JP2004314038A - Disinfection method of water - Google Patents

Disinfection method of water Download PDF

Info

Publication number
JP2004314038A
JP2004314038A JP2003198440A JP2003198440A JP2004314038A JP 2004314038 A JP2004314038 A JP 2004314038A JP 2003198440 A JP2003198440 A JP 2003198440A JP 2003198440 A JP2003198440 A JP 2003198440A JP 2004314038 A JP2004314038 A JP 2004314038A
Authority
JP
Japan
Prior art keywords
water
hypochlorite
sulfur
reducing agent
containing reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003198440A
Other languages
Japanese (ja)
Inventor
Galina A Ivleva
ガリーナ アレクセエブナ イブレワ
A Konstantinovna Kozina
アーラ コンスタンチノブナ コージナ
G Sergeevna Koljadkina
ガリーナ セルゲエブナ コリャトキナ
Lyudmila Ivanovna Merkulova
リュドミラ イワノブナ メルクローワ
G Mikhailovna Kandybina
ガリーナ ミハイロブナ カンディビナ
N Bolisovna Motovilova
ナタリア ボリソブナ モトビローワ
Irina S Rodina
イリーナ サワチエブナ ロージナ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of JP2004314038A publication Critical patent/JP2004314038A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low cost and efficient disinfection method of water with which production of trihalomethane is suppressed. <P>SOLUTION: In the disinfection method of water, water containing THF precursor organic compound is disinfected by using a hypochlorite and a sulfur-containing reducer. Therein, a sulfite or sodium sulfide is used as the sulfur-containing reducer so that the weight ratio of the sulfite salt or sodium sulfide to the hypochlorite salt is 1.0-1.5 or 0.1-0.2 respectively and pH is kept in 6-9. The disinfection method of water comprises a first process of adding the sulfur-containing reducer and a second process of adding the hypochlorite, therein, the ratio of contact time of the sulfur-containing reducer with the water as the object to be disinfected in the first process to the contact time of the hypochlorite with the water in the second process is made ≥1:15 and the processes are continued until the content of active chlorine attains ≥0.6 mg/l. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、塩素含有化合物による天然水の消毒方法に関し、生活排水および生活用水、飲料水の浄化技術として、特に毒性の強いトリハロメタン(THM)の生成量を低下させるために、使用することができる。
【0002】
【従来の技術】
天然水の消毒方法としては、次亜塩素酸塩、ホウ酸カルシウムと然るべき酸 −次亜塩素酸、ホウ酸−との混合物によって処理し、水中の遊離塩素の含有量を増加させて、pHを安定化させ、次亜塩素酸カルシウムのみを使用した場合に発生する望ましくない副作用を低減する方法が知られている(米国特許第6,022,480号参照)。
【0003】
この方法の短所は、ホウ素の含有量が規準値を超えるため、飲料水の消毒には使用できないこと、およびTHMの低減効果が小さいことにある。
【0004】
天然水の消毒方法としては、重炭酸塩、炭酸ナトリウムを含む組成物で処理し、同時に塩素化試薬を加えてpHを制御させると共に塩素含有揮発性化合物の生成を防止する方法も知られている(米国特許第6,054,056号参照)。
【0005】
この方法の短所は、反応速度が大きいため、塩素化試薬を同時に加える際にTHMの生成を抑止できない点にある。また、この方法では硬度を高める陽イオンの含有量およびpH値が一定の値でなければ使用できないという制限がある。
【0006】
天然水の消毒方法としては、塩素含有試薬の添加を中断させながら連続ハロゲン化条件を安定させ、その際に塩素化有毒生成物の蓄積を防止するために、塩素含有試薬の投入速度を調節することにより酸化還元電位を最適値に保つ方法も知られている(米国特許第6,143,184号参照)。
【0007】
この方法の短所は、水中のTHM前駆体有機化合物と塩素含有試薬との相互作用反応速度が大きいために、試薬投入速度の調整が困難であり、また添加を中断させる時期の確定も困難なので、THM生成防止効果が低くなる点にある。
【0008】
天然水の消毒方法としては、塩素含有試薬とモノ過硫酸カリウムを同時に使って処理するやり方も知られている(米国特許第6,149,819号参照)。
【0009】
この方法の短所は、試薬を同時に投入する場合、THMと酸化物としての発ガン性塩素化合物(ClO)の生成を防止できない点にある。
【0010】
THM前駆体有機化合物を0.2%以上含む水の消毒方法としては、塩素、臭素、塩化臭素、アルカリ金属またはアルカリ土類金属の次亜ハロゲン酸塩、ハロゲン化ヒダントインまたはシアヌル酸塩からなる試薬と、p−トルエンスルホンアミド、ジメチルヒダントイン、メチルエチルヒダントイン、シアヌル酸、カルバミド等からなる窒素化合物(この際、塩素含有試薬と窒素化合物との比率を0.1〜10:1とする)を使用して処理し、ハロゲン含有有機副生物の含有量を抑制する方法も知られているが、これは本発明の方法と用途においても技術的内容においても最も近いものである(米国特許第5,565,109号参照)。
【0011】
この方法の短所は、THM濃度を上昇させる高分子有機化合物を投入するためにTHM含有量抑制効果が低く(クロロホルムで0.22〜0.23mg/l)、さらには消毒対象となる水が窒素含有化合物によって二次汚染され、飲用には適さないレベルにまでその品質が低下してしまう点にある。
【0012】
【特許文献1】
米国特許第6,022,480号
【特許文献2】
米国特許第6,054,056号
【特許文献3】
米国特許第6,143,184号
【特許文献4】
米国特許第6,149,819号
【特許文献5】
米国特許第5,565,109号
【0013】
【発明が解決しようとする課題】
本発明は、天然水の消毒に際してトリハロメタンの生成が抑制され、水の品質および安全性を向上させることのできる、水の消毒方法を提供しようとするものである。
【0014】
【課題を解決するための手段】
上記課題は、本発明に従い、次亜塩素酸塩とイオウ含有還元剤を用いてトリハロメタン前駆体有機化合物を含む水を消毒処理することにより解決される。
【0015】
すなわち、本発明は、下記の(1)〜(7)の事項からなる。
【0016】
(1)次亜塩素酸塩とイオウ含有還元剤を用いてトリハロメタン前駆体有機化合物を含む水を消毒処理する方法。
【0017】
(2)イオウ含有還元剤としてチオ硫酸塩、亜硫酸塩または硫化ナトリウムを用いる、上記(1)に記載の水の消毒方法。
【0018】
(3)イオウ含有還元剤としての亜硫酸塩または硫化ナトリウムと次亜塩素酸塩との質量比が後者1に対して前者がそれぞれ1.0〜1.5、0.1〜0.2である、上記(1)または(2)に記載の水の消毒方法。
【0019】
(4)次亜塩素酸塩とイオウ含有還元剤を、pHを6〜9に維持した状態で用いる、上記(1)〜(3)のいずれかに記載の水の消毒方法。
【0020】
(5)イオウ含有還元剤の添加を第1段階、次亜塩素酸塩の添加を第2段階とする2段階で行う、上記(1)〜(4)のいずれかに記載の水の消毒方法。
【0021】
(6)第1段階におけるイオウ含有還元剤と消毒対象となる水との接触時間と、第2段階における次亜塩素酸塩と水との接触時間との比が1:15以上である、上記(5)に記載の水の消毒方法。
【0022】
(7)第2段階における次亜塩素酸塩と水との接触を活性塩素の含有量が0.6mg/l以上になるまで続ける、上記(5)または(6)に記載の水の消毒方法。
【0023】
【発明の実施の形態】
本発明の方法は、例えば、下記の手順で実施される。
【0024】
処理対象の例として、水温18〜20℃、レゾルシン含有量0.8〜1.0mg/l、濁り度1.3〜1.5mg/l、アルカリ度4.80〜5.2mg−eq/l、硬度6.2〜6.4mg−eq/l、過マンガン酸塩酸化能5.9〜6.1mgO/l、クロロホルム濃度(2.6〜2.8)×10−3mg/lの天然水を用い、第1段階ではイオウ含有還元剤として亜硫酸塩6.3〜7.5mg/lまたは硫化ナトリウム0.5〜1.0mg/lを投入し、2〜3分間攪拌して放置する。
【0025】
塩素化試薬すなわち次亜塩素酸塩の添加の前にイオウ含有還元剤を投入するのは、THM前駆体有機化合物が次亜塩素酸塩によって酸化される反応を抑止することにより塩素誘導体、特に揮発性THMの生成を防止するためである。
【0026】
第2段階では、上記の処理が施された水を、亜硫酸塩または硫化ナトリウムと次亜塩素酸塩との質量比がそれぞれ1.0〜1.5:1、0.1〜0.2:1の範囲となるように次亜塩素酸塩を加える。この際、pH値を6〜9とし、活性塩素の含有量が0.6mg/l以上になるまでこのプロセスを続け、第1段階におけるイオウ含有還元剤と消毒対象となる水との接触時間と、第2段階における次亜塩素酸塩と水との接触時間との比を好ましくは1:15以上になるまで保つ。
【0027】
本発明において用いることができる次亜塩素酸塩の例としては、次亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜塩素酸カルシウム等が挙げられる。また、活性塩素とは、酸化力のある塩素化合物のうち、元素状の塩素(Cl)、次亜塩素酸、次亜塩素酸塩を総称して活性塩素という。これらを元素状の塩素に換算した量が活性塩素量であり、ここで、次亜塩素酸および次亜塩素酸塩1モルは、元素状の塩素1モルと等価である。
【0028】
確実な殺菌効果を得るためには、衛生規準に従い、遊離活性塩素の残留濃度が0.6mg/l以上になるまで処理を続ける。pH値は6〜9の範囲に保たれるが、これはイオウ含有還元剤および次亜塩素酸塩の投入とその相互作用、さらには天然水のカルボニル・カルシウムバランスとイオン組成によって決定される緩衝能力から導かれる値である。
【0029】
第1段階でのイオウ含有還元剤との接触時間は、天然水中の成分とイオウ含有還元剤との会合形成プロセスを促進することを目的として決定される。第2段階での次亜塩素酸塩との接触時間は消毒時間の最適化およびイオウ含有還元剤と次亜塩素酸塩の相殺によるTHM形成の遮断を目的として決定される。
【0030】
イオウ含有還元剤として使用される試薬−例えば、亜硫酸塩または硫化ナトリウム−は高い還元能力を有し、天然水に含まれる天然のカルボニル化合物(色度を与える成分:フミン酸およびフルボ酸)等のTHM前駆体有機化合物の塩素化に作用する。
【0031】
亜硫酸塩や硫化ナトリウムのような陰イオン還元剤の酸化反応は、THMのような多ハロゲン化物の生成反応と競争することによって、ハロホルム反応を抑圧する。
【0032】
また、イオウ含有還元剤として亜硫酸塩や硫化ナトリウムを使用することで水が二次汚染されることがなくなり、飲用に適するものとなる。
【0033】
亜硫酸塩および硫化ナトリウムと次亜塩素酸塩との質量比を、次亜塩素酸塩を1としたときにそれぞれ1.0〜1.5、0.1〜0.2の範囲にすることで、水中のTHMの含有量を、亜硫酸塩で処理した場合には次亜塩素酸塩のみを用いる処理方法に対して1/5〜1/7に、硫化ナトリウムで処理した場合には1/120〜1/130にと、最大限減少させることが可能になる。
【0034】
この質量比を次亜塩素酸塩を1としたときにそれぞれ1.0未満、0.1未満にすると、THMの含有量が増加する傾向が見られる。
【0035】
また、この質量比を次亜塩素酸塩を1としたときにそれぞれ1.5、0.2より大きくすることは好ましくない。なぜなら、試薬の浪費になり、結果として消毒にかかる経費の増大につながるからである。
【0036】
消毒された水は、衛生規準にしたがった残留活性塩素の含有量0.6mg/l以上を有し、トリハロメタンの含有量は0.01〜0.15mg/lの範囲内におさまる。
【0037】
【実施例】
以下、本発明を実施例および比較例によりさらに説明するが、本発明はこれらの実施例により何ら限定されるものではない。
【0038】
実施例1
レゾルシン1mgを含む水温18℃の人造河川水に、第1段階ではイオウ含有還元剤として亜硫酸ナトリウム5mgを加え、2分間攪拌した。
【0039】
第2段階では次亜塩素酸ナトリウム5mgを投入した(イオウ含有還元剤と次亜塩素酸塩(活性塩素)との質量比は1:1)。人造水と次亜塩素酸塩との接触時間は30分とし、第1段階での水とイオウ含有還元剤との接触時間と、第2段階での水と次亜塩素酸塩との接触時間の比率を1:15、pH値を6とした。
【0040】
その結果、消毒済みの水中の残留活性塩素含有量は1.35mg/lであった。
【0041】
THMの濃度はクロロホルムで0.05mg/lであり、THM減少率は78.3%であった。
【0042】
尚、THM減少率は以下の式によって求めた。
【0043】
〔0.23(mg/l)―各実施例で得られたTHM含有量(mg/l)〕÷0.23(mg/l)×100(%)
ここで、0.23mg/lは比較例1で得られたTHM含有量である。
【0044】
比較例1
イオウ含有還元剤を使わない以外は実施例1と同様に実験を行ない、実験結果を表1に示した。
【0045】
実施例2
実施例1と同様の手順で、ただし第1段階での亜硫酸ナトリウムの投入量を7.5mg/l、第2段階での次亜塩素酸ナトリウムの投入量を5mg/l、すなわち、イオウ含有還元剤と次亜塩素酸塩(活性塩素)の重量比を1.5:1とし、イオウ含有還元剤と次亜塩素酸塩それぞれの人造水との接触時間の比率を1:30、pH値を9.0とした。
【0046】
その結果、消毒済みの水中の残留活性塩素含有量は、0.8mg/lであった。
【0047】
THMの濃度はクロロホルムで0.032mg/lであり、実施例1と同様にTHM減少率を求めると86.1%であった。
【0048】
実施例3
実施例1と同様の手順で、ただし第1段階での亜硫酸ナトリウムの投入量を6.25mg/l、第2段階での次亜塩素酸ナトリウムの投入量を5mg/l、すなわち、イオウ含有還元剤と次亜塩素酸塩(活性塩素)の質量比を1.25:1とし、イオウ含有還元剤と次亜塩素酸塩それぞれの人造水との接触時間の比率を1:20、pH値を7.6とした。
【0049】
その結果、消毒済みの水中の残留活性塩素含有量は、1.1mg/lであった。
【0050】
THMの濃度はクロロホルムで0.035mg/lであり、実施例1と同様にTHM減少率を求めると84.8%であった。
【0051】
実施例4
実施例1と同様の手順で、ただしイオウ含有還元剤として硫化ナトリウムを第1 段階で0.5mg/l投入し、第2段階での次亜塩素酸ナトリウムの投入量を5mg/l、すなわち、イオウ含有還元剤と次亜塩素酸塩(活性塩素)の質量比を0.1:1とし、イオウ含有還元剤と次亜塩素酸塩それぞれの人造水との接触時間の比率を1:15、pH値を6とした。
【0052】
その結果、消毒済みの水中の残留活性塩素含有量は、1.21mg/lであった。
【0053】
THMの濃度はクロロホルムで0.043mg/lであり、実施例1と同様にTHM減少率を求めると81.3%であった。
【0054】
実施例5
実施例1と同様の手順で、ただし第1段階での硫化ナトリウムの投入量を1.0mg/l、第2段階での次亜塩素酸ナトリウムの投入量を5mg/l、すなわち、イオウ含有還元剤と次亜塩素酸塩(活性塩素)の質量比を0.2:1とし、イオウ含有還元剤と次亜塩素酸塩それぞれの人造水との接触時間の比率を1:15、pH値を9とした。
【0055】
その結果、消毒済みの水中の残留活性塩素含有量は、0.60mg/lであった。
【0056】
THMの濃度はクロロホルムで0.0015mg/lであり、実施例1と同様にTHM減少率を求めると99.3%であった。
【0057】
実施例6
実施例1と同様の手順で、ただし第1段階での硫化ナトリウムの投入量を0.75mg/l、第2段階での次亜塩素酸ナトリウムの投入量を5mg/l、すなわち、イオウ含有還元剤と次亜塩素酸塩(活性塩素)の重量比を0.15:1とし、イオウ含有還元剤と次亜塩素酸塩それぞれの人造水との接触時間の比率を1:15、pH値を7.6とした。
【0058】
その結果、消毒済みの水中の残留活性塩素含有量は、0.82mg/lであった。
【0059】
THMの濃度はクロロホルムで0.028mg/lであり、実施例1と同様にTHM減少率を求めると87.8%であった。
【0060】
【表1】

Figure 2004314038
【0061】
イオウ含有還元剤として使用する亜硫酸塩または硫化ナトリウムの次亜塩素酸塩に対する一定の質量比、イオウ含有還元剤と次亜塩素酸塩の投入順序といった諸要素、本発明に示した因子の遵守によって揮発性THMを低減し、消毒率を向上させるという課題の解決が可能になる。
【0062】
ここに提案された方法では、イオウ含有還元剤−亜硫酸塩または硫化ナトリウム−を次亜塩素酸塩との質量比を一定にして用いることで水中のTHM含有量を従来の0.22〜0.23mg/lから(2.0〜50)×10−3mg/lにまで低減し、また二次汚染の排除により水の品質および安全性を向上させることができる点に、公知の方法との違いがある。消毒済みの水の品質は、水道法施行規則第17条(昭和32年厚生省令第45号)および水質基準に関する省令(平成4年厚生省令第69号)に合致している。
【0063】
【発明の効果】
本発明によれば、イオウ含有還元剤−亜硫酸塩または硫化ナトリウム−を次亜塩素酸塩との質量比を一定にして用いることで水中のTHM含有量を低減することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for disinfecting natural water with a chlorine-containing compound, and can be used as a purification technique for domestic wastewater, domestic water, and drinking water, particularly for reducing the amount of highly toxic trihalomethane (THM) produced. .
[0002]
[Prior art]
As a method of disinfecting natural water, treatment with a mixture of hypochlorite, calcium borate and an appropriate acid-hypochlorous acid, boric acid-is performed to increase the content of free chlorine in the water and to adjust the pH. Methods are known to stabilize and reduce the undesirable side effects that occur when using calcium hypochlorite alone (see US Pat. No. 6,022,480).
[0003]
Disadvantages of this method are that it cannot be used for disinfecting drinking water because the boron content exceeds the standard value, and the THM reduction effect is small.
[0004]
As a method of disinfecting natural water, a method of treating with a composition containing bicarbonate and sodium carbonate and simultaneously adding a chlorinating reagent to control the pH and preventing the generation of chlorine-containing volatile compounds is also known. (See U.S. Patent No. 6,054,056).
[0005]
The disadvantage of this method is that the reaction rate is so high that the formation of THM cannot be suppressed when the chlorinating reagent is added simultaneously. Further, in this method, there is a limitation that the method cannot be used unless the content of a cation for enhancing hardness and the pH value are constant.
[0006]
As a method of disinfecting natural water, the continuous halogenation conditions are stabilized while interrupting the addition of the chlorine-containing reagent, and at that time, the charging rate of the chlorine-containing reagent is adjusted to prevent accumulation of chlorinated toxic products. A method for keeping the oxidation-reduction potential at an optimum value is also known (see US Pat. No. 6,143,184).
[0007]
Disadvantages of this method are that the interaction reaction rate between the THM precursor organic compound in water and the chlorine-containing reagent is high, so that it is difficult to adjust the reagent introduction rate, and it is also difficult to determine when to interrupt the addition. The point is that the THM generation preventing effect is reduced.
[0008]
As a method of disinfecting natural water, a method of simultaneously treating with a chlorine-containing reagent and potassium monopersulfate is also known (see US Pat. No. 6,149,819).
[0009]
The disadvantage of this method is that it is not possible to prevent the formation of THM and a carcinogenic chlorine compound (ClO 3 ) as an oxide when the reagents are simultaneously charged.
[0010]
As a method for disinfecting water containing 0.2% or more of a THM precursor organic compound, a reagent comprising chlorine, bromine, bromine chloride, alkali metal or alkaline earth metal hypohalite, halogenated hydantoin or cyanurate is used. And a nitrogen compound consisting of p-toluenesulfonamide, dimethylhydantoin, methylethylhydantoin, cyanuric acid, carbamide, etc. (where the ratio of the chlorine-containing reagent to the nitrogen compound is 0.1 to 10: 1) It is also known to treat and control the content of halogen-containing organic by-products, but this is the closest in terms of method and application and technical content of the present invention (US Pat. 565,109).
[0011]
Disadvantages of this method are that, since a high molecular organic compound that increases the THM concentration is introduced, the effect of suppressing the THM content is low (0.22 to 0.23 mg / l in chloroform). The point is that the quality is reduced to a level unsuitable for drinking due to secondary contamination by the contained compound.
[0012]
[Patent Document 1]
US Patent No. 6,022,480 [Patent Document 2]
US Patent No. 6,054,056 [Patent Document 3]
US Patent No. 6,143,184 [Patent Document 4]
US Patent No. 6,149,819 [Patent Document 5]
US Patent No. 5,565,109
[Problems to be solved by the invention]
An object of the present invention is to provide a water disinfection method capable of suppressing the generation of trihalomethane during the disinfection of natural water and improving the quality and safety of water.
[0014]
[Means for Solving the Problems]
The above object is achieved according to the present invention by disinfecting water containing a trihalomethane precursor organic compound using hypochlorite and a sulfur-containing reducing agent.
[0015]
That is, the present invention includes the following items (1) to (7).
[0016]
(1) A method of disinfecting water containing a trihalomethane precursor organic compound using a hypochlorite and a sulfur-containing reducing agent.
[0017]
(2) The method for disinfecting water according to the above (1), wherein thiosulfate, sulfite or sodium sulfide is used as the sulfur-containing reducing agent.
[0018]
(3) The mass ratio of the sulfite or sodium sulfide as the sulfur-containing reducing agent to the hypochlorite is 1.0 to 1.5 and 0.1 to 0.2 for the former and 1 for the latter, respectively. The method for disinfecting water according to (1) or (2).
[0019]
(4) The method for disinfecting water according to any of (1) to (3) above, wherein the hypochlorite and the sulfur-containing reducing agent are used while maintaining the pH at 6 to 9.
[0020]
(5) The method for disinfecting water according to any of (1) to (4) above, wherein the addition of the sulfur-containing reducing agent is performed in two stages, the first stage and the addition of hypochlorite in the second stage. .
[0021]
(6) The ratio of the contact time between the sulfur-containing reducing agent and water to be disinfected in the first stage to the contact time between hypochlorite and water in the second stage is 1:15 or more. The method for disinfecting water according to (5).
[0022]
(7) The method for disinfecting water according to the above (5) or (6), wherein the contact between the hypochlorite and the water in the second step is continued until the content of active chlorine becomes 0.6 mg / l or more. .
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
The method of the present invention is carried out, for example, by the following procedure.
[0024]
Examples of the treatment target include a water temperature of 18 to 20 ° C, a resorcin content of 0.8 to 1.0 mg / l, a turbidity of 1.3 to 1.5 mg / l, and an alkalinity of 4.80 to 5.2 mg-eq / l. , Hardness 6.2 to 6.4 mg-eq / l, permanganate oxidizing ability 5.9 to 6.1 mg O 2 / l, chloroform concentration (2.6 to 2.8) x 10 -3 mg / l. In the first step, 6.3 to 7.5 mg / l of sulfite or 0.5 to 1.0 mg / l of sodium sulfide is added as a sulfur-containing reducing agent using natural water, and the mixture is left stirring for 2 to 3 minutes. .
[0025]
The addition of the sulfur-containing reducing agent prior to the addition of the chlorinating reagent, ie, hypochlorite, is accomplished by inhibiting the THM precursor organic compound from being oxidized by hypochlorite, thereby reducing chlorine derivatives, especially volatile compounds. This is for preventing the generation of sex THM.
[0026]
In the second stage, the water subjected to the above treatment is treated with a mass ratio of sulfite or sodium sulfide to hypochlorite of 1.0 to 1.5: 1 and 0.1 to 0.2: Add hypochlorite so as to be in the range of 1. At this time, the pH value is set to 6 to 9, and this process is continued until the content of active chlorine becomes 0.6 mg / l or more, and the contact time between the sulfur-containing reducing agent and the water to be disinfected in the first stage is reduced. The ratio of the contact time between hypochlorite and water in the second stage is preferably maintained until it is greater than 1:15.
[0027]
Examples of the hypochlorite that can be used in the present invention include sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, and the like. Active chlorine is a general term for active chlorine among elemental chlorine compounds (Cl 2 ), hypochlorous acid, and hypochlorite among oxidizing chlorine compounds. The amount of these converted to elemental chlorine is the amount of active chlorine, where 1 mole of hypochlorous acid and hypochlorite is equivalent to 1 mole of elemental chlorine.
[0028]
In order to obtain a reliable bactericidal effect, the treatment is continued until the residual concentration of free active chlorine becomes 0.6 mg / l or more according to the sanitary standards. The pH value is kept in the range of 6 to 9, which is due to the input and interaction of the sulfur-containing reducing agent and hypochlorite, as well as the buffer determined by the carbonyl-calcium balance and ionic composition of natural water. It is a value derived from ability.
[0029]
The contact time with the sulfur-containing reducing agent in the first stage is determined for the purpose of accelerating the association formation process between the components in natural water and the sulfur-containing reducing agent. The contact time with hypochlorite in the second stage is determined for the purpose of optimizing the disinfection time and blocking THM formation by offsetting the sulfur-containing reducing agent with hypochlorite.
[0030]
Reagents used as sulfur-containing reducing agents-for example, sulfites or sodium sulfides-have a high reducing ability and include natural carbonyl compounds (color-imparting components: humic and fulvic acids) contained in natural water. It acts on the chlorination of the THM precursor organic compound.
[0031]
The oxidation reaction of an anion reducing agent such as sulfite or sodium sulfide suppresses the haloform reaction by competing with the formation reaction of a polyhalide such as THM.
[0032]
In addition, by using sulfite or sodium sulfide as the sulfur-containing reducing agent, water is not contaminated with water, which makes it suitable for drinking.
[0033]
By setting the mass ratio of sulfite and sodium sulfide to hypochlorite in the range of 1.0 to 1.5 and 0.1 to 0.2, respectively, when hypochlorite is 1 The content of THM in water is reduced to 1/5 to 1/7 of the treatment method using only hypochlorite when treated with sulfite, and 1/120 when treated with sodium sulfide. When it is reduced to 1/1/130, it can be reduced to the maximum.
[0034]
If the mass ratio is less than 1.0 and less than 0.1 when the hypochlorite is 1, the content of THM tends to increase.
[0035]
In addition, it is not preferable to set the mass ratio to be larger than 1.5 and 0.2 when hypochlorite is 1, respectively. This is because reagents are wasted, which results in an increase in disinfection costs.
[0036]
The disinfected water has a residual active chlorine content of at least 0.6 mg / l according to hygienic standards and a trihalomethane content of between 0.01 and 0.15 mg / l.
[0037]
【Example】
Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0038]
Example 1
In an artificial river water having a water temperature of 18 ° C. containing 1 mg of resorcinol, 5 mg of sodium sulfite was added as a sulfur-containing reducing agent in the first stage, and the mixture was stirred for 2 minutes.
[0039]
In the second stage, 5 mg of sodium hypochlorite was charged (the mass ratio of the sulfur-containing reducing agent to hypochlorite (active chlorine) was 1: 1). The contact time between artificial water and hypochlorite is 30 minutes, the contact time between water and sulfur-containing reducing agent in the first stage, and the contact time between water and hypochlorite in the second stage. Of 1:15 and pH value of 6.
[0040]
As a result, the residual active chlorine content in the disinfected water was 1.35 mg / l.
[0041]
The concentration of THM was 0.05 mg / l in chloroform, and the THM reduction was 78.3%.
[0042]
The THM reduction rate was determined by the following equation.
[0043]
[0.23 (mg / l)-THM content (mg / l) obtained in each example] / 0.23 (mg / l) x 100 (%)
Here, 0.23 mg / l is the THM content obtained in Comparative Example 1.
[0044]
Comparative Example 1
The experiment was performed in the same manner as in Example 1 except that the sulfur-containing reducing agent was not used. The experimental results are shown in Table 1.
[0045]
Example 2
The procedure was as in Example 1, except that the dosage of sodium sulfite in the first stage was 7.5 mg / l and the dosage of sodium hypochlorite in the second stage was 5 mg / l, i. The weight ratio of the agent to hypochlorite (active chlorine) is 1.5: 1, the ratio of the contact time between the sulfur-containing reducing agent and hypochlorite to artificial water is 1:30, and the pH value is 9.0.
[0046]
As a result, the residual active chlorine content in the disinfected water was 0.8 mg / l.
[0047]
The concentration of THM was 0.032 mg / l in chloroform, and the THM reduction rate was 86.1% as calculated in Example 1.
[0048]
Example 3
The procedure was as in Example 1, except that in the first stage the dosage of sodium sulfite was 6.25 mg / l and in the second stage the dosage of sodium hypochlorite was 5 mg / l, i. The mass ratio of the agent to hypochlorite (active chlorine) is 1.25: 1, the contact time ratio between the sulfur-containing reducing agent and the artificial water of each hypochlorite is 1:20, and the pH value is 7.6.
[0049]
As a result, the residual active chlorine content in the disinfected water was 1.1 mg / l.
[0050]
The concentration of THM was 0.035 mg / l in chloroform, and the THM reduction rate was 84.8% as calculated in Example 1.
[0051]
Example 4
In the same procedure as in Example 1, except that sodium sulfide was added as a sulfur-containing reducing agent in an amount of 0.5 mg / l in the first step, and the amount of sodium hypochlorite added in the second step was 5 mg / l, that is, The mass ratio between the sulfur-containing reducing agent and hypochlorite (active chlorine) is 0.1: 1, and the ratio of the contact time between the sulfur-containing reducing agent and hypochlorite to artificial water is 1:15, The pH value was 6.
[0052]
As a result, the residual active chlorine content in the disinfected water was 1.21 mg / l.
[0053]
The concentration of THM was 0.043 mg / l in chloroform, and the THM reduction rate was 81.3% as in Example 1.
[0054]
Example 5
The procedure was as in Example 1, except that the input of sodium sulphide in the first stage was 1.0 mg / l and the input of sodium hypochlorite in the second stage was 5 mg / l, i.e. The mass ratio of the agent to hypochlorite (active chlorine) is 0.2: 1, the contact time ratio of the sulfur-containing reducing agent and hypochlorite to artificial water is 1:15, and the pH value is It was set to 9.
[0055]
As a result, the residual active chlorine content in the disinfected water was 0.60 mg / l.
[0056]
The concentration of THM was 0.0015 mg / l in chloroform, and the THM reduction rate was 99.3% as in Example 1.
[0057]
Example 6
The procedure was as in Example 1, except that the input of sodium sulphide in the first stage was 0.75 mg / l and the input of sodium hypochlorite in the second stage was 5 mg / l, i.e. The weight ratio of the agent to hypochlorite (active chlorine) is 0.15: 1, the ratio of the contact time between the sulfur-containing reducing agent and the artificial water of each hypochlorite is 1:15, and the pH value is 7.6.
[0058]
As a result, the residual active chlorine content in the disinfected water was 0.82 mg / l.
[0059]
The concentration of THM was 0.028 mg / l in chloroform, and the THM reduction rate was 87.8% as in Example 1.
[0060]
[Table 1]
Figure 2004314038
[0061]
By observing various factors such as a constant mass ratio of sulfite or sodium sulfide to hypochlorite used as the sulfur-containing reducing agent, the order of adding the sulfur-containing reducing agent and hypochlorite, and the factors described in the present invention, It is possible to solve the problem of reducing volatile THM and improving the disinfection rate.
[0062]
In the method proposed here, the THM content in water is reduced from the conventional value of 0.22 to 0.1 by using a sulfur-containing reducing agent—sulfite or sodium sulfide—at a constant mass ratio to hypochlorite. It is known that water can be reduced from 23 mg / l to (2.0 to 50) × 10 −3 mg / l and water quality and safety can be improved by eliminating secondary pollution. There is a difference. The quality of the disinfected water conforms to Article 17 of the Water Supply Act (Ministry of Health and Welfare Ordinance No. 45 of 1957) and Ministerial Ordinance on Water Quality Standards (Ministry of Health and Welfare ordinance No. 69 of 1992).
[0063]
【The invention's effect】
According to the present invention, the THM content in water can be reduced by using a sulfur-containing reducing agent—sulfite or sodium sulfide—at a constant mass ratio to hypochlorite.

Claims (7)

次亜塩素酸塩とイオウ含有還元剤を用いてトリハロメタン前駆体有機化合物を含む水を消毒処理する方法。A method for disinfecting water containing a trihalomethane precursor organic compound using a hypochlorite and a sulfur-containing reducing agent. イオウ含有還元剤としてチオ硫酸塩、亜硫酸塩または硫化ナトリウムを用いる、請求項1に記載の水の消毒方法。The water disinfection method according to claim 1, wherein thiosulfate, sulfite, or sodium sulfide is used as the sulfur-containing reducing agent. イオウ含有還元剤としての亜硫酸塩または硫化ナトリウムと次亜塩素酸塩との質量比が後者1に対して前者がそれぞれ1.0〜1.5、0.1〜0.2である、請求項1または2に記載の水の消毒方法。The mass ratio of sulfite or sodium sulfide as a sulfur-containing reducing agent to hypochlorite is 1.0 to 1.5 and 0.1 to 0.2, respectively, for the former with respect to the latter. 3. The method for disinfecting water according to 1 or 2. 次亜塩素酸塩とイオウ含有還元剤を、pHを6〜9に維持した状態で用いる、請求項1〜3のいずれかに記載の水の消毒方法。The water disinfection method according to any one of claims 1 to 3, wherein the hypochlorite and the sulfur-containing reducing agent are used while maintaining the pH at 6 to 9. イオウ含有還元剤の添加を第1段階、次亜塩素酸塩の添加を第2段階とする2段階で行う、請求項1〜4のいずれかに記載の水の消毒方法。The method for disinfecting water according to any one of claims 1 to 4, wherein the addition of the sulfur-containing reducing agent is performed in two stages, the first stage and the addition of hypochlorite in the second stage. 第1段階におけるイオウ含有還元剤と消毒対象となる水との接触時間と、第2段階における次亜塩素酸塩と水との接触時間との比が1:15以上である、請求項5に記載の水の消毒方法。The ratio of the contact time between the sulfur-containing reducing agent and water to be disinfected in the first stage and the contact time between hypochlorite and water in the second stage is 1:15 or more. Water disinfection method as described. 第2段階における次亜塩素酸塩と水との接触を活性塩素の含有量が0.6mg/l以上になるまで続ける、請求項5または6に記載の水の消毒方法。The water disinfection method according to claim 5 or 6, wherein the contact between the hypochlorite and the water in the second step is continued until the content of active chlorine becomes 0.6 mg / l or more.
JP2003198440A 2003-04-16 2003-07-17 Disinfection method of water Pending JP2004314038A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003110857/15A RU2233801C1 (en) 2003-04-16 2003-04-16 Method of decontamination of water

Publications (1)

Publication Number Publication Date
JP2004314038A true JP2004314038A (en) 2004-11-11

Family

ID=33414311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003198440A Pending JP2004314038A (en) 2003-04-16 2003-07-17 Disinfection method of water

Country Status (2)

Country Link
JP (1) JP2004314038A (en)
RU (1) RU2233801C1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2480417C1 (en) * 2011-08-24 2013-04-27 Калужский Государственный Университет им. К.Э. Циолковского Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Method of decontaminating water in life support systems
RU2540616C2 (en) * 2013-07-03 2015-02-10 Федеральное государственное бюджетное учреждение науки ИНСТИТУТ ПРОБЛЕМ КОМПЛЕКСНОГО ОСВОЕНИЯ НЕДР РОССИЙСКОЙ АКАДЕМИИ НАУК (ИПКОН РАН) Method of decontamination of water systems with mineralised industrial waters in form of hypochlorite solutions

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544315A (en) * 1978-09-25 1980-03-28 Asahi Chem Ind Co Ltd Simple conversion and treating method of living discharge water to intermediate water
JPH06226269A (en) * 1993-02-09 1994-08-16 Meidensha Corp Method and device for water treatment
JPH0760260A (en) * 1993-08-31 1995-03-07 Meidensha Corp Method for removing nitrogen in water
JPH0938656A (en) * 1995-07-27 1997-02-10 Matsushita Electric Works Ltd Purifying agent for bath water
JP2000153283A (en) * 1998-11-20 2000-06-06 Ngk Insulators Ltd Treatment of nitrogen-containing drain
JP2000343087A (en) * 1999-04-02 2000-12-12 Yoshiaki Hatano Pool water sterilizing device
JP2003164882A (en) * 2001-11-29 2003-06-10 Kurita Water Ind Ltd Antibacterial method for industrial water system containing reducing substance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544315A (en) * 1978-09-25 1980-03-28 Asahi Chem Ind Co Ltd Simple conversion and treating method of living discharge water to intermediate water
JPH06226269A (en) * 1993-02-09 1994-08-16 Meidensha Corp Method and device for water treatment
JPH0760260A (en) * 1993-08-31 1995-03-07 Meidensha Corp Method for removing nitrogen in water
JPH0938656A (en) * 1995-07-27 1997-02-10 Matsushita Electric Works Ltd Purifying agent for bath water
JP2000153283A (en) * 1998-11-20 2000-06-06 Ngk Insulators Ltd Treatment of nitrogen-containing drain
JP2000343087A (en) * 1999-04-02 2000-12-12 Yoshiaki Hatano Pool water sterilizing device
JP2003164882A (en) * 2001-11-29 2003-06-10 Kurita Water Ind Ltd Antibacterial method for industrial water system containing reducing substance

Also Published As

Publication number Publication date
RU2233801C1 (en) 2004-08-10

Similar Documents

Publication Publication Date Title
US6120698A (en) Balanced water purification composition
JP4317762B2 (en) Method for the preparation of biocides containing stabilized hypochlorite and bromide ion sources, and methods for controlling microbial fouling using the same
US20070029263A1 (en) Multi-functional oxidizing composition
US7922933B2 (en) Composition and method for enhanced sanitation and oxidation of aqueous systems
US20090072193A1 (en) Composition and method for reducing chemical oxygen demand in water
IL125592A (en) Water treatment
EP0518119A1 (en) Reduction of biological activity in water by feeding a solution of BrCl
JP2003146817A (en) Antimicrobial algicidal agent composition, method for killing microbe and alga in water system and method for producing antimicrobial algicidal agent composition
US20050035065A1 (en) Composition including potassium monopersulfate and a halogen
KR20170139676A (en) Process for treating ammonia nitrogen-containing wastewater and ammonia nitrogen decomposition
JPS6324485B2 (en)
US5501802A (en) Method for treating water using an organic sanitizer and a persulfate
JP3554749B2 (en) Disinfectant
US5254526A (en) Method to prevent algae growth in pools and spas
EP1682455B1 (en) Method for treating wastewater with a MULTI-FUNCTIONAL OXIDIZING COMPOSITION
JP2004314038A (en) Disinfection method of water
ZA200507503B (en) Chemical composition for the treatment of water
CA2484889C (en) Catalytic oxidation of peroxy salts
JP2017159276A (en) Cyan-containing wastewater treatment agent and method of treating cyan-containing wastewater using the same
CA2085167C (en) Disinfectant for use in aqueous systems
JP6712706B2 (en) Method for suppressing volatilization of cyanogen chloride
JP2004267896A (en) Contamination preventing method for industrial/waste water system
WO2005019111A2 (en) A composition including potassium monopersulfate and a halogen
JPH11267666A (en) Treatment of water containing hydrogen peroxide and peracetic acid
JP2022117162A (en) Waste water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930