed polyurethane layer, the adhesive strength cannot be expected from the viewpoint of the affinity between the resin layer and the FRP matrix resin. In the obtained FRP sandwich panel, the FRP layer is formed of the foamed polyurethane. There is a problem of peeling from the layer. Further, in manufacturing the FRP sandwich panel, a resin liquid is injected into and impregnated into the FRP reinforcing fiber from outside the mold, but the injection of the resin liquid is complicated and technically difficult.
[0010]
The present invention solves the above problems, and can produce an FRP sandwich panel without injecting a resin liquid from the outside of the mold, and does not cause a problem of peeling from the FRP reinforcing fiber, for an FRP sandwich panel. An object of the present invention is to provide a honeycomb structure and a method for manufacturing an FRP sandwich panel using the honeycomb structure.
[0011]
[Means for Solving the Problems]
According to the present invention, in order to solve the above problems, a planar aggregate of hollow columnar cells, in which expandable resin particles are provided in a hollow portion of the cells, and cover the expandable resin particles. There is provided a honeycomb structure in which an opening of the cell is filled with an FRP matrix resin.
[0012]
According to the present invention, in order to solve the above-mentioned problems, reinforcing fibers are arranged on the two main surfaces of the above-mentioned honeycomb structure, put into a forming die, and after clamping, heating to melt the resin. A method for producing an FRP sandwich panel, characterized in that foaming of the expandable resin particles is performed, a molten resin is extruded into reinforcing fibers, and the resin is cured.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings. FIG. 2 is a perspective view showing one embodiment of the honeycomb structure of the present invention, and FIG. 3 is a longitudinal sectional view taken along AA ′ of FIG. The honeycomb structure 3 is made up of a planar aggregate (honeycomb base material) 9 of hollow columnar cells surrounded by cell walls 4, and expandable resin particles 5 are provided in the hollow portions of the cells. An opening of the cell is filled with an FRP matrix resin 6 so as to cover the resin particles 5.
[0014]
As a material constituting the honeycomb base material 9, a metal such as aluminum, a resin such as aramid, cellulose (paper), or FRP in which a reinforcing fiber is impregnated with a resin can be used. The shape of the cell is not particularly limited, and its cross section may be circular, elliptical, or polygonal (triangular, square, pentagonal, hexagonal, etc.). The size of the cell and the thickness of the cell wall are not particularly limited, and can be appropriately designed according to the purpose and application. The thickness (d in FIG. 3) of the honeycomb structure is preferably 5 mm or more.
[0015]
As the expandable resin particles 5, polystyrene beads as a raw material of so-called expanded polystyrene or the like, or spherical particles of a thermoplastic resin containing a hydrocarbon at the center thereof can be used. The expandable resin particles 5 preferably have an expansion ratio of 100 to 500 times and a particle size of 10 μm to 1 mm.
[0016]
The FRP matrix resin 6 may be any one that is a gel or solid at room temperature, melts and flows out by heating, and then cures. For example, a semi-cured epoxy resin, unsaturated polyester, or the like can be used. . A curing agent, a flame retardant, and the like may be added to the resin 6.
[0017]
As for the volume ratio of the expandable resin particles 5 and the FRP matrix resin 6 in the hollow portion of the cell, the expandable resin particles 5 are preferably 10 to 50%, more preferably 40%, and the FRP matrix resin 6 is preferably 50 to 50%. It is 90%, more preferably 60%.
[0018]
This honeycomb structure can be manufactured, for example, as shown in FIG. First, the honeycomb substrate 9 is pressed into a sheet of the FRP matrix resin 6 having a predetermined thickness (FIG. 4A), and the opening of the cell on one side of the honeycomb substrate 9 is closed with the resin 6 (FIG. 4B). Next, a predetermined amount of the expandable resin particles 5 are filled in the hollow portion of the cell (FIG. 4C), and the opening of the cell is covered with a sheet of the FRP matrix resin 6 having a predetermined thickness (FIG. 4D). Next, pressure is applied by a press or the like to such an extent that the honeycomb base material 9 is not crushed, the opening is closed, and finally, the honeycomb base material 9 is put into a mold, heated and cured (FIG. 4E).
[0019]
5 and 6 show a process of manufacturing an FRP sandwich panel using the above-mentioned honeycomb structure. First, as shown in FIG. 5, reinforcing fibers 7 are arranged on the two main surfaces of the honeycomb structure 3 and placed in the mold 8. As the reinforcing fibers 7, fibers generally used for FRP can be used, and for example, glass fibers, carbon fibers, aramid fibers, ceramic fibers, metal fibers, and the like can be used. These fibers are mixed with organic fibers such as polyethylene fibers, polypropylene fibers, and polyamide fibers as necessary to obtain a sediment, which is then compression-molded or suction-filtrated into a specific shape, or matted with a needle punch. It may be manufactured by molding or the like.
[0020]
After disposing the honeycomb structure 3 and the reinforcing fibers 7 in the mold 8, the mold is clamped and heated. Then, as shown in FIG. 6, the resin 6 is melted, and at the same time or thereafter, the expandable resin particles 5 expand 150 to 200 times to fill the hollow portion in the cell. At this time, since the resin 6 covering the opening of the cell is in a molten state, the resin 6 is extruded from the hollow portion of the cell toward the reinforcing fiber 7 as the expandable resin particles 5 are foamed, and is impregnated with the reinforcing fiber. After that, the particles 5 still try to continue foaming, but since the periphery is restrained by the cell wall surface 4, they act to press the reinforcing fiber 7 against the surface of the mold 8. In this state, the resin 6 is cured, and after cooling, the resin 6 is taken out of the mold 8 to obtain an FRP sandwich panel.
[0021]
The heating temperature is determined according to the expandable resin particles 5 and the resin 6 to be used, that is, so that the expandable resin particles 5 sufficiently foam and the resin 6 reaches a temperature sufficient to melt. Specifically, when polypropylene resin particles are used as the expandable resin particles 5 and epoxy resin is used as the resin 6, the heating is performed at about 120 ° C.
[0022]
【The invention's effect】
By using the honeycomb structure of the present invention, it is not necessary to inject the resin liquid from outside the mold, and the FRP sandwich panel can be easily manufactured.
[Brief description of the drawings]
FIG.
It is sectional drawing of the conventional core built-in FRP molded article.
FIG. 2
It is a perspective view of a honeycomb structure of the present invention.
FIG. 3
It is sectional drawing of AA 'in FIG.
FIG. 4
It is a figure showing a manufacturing process of a honeycomb structure.
FIG. 5
It is a figure showing a manufacturing process of an FRP sandwich panel using a honeycomb structure of the present invention.
FIG. 6
It is a figure showing a manufacturing process of an FRP sandwich panel using a honeycomb structure of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Foamed polyurethane core layer 2 ... FRP layer 3 ... Honeycomb structure 4 ... Cell wall 5 ... Foamable resin particles 6 ... FRP resin 7 ... Reinforcing fiber 8 ... Mold 9 ... Honeycomb base material

Claims (2)

中空柱状のセルの平面集合体であって、前記セルの中空部に発泡性樹脂粒子を内装し、かつ前記発泡性樹脂粒子を覆うように前記セルの開口部にFRPマトリックス用樹脂を充填したハニカム構造体。A honeycomb having a planar aggregate of hollow columnar cells, in which expandable resin particles are provided in hollow portions of the cells, and an opening of the cells is filled with an FRP matrix resin so as to cover the expandable resin particles. Structure. 請求項1記載のハニカム構造体の2つの主要面上に補強繊維を配置し、成形型内に入れ、型締め後、加熱して樹脂を溶融させるとともに発泡性樹脂粒子を発泡させ、補強繊維中に溶融樹脂を押出し、樹脂を硬化させることを特徴とする、FRPサンドイッチパネルの製造方法。A reinforcing fiber is arranged on the two main surfaces of the honeycomb structure according to claim 1, placed in a molding die, and after clamping, heated to melt the resin and expand the expandable resin particles to form the reinforcing fiber. A method for producing an FRP sandwich panel, comprising: extruding a molten resin into a resin and curing the resin.
JP2003113355A 2003-04-17 2003-04-17 Honeycomb structure for FRP sandwich panel Expired - Fee Related JP4010271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113355A JP4010271B2 (en) 2003-04-17 2003-04-17 Honeycomb structure for FRP sandwich panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113355A JP4010271B2 (en) 2003-04-17 2003-04-17 Honeycomb structure for FRP sandwich panel

Publications (2)

Publication Number Publication Date
JP2004314508A true JP2004314508A (en) 2004-11-11
JP4010271B2 JP4010271B2 (en) 2007-11-21

Family

ID=33473322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113355A Expired - Fee Related JP4010271B2 (en) 2003-04-17 2003-04-17 Honeycomb structure for FRP sandwich panel

Country Status (1)

Country Link
JP (1) JP4010271B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089047B1 (en) 2008-08-04 2011-12-02 홍기남 Hollow core structure and method for glueing hollow both faces thereof
JP2018518402A (en) * 2015-06-10 2018-07-12 ファーガソンズ アドバンスド コンポジット テクノロジー リミテッドFergusson’S Advanced Composite Technology Limited Method for manufacturing composite structure
JP2020163733A (en) * 2019-03-29 2020-10-08 積水化成品工業株式会社 Resin composite body
KR102166615B1 (en) * 2019-06-04 2020-10-16 김호민 Composite Panel And Manufacturing Method Of The Same
WO2021171716A1 (en) * 2020-02-25 2021-09-02 株式会社すぎはら Laminated sheet and method for manufacturing laminated sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089047B1 (en) 2008-08-04 2011-12-02 홍기남 Hollow core structure and method for glueing hollow both faces thereof
JP2018518402A (en) * 2015-06-10 2018-07-12 ファーガソンズ アドバンスド コンポジット テクノロジー リミテッドFergusson’S Advanced Composite Technology Limited Method for manufacturing composite structure
JP2020163733A (en) * 2019-03-29 2020-10-08 積水化成品工業株式会社 Resin composite body
JP7082953B2 (en) 2019-03-29 2022-06-09 積水化成品工業株式会社 Resin complex
KR102166615B1 (en) * 2019-06-04 2020-10-16 김호민 Composite Panel And Manufacturing Method Of The Same
WO2021171716A1 (en) * 2020-02-25 2021-09-02 株式会社すぎはら Laminated sheet and method for manufacturing laminated sheet

Also Published As

Publication number Publication date
JP4010271B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
JP6463469B2 (en) Composite sandwich with high bending stiffness
US5888600A (en) Reinforced channel-shaped structural member
US8932499B2 (en) Method for producing an SMC multi-layer component
EP0350807B1 (en) Moulded foam panel and method for its production
EP2990186B1 (en) Method of fabricating a formed structure comprising an epoxy core with expandable microspheres
US20130127092A1 (en) Moulded multilayer plastics component with continuously reinforced fibre plies and process for producing this component
KR20010023131A (en) High performance structural foam for stiffening parts
JP4256496B2 (en) Sound absorbing and insulating material and method for manufacturing the same
CA2346952A1 (en) Method for filling and reinforcing honeycomb sandwich panels
DE1704531B2 (en) METHOD FOR MANUFACTURING SPECIFIC LIGHT PLASTIC BODIES
US5273818A (en) Expanded fiber composite structure having a cylindrical shape and useful as a filter
AU627259B2 (en) Expanded fiber composite structure and process for making said structure
US20220001349A1 (en) Composition and Method to Form a Composite Core Material
JPS59156724A (en) Manufacture of joining material
JP4010271B2 (en) Honeycomb structure for FRP sandwich panel
DE2944359A1 (en) COMPOSITE BODY
JPH05147048A (en) Production of frp product with built-in foamed polyurethane core
US5145615A (en) Process for making an expanded fiber composite structure
US20160144576A1 (en) Controlled formation of cellular material and apparatus
JP2006199970A (en) Composite foam and molded article thereof and method for producing the same
GB2381492A (en) Forming composite structures
JP2005219349A (en) Reinforced panel forming method, foamed core forming method, and panel structure
JP2006230625A (en) Bathtub molding
JPH1177701A (en) Formation of multilayer object
JP2002018993A (en) High heat insulating fiber reinforced resin product and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees