JP2004313832A - Photochemical reaction method, liquid treatment method and liquid treatment apparatus - Google Patents

Photochemical reaction method, liquid treatment method and liquid treatment apparatus Download PDF

Info

Publication number
JP2004313832A
JP2004313832A JP2003107479A JP2003107479A JP2004313832A JP 2004313832 A JP2004313832 A JP 2004313832A JP 2003107479 A JP2003107479 A JP 2003107479A JP 2003107479 A JP2003107479 A JP 2003107479A JP 2004313832 A JP2004313832 A JP 2004313832A
Authority
JP
Japan
Prior art keywords
reaction
light
catalyst
liquid
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003107479A
Other languages
Japanese (ja)
Other versions
JP4667724B2 (en
Inventor
Hideyuki Tsuboi
秀行 坪井
Nobuyasu Kanda
伸靖 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2003107479A priority Critical patent/JP4667724B2/en
Publication of JP2004313832A publication Critical patent/JP2004313832A/en
Application granted granted Critical
Publication of JP4667724B2 publication Critical patent/JP4667724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently decomposing and removing organic matter or the like contained in a liquid at low cost. <P>SOLUTION: In this photochemical reaction method, reaction molecules present in a liquid are irradiated with light to be excited optically and the optically excited reaction molecules are brought into contact with a catalyst to be reacted by catalytic action. A wastewater treatment apparatus 100 using this photochemical reaction method is equipped with a lighting part 10 and a light transmission plate for permitting only light (e.g., ultraviolet rays) with a specific wavelength in natural light to transmit selectively and constituted so as to irradiate a harmful substance 40, which is present in wastewater being the liquid as reaction molecules, with light having a wavelength for optically exciting the harmful substance 40. The reaction part 20 of this apparatus is constituted so as to bring the harmful substance 40' in an optically excited state into contact with a catalyst 30 to be subjected to reaction (herein, decomposition reaction) by catalytic action to form a reaction product 50. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光化学反応方法に関し、詳細には光化学反応と触媒を利用して液相の反応分子を分解したり、あるいは合成したりすることが可能な光化学反応方法、液体の処理方法、および液体処理装置に関する。
【0002】
【従来の技術】
有害物質の処理に光エネルギーを利用する技術として、例えば以下のものが提案されている。
(1)特開2000−5562号公報(特許文献1)には、抽出処理と、吹込み処理と、紫外線照射処理とを行うことにより、土中、水中に含まれた有機塩素化合物を分解処理する方法が開示されている。
【0003】
この特許文献1は、酸化剤および/または触媒により有機塩素化合物を分解処理し、さらに紫外線の照射により処理するものである。この方法は、酸化剤と、触媒と、紫外線とを個別に作用させるものであり、触媒は必須ではなく、触媒作用と紫外線の作用との関係については何ら説明されていない。また、紫外線の作用に着目すると、有機塩素化合物を直接に光分解(紫外線酸化分解)しているため、高エネルギーかつ大エネルギーの紫外線が必要であり、エネルギー損失が大きい。
【0004】
(2)特開2002−18240号公報(特許文献2)には、真空紫外領域を含む紫外線を排ガスに照射して有害有機物を分解する光分解反応工程と、真空紫外領域を含まない紫外線を光触媒に照射して前工程を経た排ガスを光触媒に接触させて有害有機物を分解する光触媒反応工程とを行うことにより、排ガスに含まれる有害な有機化合物を無害化する処理方法が開示されている。
【0005】
この特許文献2によれば、光分解反応工程において発光効率が低く、かつ空気中での透過率が極めて低い真空紫外光を用いるため、投入したエネルギーのうち熱エネルギーとして消費される割合が高く効率が悪いうえ、1段の処理工程だけでは充分な分解効率を得ることができない。また、光触媒反応工程においては、光触媒を用いて光励起された触媒表面への有害有機物の接触反応により分解処理を行っているが、光触媒としては具体的に二酸化チタンを使用した実施例しか記載されておらず、反応は二酸化チタンの特長が利用できるものに限定されてしまい、多種多様な有害物質への適用は困難である。
【0006】
(3)特開2001−327961号公報(特許文献3)には、光触媒を用いて水中のダイオキシン類や内分泌攪乱化学物質、農薬、有機着色物質等の有機物を含む被処理水を処理する装置において、被処理水を流入させる水槽内に光触媒を担持した網状シートを設置し、紫外線を含有する光を照射して分解処理する技術が開示されている。この場合、照射光は光触媒の励起に用いられ、光触媒効果により生成したヒドロキシラジカルが有機物を分解処理する多段反応系であるため、エネルギー利用効率が低い欠点がある。
【0007】
以上示したように、光エネルギーを利用した化学反応の実用技術は多数提案されているが、これらは以下の2種類に大別することができる。
▲1▼反応分子を光エネルギーで直接光分解する方法:
この方法では、光エネルギーを利用して分子内の化学結合を切断する(すなわち、結合性軌道に存在する電子を反結合性軌道に励起させる)ため、真空紫外光などの高エネルギー光を用いる必要がある。光エネルギーだけによる結合の切断を考慮した場合には、一般に、小さいエネルギー(浅いエネルギー準位)で結合している電子よりも、大きいエネルギー(深いエネルギー準位)で結合している複数の電子を反結合性軌道へ励起することが有効であるから、当該深いエネルギー準位に束縛されている複数の電子を自由にするだけの高エネルギー、且つ、大エネルギーの光照射が必要となり、消費エネルギーが大きく、経済的に劣る。
【0008】
▲2▼光触媒を利用して反応分子を反応させる方法:
バンドギャップ以上のエネルギーを有する光を触媒に照射して励起された触媒を用いて化学反応を行う、いわゆる「光触媒」に係る化学反応プロセスである。この方法では、光エネルギーは光触媒の励起に用いられるため、化学反応によらず、光触媒を励起させるだけの一定のエネルギーを有する光が常に必要であり、エネルギー効率が低い。また、この場合励起した光触媒が水などと反応して生成されるヒドロキシラジカル、スーパーオキサイドイオンなどを媒介して反応が進行する多段反応であることが多く、触媒の光励起に必要なエネルギーは、反応に必要とされるエネルギーより大きくエネルギー効率が低い。また、現在のところ実用的な効率で利用可能な光触媒は、二酸化チタンを主としたものにほぼ限定されるため、そのエネルギーギャップに相当する光(紫外線)の照射が必須であり、可視光の利用は一般に困難であるため効率が低い。また、事実上、二酸化チタンの特性を利用したものに限定されるため、二酸化チタンのエネルギーギャップ相当以上のエネルギーを要する反応に用いることはできず、また、それ以下のエネルギーで進行する反応については、その差が無駄に消費されることとなる。
【0009】
【特許文献1】
特開2000−5562号公報
【特許文献2】
特開2002−18240号公報
【特許文献3】
特開2001−327961号公報
【0010】
【発明が解決しようとする課題】
本発明は、液体中に含まれる有機物等を低コストで効率良く分解、除去等する方法を提供することを課題とする。
【0011】
【課題を解決するための手段】
上記課題を解決するため、本発明の第1の態様に係る光化学反応方法は、液体中に存在する反応分子に光を照射して光励起させ、該光励起した反応分子に触媒を作用させて反応させることを特徴とする。この第1の態様に係る光化学反応方法によれば、反応分子を光励起させることにより反応分子の反応性が高まった状態で触媒を作用させ、活性化障壁を低下させる。このように光励起状態で触媒を作用させることによって、所望の反応を容易に進行させることが可能になる。この反応に必要となる光エネルギーは、狭義の光化学反応における光分解などに比べて格段に小さくてよいため、低エネルギー、低コストで液相反応を行うことができる。
【0012】
本発明の第2の態様に係る光化学反応方法は、第1の態様において、反応分子が有機ハロゲン化合物であることを特徴とする。また、本発明の第3の態様に係る光化学反応方法は、第2の態様において、触媒が、金属酸化物を含有することを特徴とする。これらの特徴によれば、液体中に存在する環境汚染物質であるダイオキシン類等の有機ハロゲン化合物を、第1の態様による作用効果を得ながら、効率的に分解・除去等することができる。
【0013】
本発明の第4の態様に係る液体の処理方法は、第1の態様から第3の態様のいずれかの光化学反応方法を行って液体を処理することを特徴とする。この液体の処理方法では、第1の態様から第3の態様のいずれかと同様の作用効果を得ながら液体中の反応分子を反応させ、例えば分解・除去して浄化するといった処理が可能になる。
【0014】
本発明の第5の態様に係る液体処理装置は、液体中に存在する反応分子に、該反応分子を光励起させ得る光を照射する光照射手段と、前記反応分子に触媒を作用させて反応させる触媒反応手段と、を備えたことを特徴とする。この液体処理装置では、光照射手段と触媒反応手段とを備えているため、光化学反応を利用した液体の処理を容易に行うことができる。
【0015】
【発明の実施の形態】
本発明の光化学反応方法は、液体中に存在する反応分子に光を照射して光励起させ、該光励起した反応分子を触媒に接触させて触媒作用により反応させることにより実施される。
【0016】
<反応分子>
反応分子は、光を吸収して励起しやすい物質であることが望ましく、各種の有機化合物はこの特徴を有している。有機化合物の例としては、カルボニル化合物、アルカン、アルケン、芳香族炭化水素、共役不飽和カルボニル化合物、カルボン酸、ハロゲン化有機化合物、カルボニトリル、アルコール、エーテル、窒素含有有機物、硫黄含有有機物、リン含有有機物、ケイ素含有有機物、複素芳香族化合物、有機金属錯体等が挙げられるが、特に芳香環を有する化合物は、官能基により可視光によって励起される場合も多く、低コストな反応が期待できる。芳香族有機ハロゲン化合物としては、例えばダイオキシン類や、ハロゲン化ベンゼン類、ハロゲン化フェノール類などのダイオキシン類前駆体などに代表される1環もしくは多環の芳香族有機ハロゲン化合物が挙げられる。また、ビスフェノールAやノニルフェノールなどの内分泌攪乱物質(環境ホルモン)や、トリクロロエタンやテトラクロロエチレンなどの有機ハロゲン化合物にも有効である。
前記液体中における反応分子の存在形態は特に限定されず、例えば反応分子が溶け込んだ溶存状態のほか、反応分子が分散している懸濁状態などでもよい。
【0017】
<光照射>
光は、反応分子を光励起させ得る波長を含む光であればよく、自然光(太陽光)または人工光を利用できる。本発明において「光照射」の語は、集光や採光も含む広義に用いられる。光源としては、例えば、長時間の曝露処理が許容される場合や、低コストが要求される場合には、自然光を利用することが好ましく、また、短時間で効率的な処理が必要な場合には、反応分子を励起状態に遷移させるために必要なエネルギーを含む人工光源を用いることが可能である。人工光源としては、比較的安価なインコヒーレント光源(例えば、キセノンランプ、ハロゲンランプ、水銀ランプ、重水素ランプ、メタルハライドランプなど)と選択性の高いコヒーレント光源(例えば、エキシマレーザー、アルゴンイオンレーザー、ルビーレーザー、半導体レーザーなど)等から適宜選択することができる。例えば、反応分子がダイオキシン類の場合には、紫外域に吸収端があることから水銀ランプなどの紫外光源が有効である。
【0018】
反応分子を光励起させ得る波長は、反応分子の状態に固有であり、例えば反応分子が、塩素のないダイオキシンである場合は350nm、4塩素価ダイオキシン類である場合には300nm、8塩素価ダイオキシン類である場合には400nm、クロロホルム・四塩化炭素では170nm、低級アルコール類では180nm、アルデヒド類では300nm前後、ナフタレン・ピレン・フェナントレン等の縮合多環式芳香族では300〜400nm、インジゴでは620nm、エオシンでは520nm、βカロテンでは480nm、クロロフィルaでは660nm、亜鉛フタロシアニン・銅フタロシアニン・フタロシアニンでは700nm、マラカイトグリーンでは620nm、メチレンブルーでは660nm、青色色素1号の場合には、630nm付近、アントラセンの場合は400nm付近、2,4,5−トリクロロフェノールの場合は350nm付近などである。なお、本発明方法では、少なくとも反応分子を光励起させ得る波長の光を照射すればよいため、反応分子のみを光励起させ、かつ触媒を光励起させない波長の光を用いることも可能である。
【0019】
光の照射時間、光度などの条件は、反応分子、反応時間、温度などの条件に応じて適宜設定できる。
【0020】
<光化学反応>
光化学反応は、反応分子が光を吸収したときにおこる化学反応の総称であり、本発明では、光エネルギーを反応分子の励起に用いるが、光エネルギーだけで反応分子の分解等の反応が完結するのではなく、併せて、後述するように触媒作用を利用する。従って、反応分子の励起は基本的に1電子励起で済み、通常の光化学反応のように反応分子を完全に光分解する場合に比べて低エネルギーの光で反応を進行させることが可能となる。また、照射光は、個々の反応分子の励起に必要十分なエネルギーがあればよいため、光触媒の場合に比べて原理的に無駄に消費されるエネルギーを削減することができる。
【0021】
光化学反応は、結合の開裂、異性化(転位)、付加環化、閉環・開環、付加・置換、酸化・還元などの各種の反応に適用可能であるが、特に反応分子が芳香族有機ハロゲン化合物である場合の脱ハロゲン、酸化分解には有効に作用する。これは、基底状態では結合性軌道にあった電子が反結合性軌道に励起された結果、炭素・ハロゲン間および芳香族環内の特定の炭素・炭素間の結合が弱くなり、分解反応性が著しく向上するためと考えられる。
【0022】
<触媒>
本発明に用いる触媒は、励起した反応分子の電子状態と生成分子の間の活性化障壁を低減する効果のある物質であれば、何ら限定されるものではない。例えば、有機塩素化合物の分解には、固体金属酸化物触媒が有効である。また、触媒は光触媒である必要はない。
【0023】
好ましい触媒の具体例として、Mg、Al、Si、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Ru、Rh、Pd、Ag、Ta、W、Re、Os、Ir、Pt、Au等の金属、またはこれらの金属の金属酸化物や複合金属酸化物を挙げることができる。ここで、金属酸化物としては、例えば、酸化マグネシウム、酸化アルミニウム、酸化シリコン、酸化チタン、酸化バナジウム、酸化クロム、酸化マンガン、酸化鉄、酸化コバルト、酸化ニッケル、酸化銅、酸化亜鉛、酸化ジルコニア、酸化ニオブ、酸化銀、酸化タリウム、酸化タングステンなどを、また、複合酸化物としては、例えば、チタンと、シリコン、アルミニウム、白金、ルテニウム、ニオブ、タンタル、ストロンチウム、バリウム、ナトリウム、カリウム、タングステン、ビスマス、セリウム、アンチモン、インジウム、イットリウム、ガリウムなどとの多成分複合系などを挙げることができる。
【0024】
触媒は、例えば任意の担持体に支持された状態で使用することが可能であり、固定式でもよく、液体中に金属酸化物などの工業用触媒を添加したり、あるいは、液体通路となる反応容器の内表面自体を触媒作用を持つ物質で形成することも可能である。また、触媒を粉粒状にして添加し、液体とともに流通させ別途回収手段により回収する方式でもよい。触媒の添加量は、光源、反応分子、反応時間、温度などの条件に応じて適宜設定できる。光励起状態の反応分子に触媒を接触させることによって、活性化障壁が低下するため、反応分子の分解等の反応が進行する。この際、反応を有利に進めるために、液体を例えば50〜100℃程度に加熱することもできる。反応場に熱エネルギーを供給することによって、反応分子が励起しやすくなるとともに、触媒活性も向上させることができる。
【0025】
本発明の光化学反応方法は、特にダイオキシン等の有害物質で汚染された廃水、地下水等の液体の処理に有効に利用できる。本発明の液体処理方法において、処理対象となる液体の内容に制限はないが、例えば河川の水や地下水、工業排水、生活排水などの水を主な対象とすることができる。また、ダイオキシン類等の有害物質によって汚染された土壌や灰などから、該有害物質を液相に抽出した液体を対象とすることもできる。
【0026】
<液体処理装置>
本発明の液体処理装置は、液体中に存在する反応分子に、該反応分子を光励起させ得る光を照射する光照射手段と、前記反応分子に前記触媒を接触させて触媒作用により反応させる触媒反応手段と、を備えている。
【0027】
光照射手段は、人工光源のほか、自然光を集光もしくは採光する設備が含まれる。集光設備としては、例えば反射板などが挙げられ、採光設備としては、例えば太陽光を非選択的あるいは特定の波長の光のみを選択的に透過させる光透過板などを挙げることができる。本発明では、反応分子と触媒の種類に応じ、自然光をそのまま照射することもできるが、目的とする反応分子に固有の波長のみを照射することにより、液体中に含まれる多数の化合物の中の反応分子のみを選択的に反応させることも可能である。
【0028】
触媒反応手段は、液体と触媒とを収容する反応容器により構成される。光照射による反応分子の光励起状態は、一般に極めて短時間であるため、反応容器中では、液体と触媒とを効率よく接触させることが好ましい。この目的のため、液体処理装置には、液体に対流を生じさせ得る攪拌装置や水流形成装置(例えば、水流ポンプ)等を設けることができる。なお、反応容器は特に限定されるものではなく、個別の事情により全長数m以上の大型リアクターから数〜数十mm以下のマイクロリアクターまで適宜選択して設計することができる。
【0029】
次に、図面に基づき本発明の液体処理方法を利用した液体処理装置について説明する。
図1は、液体処理装置の一実施形態に係る排水処理装置100の構成を概念的に説明する図面である。この排水処理装置100は、光照射手段としての採光部10と、触媒反応手段としての反応容器内に形成された反応部20と、さらに図示しない排水入口と排水出口とを備えている。
【0030】
採光部10は、自然光のうち、特定の波長の光(例えば紫外線)のみを選択的に透過させる光透過板を備え、液体としての排水中に存在する反応分子としての有害物質40に対し、該有害物質40を光励起させ、かつ触媒30を光励起させない波長の光を照射するように作用する。これにより、有害物質40は光励起する。
【0031】
反応部20は、光励起状態の有害物質40’と触媒30とを接触させて触媒作用により反応(ここでは分解反応)を生じさせ、反応生成物50が生成する。必要に応じて図示しない排水出口からの排水を、排水入口に循環させることにより、有害物質40から反応生成物50への転換をより確実にすることもできる。
【0032】
排水処理装置100は、自然光を利用するために採光部10を設けているが、人工光源を利用することも可能である。また、例えば、反応部20に臨むように、異なる波長の光を照射可能な複数の人工光源を配備し、異なる種類の有害物質40を同時に処理したり、あるいは有害物質の分解に応じて段階的に反応場を移動させて順次処理したりすることもできる。さらに、排水処理装置100を直列的に連続配置し、第1の排水処理装置で生成した第一次反応生成物に対し、これを励起させ得る波長の光を第2の排水処理装置で照射して励起させ、相応の触媒によって触媒反応を行うことにより第2次反応生成物に変化させる、という処理過程を順次行うことによって、有害物質を順次変化させ、最終的に無害な物質まで分解させる処理も可能である。
【0033】
【作用】
光化学反応と触媒作用を利用した本発明光化学方法の反応機構は、以下のように考えれば合理的な説明が可能となる。
本発明では、反応分子を励起するのに充分なエネルギーを有する光を反応分子に照射することにより、反応分子は結合性軌道に電子が充満し強固な結合を形成している基底状態から、一部の電子が励起(結合性軌道の一部の電子がエネルギーを得てより反応性の高い反結合性軌道へ移動する)され、分子全体が不安定な状態に変化する。この不安定な状態に励起された反応分子は、基底状態の分子に比べて反応性が高いので、基底状態の分子に比べて低エネルギーで反応が進む上、触媒を媒介することで活性化障壁を低下させることができるため、反応をより有利に進めることが可能となる。
【0034】
図2は、本発明の反応機構を説明する原理図である。通常の化学反応(図2中、点線で示す)では、反応分子が障壁を超えて生成分子となるには、E1の活性化エネルギーを必要とする。すなわち、E1に相当するエネルギーが供給されなければ反応が進行しないので、反応速度が遅く、反応を促進するために高エネルギーを要する。
【0035】
一方、本発明における光化学反応方法(図2中、実線で示す)では、反応分子を励起させ得るだけのエネルギーを有する光を照射することによって、反応分子を励起状態にするため、反応分子自体の内部エネルギーを高めて反応性を高める。さらに、この励起状態にある反応分子を触媒に接触させることによって、活性化障壁を下げる。すなわち、前記E1よりも小さいE2の活性化エネルギーを有する新たな反応経路を構成させる。このように、通常の化学反応より小さい活性化障壁となるため、反応が進行しやすいとともに、反応の効率が高く、省エネルギーである。
【0036】
この際の化学反応は、基底状態の触媒反応とは全く異なる反応機構となること(電子授受の方向が逆転する)からも、さらに好適な光源の選定、好適な触媒種の選定、温度、圧力・共存物質等の反応条件の選定、光照射装置、触媒反応容器等の装置の好適設計により広範囲な応用が可能である。
【0037】
【実施例】
次に、実施例、試験例により、本発明を更に詳細に説明するが、本発明はこれらによって制約されるものではない。
反応分子の例として、青色色素一号(東京化成製;型番F−0147。630nm付近の光で励起される)、アントラセン(和光純薬製;型番011−09855。400nm付近の光で励起される)、2,4,5−トリクロロフェノール(和光純薬製;型番500−34441。350nm付近の光で励起される)を用い、触媒上の反応分子に光を照射した場合と、比較のため触媒がない状態で反応分子に光を照射した場合と、触媒上の反応分子に光を照射せずにおいた場合の分解反応の比較を行った。触媒には酸化ケイ素(富士シリシア製;型番CARiACT−Q30。およそ200nm以下の光で励起される)、酸化ジルコニウム(第一稀元素化学工業製;RC100。およそ250nm以下の光で励起される)を用い、光源にはブラックライト(ニッポ電気製;型番FL15BLB。15W。発光波長300〜400nm)を用いた。光源に用いたブラックライトからの光は、反応分子の励起には充分なエネルギーであるが、触媒の励起には不十分なエネルギー範囲のものである。
【0038】
実施例1
青色色素一号0.5gを1000ccの蒸留水に溶解させ、触媒としての酸化ケイ素10gにホールピペットで一定量滴下し、充分攪拌して試料を調製した。この試料を暗室中に用意した光源の真下1cmに24時間静置した後、GC−MSで定量分析することにより分解率を評価した。
【0039】
比較例1
光照射を実施しなかった以外は、上記実施例1と同様にして試験を行った。
【0040】
実施例2
触媒として酸化ケイ素に替えて酸化ジルコニウムを使用した以外は実施例1と同様にして試験を行った。
【0041】
比較例2
光照射を実施しなかった以外は、上記実施例2と同様にして試験を行った。
【0042】
比較例3
触媒を使用しなかった以外は、上記実施例2と同様にして試験を行った。
【0043】
比較例4
触媒を使用しなかったこと、および光照射を実施しなかったこと以外は、上記実施例2と同様にして試験を行った。
【0044】
実施例3
青色色素一号に替えて、アントラセンを濃度100ppmのアセトン水混合溶液として試料を調製した以外は、実施例2と同様にして試験を行った。
【0045】
比較例5
光照射を実施しなかった以外は、上記実施例3と同様にして試験を行った。
【0046】
比較例6
触媒を使用しなかった以外は、上記実施例3と同様にして試験を行った。
【0047】
比較例7
触媒を使用しなかったこと、および光照射を実施しなかったこと以外は、上記実施例3と同様にして試験を行った。
【0048】
実施例4
青色色素一号に替えて、2,4,5−トリクロロフェノールを濃度100ppmのアセトン水混合溶液として試料を調製した以外は、上記実施例2と同様にして試験を行った。
【0049】
比較例8
光照射を実施しなかった以外は、上記実施例4と同様にして試験を行った。
【0050】
比較例9
触媒を使用しなかった以外は、上記実施例4と同様にして試験を行った。
【0051】
比較例10
触媒を使用しなかったこと、および光照射を実施しなかったこと以外は、上記実施例4と同様にして試験を行った。
【0052】
【表1】

Figure 2004313832
【0053】
表1から、以下の知見が得られる。
(1)実施例1〜実施例4から、光照射を行い、かつ触媒を作用させることによって、何もしない状態(比較例4、比較例7、比較例10)に比べ、青色色素、アントラセン、2,4,5−トリクロロフェノールのいずれにおいても格段に分解反応が進行していることが判る。これらの実施例で照射した光は、使用した触媒を励起させるには不十分なエネルギー範囲のものであることから、生じた分解反応は、いわゆる光触媒反応とは区別できることが判る。
【0054】
なお、実施例3のアントラセンについては、その一部がヘプタノール等の脂肪族化合物に転換しており、芳香環の開環反応、酸化分解反応が進行していることを確認している。
【0055】
(2)比較例1、比較例2、比較例5、比較例8から、触媒が存在しても、光照射が行われないと、分解が進まないことが判る。
【0056】
(3)比較例3、比較例6、比較例9から、光照射を行っても、触媒が存在しない場合には分解が進まないことが判る。このことより、実施例1〜実施例4の反応は、従来の光分解反応とは異なることが確認された。
【0057】
以上の結果から、反応分子を直接光分解するような高エネルギーの光照射を行うことなく、触媒を用いることで反応分子の吸収波長程度の光エネルギーで反応が進行することが判った。また、光触媒のように触媒を励起しなくても反応分子の励起により反応が進行することも示された。
【0058】
以上、本発明を種々の実施形態に関して述べたが、本発明は上記実施形態に制約されるものではなく、特許請求の範囲に記載された発明の範囲内で、他の実施形態についても適用可能である。
【0059】
【発明の効果】
本発明によれば、液相の反応分子を光励起して反応分子の反応性を高めるとともに、触媒作用により反応の活性化障壁を下げることにより、触媒を用いた光化学反応による化合物の合成・分解、例えば、金属酸化物触媒を用いた光化学反応による有機化合物の分解、さらに詳しくは、ダイオキシン類や環境ホルモンなど含有する汚染水や、有機物を含有する工業排水、農業排水等の処理を、低コスト・高効率で行うことが可能になる。
【図面の簡単な説明】
【図1】液体処理装置の概要を示す模式図。
【図2】光化学反応方法の原理を説明する図面。
【符号の説明】
10 採光部
20 反応部
30 触媒
40 有害物質
50 反応生成物[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a photochemical reaction method, and more particularly to a photochemical reaction method capable of decomposing or synthesizing a reaction molecule in a liquid phase using a photochemical reaction and a catalyst, a method for treating a liquid, and a liquid. It relates to a processing device.
[0002]
[Prior art]
For example, the following technology has been proposed as a technology using light energy for treating harmful substances.
(1) Japanese Patent Application Laid-Open No. 2000-5562 (Patent Document 1) discloses that an organic chlorine compound contained in soil and water is decomposed by performing an extraction treatment, a blowing treatment, and an ultraviolet irradiation treatment. A method for doing so is disclosed.
[0003]
In this Patent Document 1, an organic chlorine compound is decomposed by an oxidizing agent and / or a catalyst, and further processed by irradiation with ultraviolet rays. In this method, an oxidizing agent, a catalyst, and ultraviolet light are individually actuated, and a catalyst is not essential, and no description is given of the relationship between the catalytic action and the action of ultraviolet rays. Focusing on the action of ultraviolet rays, since organic chlorine compounds are directly photolyzed (ultraviolet oxidation decomposition), high energy and high energy ultraviolet rays are required, and energy loss is large.
[0004]
(2) Japanese Patent Application Laid-Open No. 2002-18240 (Patent Document 2) discloses a photodecomposition reaction step of decomposing harmful organic substances by irradiating exhaust gas with ultraviolet light having a vacuum ultraviolet region to an exhaust gas, and a photocatalyst using ultraviolet light not having a vacuum ultraviolet region. A photocatalytic reaction step of decomposing harmful organic substances by contacting the exhaust gas that has passed through the preceding step with a photocatalyst to decompose harmful organic substances, thereby rendering the harmful organic compounds contained in the exhaust gas harmless.
[0005]
According to Patent Document 2, vacuum ultraviolet light having low luminous efficiency and extremely low transmittance in the air is used in the photodecomposition reaction step, so that a high proportion of the input energy is consumed as heat energy, and the efficiency is high. However, sufficient decomposition efficiency cannot be obtained with only one treatment step. Further, in the photocatalytic reaction step, the decomposition treatment is performed by the contact reaction of harmful organic substances to the photoexcited catalyst surface using a photocatalyst, but only the examples using titanium dioxide specifically as the photocatalyst are described. However, the reaction is limited to those in which the features of titanium dioxide can be used, and it is difficult to apply the reaction to a wide variety of harmful substances.
[0006]
(3) Japanese Patent Application Laid-Open No. 2001-327961 (Patent Document 3) discloses an apparatus for treating water to be treated containing organic substances such as dioxins, endocrine disrupting chemicals, pesticides, and organic coloring substances in water using a photocatalyst. There is disclosed a technique in which a net-like sheet carrying a photocatalyst is installed in a water tank into which water to be treated flows, and is irradiated with light containing ultraviolet rays to perform a decomposition treatment. In this case, the irradiation light is used to excite the photocatalyst, and the hydroxyl radical generated by the photocatalytic effect is a multistage reaction system in which an organic substance is decomposed.
[0007]
As described above, many practical techniques for chemical reactions using light energy have been proposed, and these can be roughly classified into the following two types.
(1) Direct photolysis of reactive molecules with light energy:
In this method, high-energy light such as vacuum ultraviolet light needs to be used because light energy is used to break chemical bonds in molecules (that is, electrons existing in bonding orbitals are excited to antibonding orbitals). There is. In consideration of the bond breaking caused only by light energy, a plurality of electrons that are bonded at a higher energy (deep energy level) are generally more than a plurality of electrons that are bonded at a small energy (shallow energy level). Since it is effective to excite to antibonding orbitals, it is necessary to irradiate high-energy and large-energy light to release a plurality of electrons bound to the deep energy level, and to reduce energy consumption. Large and economically inferior.
[0008]
{Circle around (2)} Method of reacting reactive molecules using a photocatalyst:
This is a chemical reaction process related to a so-called "photocatalyst" in which a catalyst having an energy greater than or equal to the band gap is irradiated on the catalyst to perform a chemical reaction using the excited catalyst. In this method, since light energy is used to excite the photocatalyst, light having constant energy enough to excite the photocatalyst is always required regardless of the chemical reaction, and the energy efficiency is low. In addition, in this case, the excited photocatalyst is often a multi-stage reaction in which the reaction proceeds through the reaction of hydroxyl radicals, superoxide ions, and the like generated by the reaction with water and the like. Energy efficiency is lower than the energy required for At present, photocatalysts that can be used with practical efficiency are almost limited to those mainly composed of titanium dioxide. Therefore, irradiation of light (ultraviolet light) corresponding to the energy gap is indispensable. Efficiency is low because utilization is generally difficult. In addition, since it is practically limited to those utilizing the properties of titanium dioxide, it cannot be used for reactions that require energy equal to or greater than the energy gap of titanium dioxide, and reactions that proceed with energies less than that cannot be used. , The difference is wasted.
[0009]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-5562 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-18240 [Patent Document 3]
JP 2001-327961 A
[Problems to be solved by the invention]
An object of the present invention is to provide a method for efficiently decomposing and removing organic substances and the like contained in a liquid at low cost.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a photochemical reaction method according to a first aspect of the present invention provides a method of irradiating a reaction molecule present in a liquid with light to photoexcit, and reacting the photoexcited reaction molecule with a catalyst. It is characterized by the following. According to the photochemical reaction method according to the first aspect, the catalyst is caused to act in a state where the reactivity of the reactive molecule is enhanced by photoexcitation of the reactive molecule, and the activation barrier is reduced. By causing the catalyst to act in the photoexcited state in this way, it is possible to easily advance a desired reaction. The light energy required for this reaction may be significantly smaller than the photolysis or the like in a photochemical reaction in a narrow sense, so that the liquid phase reaction can be performed with low energy and low cost.
[0012]
The photochemical reaction method according to the second aspect of the present invention is characterized in that, in the first aspect, the reactive molecule is an organic halogen compound. The photochemical reaction method according to the third aspect of the present invention is characterized in that, in the second aspect, the catalyst contains a metal oxide. According to these features, organic halogen compounds such as dioxins, which are environmental pollutants present in the liquid, can be efficiently decomposed / removed while obtaining the effects of the first aspect.
[0013]
A liquid treatment method according to a fourth aspect of the present invention is characterized in that the liquid is treated by performing the photochemical reaction method according to any one of the first to third aspects. In this liquid processing method, it is possible to perform a reaction in which the reactive molecules in the liquid are reacted while obtaining the same operation and effect as any of the first to third aspects, for example, decomposed and removed for purification.
[0014]
The liquid processing apparatus according to a fifth aspect of the present invention includes a light irradiation unit configured to irradiate a reaction molecule existing in a liquid with light capable of photoexciting the reaction molecule, and causing the reaction molecule to react with a catalyst. And a catalyst reaction means. Since this liquid processing apparatus includes the light irradiation means and the catalytic reaction means, it is possible to easily perform liquid processing utilizing a photochemical reaction.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The photochemical reaction method of the present invention is carried out by irradiating a reaction molecule existing in a liquid with light to cause photoexcitation, bringing the photoexcited reaction molecule into contact with a catalyst, and causing a reaction by a catalytic action.
[0016]
<Reactive molecule>
The reactive molecule is preferably a substance that absorbs light and is easily excited, and various organic compounds have this characteristic. Examples of organic compounds include carbonyl compounds, alkanes, alkenes, aromatic hydrocarbons, conjugated unsaturated carbonyl compounds, carboxylic acids, halogenated organic compounds, carbonitrile, alcohols, ethers, nitrogen-containing organic substances, sulfur-containing organic substances, and phosphorus-containing substances. Examples include organic substances, silicon-containing organic substances, heteroaromatic compounds, and organometallic complexes. Particularly, compounds having an aromatic ring are often excited by visible light by a functional group, and a low-cost reaction can be expected. Examples of the aromatic organic halogen compound include a monocyclic or polycyclic aromatic organic halogen compound represented by dioxins, dioxin precursors such as halogenated benzenes and halogenated phenols. It is also effective for endocrine disrupting substances (environmental hormones) such as bisphenol A and nonylphenol, and organic halogen compounds such as trichloroethane and tetrachloroethylene.
The form in which the reaction molecules are present in the liquid is not particularly limited, and may be, for example, a dissolved state in which the reaction molecules are dissolved, or a suspension state in which the reaction molecules are dispersed.
[0017]
<Light irradiation>
The light may be any light having a wavelength that can excite the reactive molecule, and natural light (sunlight) or artificial light can be used. In the present invention, the term “light irradiation” is used in a broad sense including light collection and daylighting. As a light source, for example, when long-time exposure treatment is allowed or when low cost is required, it is preferable to use natural light, and when efficient treatment is required in a short time. It is possible to use an artificial light source containing energy necessary for causing a reaction molecule to transition to an excited state. As artificial light sources, relatively inexpensive incoherent light sources (eg, xenon lamps, halogen lamps, mercury lamps, deuterium lamps, metal halide lamps, etc.) and highly selective coherent light sources (eg, excimer laser, argon ion laser, ruby Laser, semiconductor laser, etc.). For example, when the reactive molecule is a dioxin, an ultraviolet light source such as a mercury lamp is effective because it has an absorption edge in the ultraviolet region.
[0018]
The wavelength at which the reaction molecule can be photoexcited is specific to the state of the reaction molecule. For example, when the reaction molecule is a chlorine-free dioxin, it is 350 nm, when it is a 4-chlorine dioxin, it is 300 nm. Is 400 nm, chloroform / carbon tetrachloride is 170 nm, lower alcohols are 180 nm, aldehydes are around 300 nm, condensed polycyclic aromatics such as naphthalene / pyrene / phenanthrene are 300 to 400 nm, indigo is 620 nm, eosine 520 nm, β-carotene 480 nm, chlorophyll a 660 nm, zinc phthalocyanine / copper phthalocyanine / phthalocyanine 700 nm, malachite green 620 nm, methylene blue 660 nm, and blue pigment No. 1 63 nm near, 400 nm around the case of anthracene, in the case of 2,4,5-trichlorophenol and the like around 350 nm. In the method of the present invention, since it is sufficient to irradiate at least light having a wavelength capable of photo-exciting the reactive molecule, it is also possible to use light having a wavelength that photo-excites only the reactive molecule and does not photo-excite the catalyst.
[0019]
Conditions such as light irradiation time and light intensity can be appropriately set according to conditions such as reaction molecules, reaction time, and temperature.
[0020]
<Photochemical reaction>
A photochemical reaction is a general term for a chemical reaction that occurs when a reactive molecule absorbs light. In the present invention, light energy is used to excite the reactive molecule, but a reaction such as decomposition of the reactive molecule is completed only with the light energy. Instead, a catalytic action is utilized as described later. Therefore, the excitation of the reaction molecule is basically one-electron excitation, and the reaction can proceed with light of lower energy as compared with the case where the reaction molecule is completely photolyzed as in a normal photochemical reaction. In addition, since the irradiation light only needs to have enough energy to excite the individual reaction molecules, it is possible to reduce the energy that is wasted in principle compared with the case of the photocatalyst.
[0021]
The photochemical reaction can be applied to various reactions such as bond cleavage, isomerization (rearrangement), cycloaddition, ring closure / opening, addition / substitution, oxidation / reduction, etc. When it is a compound, it effectively acts on dehalogenation and oxidative decomposition. This is because electrons in the bonding orbitals in the ground state are excited to the antibonding orbitals, resulting in a weak bond between carbon and halogen and between specific carbons in the aromatic ring, resulting in poor decomposition reactivity. It is considered that the improvement is remarkable.
[0022]
<Catalyst>
The catalyst used in the present invention is not particularly limited as long as it is a substance having an effect of reducing an activation barrier between the electronic state of the excited reaction molecule and the generated molecule. For example, a solid metal oxide catalyst is effective for decomposing an organic chlorine compound. Also, the catalyst need not be a photocatalyst.
[0023]
Specific examples of preferred catalysts include Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Ru, Rh, Pd, Ag, Ta, W, Re, and Os. , Ir, Pt, Au and the like, or metal oxides or composite metal oxides of these metals. Here, as the metal oxide, for example, magnesium oxide, aluminum oxide, silicon oxide, titanium oxide, vanadium oxide, chromium oxide, manganese oxide, iron oxide, cobalt oxide, nickel oxide, copper oxide, zinc oxide, zirconia, Niobium oxide, silver oxide, thallium oxide, tungsten oxide and the like, and as the composite oxide, for example, titanium, silicon, aluminum, platinum, ruthenium, niobium, tantalum, strontium, barium, sodium, potassium, tungsten, bismuth , Cerium, antimony, indium, yttrium, gallium and the like.
[0024]
The catalyst can be used, for example, in a state of being supported on an arbitrary carrier, may be of a fixed type, may be added with an industrial catalyst such as a metal oxide in a liquid, or may be a reaction that becomes a liquid passage. It is also possible to form the inner surface of the container itself with a substance having a catalytic action. Alternatively, a method in which the catalyst is added in the form of powder and granules, and the catalyst is circulated together with the liquid and separately collected by a collecting means may be used. The addition amount of the catalyst can be appropriately set according to conditions such as a light source, a reaction molecule, a reaction time, and a temperature. By bringing the catalyst into contact with the reactive molecule in the photoexcited state, the activation barrier is reduced, and a reaction such as decomposition of the reactive molecule proceeds. At this time, the liquid can be heated to, for example, about 50 to 100 ° C. in order to advance the reaction advantageously. By supplying thermal energy to the reaction field, the reaction molecules can be easily excited and the catalytic activity can be improved.
[0025]
The photochemical reaction method of the present invention can be effectively used particularly for treating liquids such as wastewater and groundwater contaminated with harmful substances such as dioxins. In the liquid treatment method of the present invention, there is no limitation on the content of the liquid to be treated, but for example, water such as river water, groundwater, industrial wastewater, domestic wastewater, and the like can be mainly used. Further, a liquid obtained by extracting the harmful substance into a liquid phase from soil or ash contaminated with the harmful substance such as dioxins can be used.
[0026]
<Liquid treatment device>
The liquid processing apparatus of the present invention comprises: a light irradiation unit for irradiating a reaction molecule present in a liquid with light capable of photoexciting the reaction molecule; and a catalytic reaction for bringing the catalyst into contact with the reaction molecule to cause a reaction by a catalytic action. Means.
[0027]
The light irradiation means includes, in addition to the artificial light source, equipment for collecting or collecting natural light. The light-collecting equipment includes, for example, a reflector, and the light-collecting equipment includes, for example, a light-transmitting plate that non-selectively transmits sunlight or selectively transmits only light having a specific wavelength. In the present invention, depending on the type of the reaction molecule and the catalyst, it is possible to irradiate natural light as it is, but by irradiating only the wavelength specific to the intended reaction molecule, a large number of compounds contained in the liquid It is also possible to selectively react only the reaction molecules.
[0028]
The catalyst reaction means is constituted by a reaction container containing a liquid and a catalyst. Since the photoexcitation state of the reaction molecule by light irradiation is generally extremely short, it is preferable that the liquid and the catalyst be efficiently contacted in the reaction vessel. For this purpose, the liquid processing apparatus may be provided with a stirrer, a water flow forming device (for example, a water flow pump) or the like capable of generating convection in the liquid. The reaction vessel is not particularly limited, and can be appropriately selected and designed from a large reactor having a total length of several meters or more to a microreactor having a length of several to several tens mm or less depending on individual circumstances.
[0029]
Next, a liquid processing apparatus using the liquid processing method of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram conceptually illustrating a configuration of a wastewater treatment device 100 according to an embodiment of the liquid treatment device. The wastewater treatment apparatus 100 includes a lighting unit 10 as a light irradiation unit, a reaction unit 20 formed in a reaction vessel as a catalyst reaction unit, and a drain inlet and a drain outlet (not shown).
[0030]
The daylighting unit 10 includes a light transmitting plate that selectively transmits only light of a specific wavelength (e.g., ultraviolet light) out of natural light, and applies a light-transmitting plate to the harmful substance 40 as a reactive molecule present in wastewater as a liquid. The harmful substance 40 acts to irradiate light with a wavelength that does not excite the catalyst 30 but photoexcitation of the harmful substance 40. Thereby, the harmful substance 40 is photoexcited.
[0031]
The reaction unit 20 brings the harmful substance 40 ′ in the photoexcited state into contact with the catalyst 30 to cause a reaction (here, a decomposition reaction) by a catalytic action, thereby generating a reaction product 50. By circulating the wastewater from a wastewater outlet (not shown) to the wastewater inlet as necessary, the conversion of the harmful substance 40 to the reaction product 50 can be further ensured.
[0032]
Although the wastewater treatment apparatus 100 is provided with the daylighting unit 10 in order to use natural light, it is also possible to use an artificial light source. In addition, for example, a plurality of artificial light sources capable of irradiating light of different wavelengths are provided so as to face the reaction unit 20, and different types of harmful substances 40 are simultaneously processed, or stepwise according to decomposition of harmful substances. The reaction can be performed sequentially by moving the reaction field. Further, the wastewater treatment apparatus 100 is arranged continuously in series, and light of a wavelength capable of exciting the primary reaction product generated by the first wastewater treatment apparatus is irradiated by the second wastewater treatment apparatus. The harmful substances are sequentially changed and finally decomposed to harmless substances by sequentially performing the process steps of exciting and exchanging them to perform a catalytic reaction with a corresponding catalyst to change them into secondary reaction products. Is also possible.
[0033]
[Action]
The reaction mechanism of the photochemical method of the present invention utilizing the photochemical reaction and the catalytic action can be reasonably explained by considering the following.
In the present invention, by irradiating the reaction molecule with light having sufficient energy to excite the reaction molecule, the reaction molecule shifts from a ground state in which the bonding orbitals are filled with electrons and a strong bond is formed. The electrons in the part are excited (some electrons in the bonding orbital gain energy and move to the more reactive antibonding orbit), and the whole molecule changes to an unstable state. The reactive molecule excited in this unstable state has higher reactivity than the ground state molecule, so the reaction proceeds with lower energy than the ground state molecule, and the activation barrier is formed by mediating a catalyst. Can be reduced, so that the reaction can proceed more advantageously.
[0034]
FIG. 2 is a principle diagram for explaining the reaction mechanism of the present invention. In a normal chemical reaction (indicated by a dotted line in FIG. 2), activation energy of E1 is required for a reaction molecule to cross a barrier and become a product molecule. That is, the reaction does not proceed unless the energy corresponding to E1 is supplied, so that the reaction speed is slow and high energy is required to promote the reaction.
[0035]
On the other hand, in the photochemical reaction method of the present invention (indicated by a solid line in FIG. 2), the reaction molecule itself is excited by irradiating light having energy enough to excite the reaction molecule. Increase internal energy to increase reactivity. Further, by bringing the excited reactive molecules into contact with the catalyst, the activation barrier is lowered. That is, a new reaction path having an activation energy of E2 smaller than that of E1 is formed. As described above, since the activation barrier is smaller than that of a normal chemical reaction, the reaction is easy to proceed, the reaction efficiency is high, and energy is saved.
[0036]
Since the chemical reaction at this time has a completely different reaction mechanism from the catalytic reaction in the ground state (the direction of electron transfer is reversed), selection of a more suitable light source, selection of a suitable catalyst type, temperature and pressure -A wide range of applications is possible by selecting reaction conditions such as coexisting substances and suitable design of devices such as a light irradiation device and a catalyst reaction vessel.
[0037]
【Example】
Next, the present invention will be described in more detail with reference to Examples and Test Examples, but the present invention is not limited thereto.
Examples of reactive molecules include Blue Dye No. 1 (Tokyo Kasei; Model F-0147, excited by light at about 630 nm) and Anthracene (Wako Pure Chemical; Model 011-09855, excited by light at about 400 nm). ), 2,4,5-trichlorophenol (manufactured by Wako Pure Chemical; model number 500-34441, which is excited by light near 350 nm), and when the reaction molecules on the catalyst are irradiated with light, the catalyst is used for comparison. A comparison was made between the case where the reaction molecule was irradiated with light in the absence of the light and the case where the reaction molecule on the catalyst was not irradiated with light. As the catalyst, silicon oxide (manufactured by Fuji Silysia; model number CARiACT-Q30; excited by light of about 200 nm or less) and zirconium oxide (manufactured by Daiichii Kagaku Kagaku Kogyo; RC100; excited by light of about 250 nm or less) The light source used was a black light (manufactured by Nippon Electric; model number FL15BLB; 15 W; emission wavelength 300 to 400 nm). The light from the black light used as the light source has sufficient energy to excite the reactive molecules, but has insufficient energy to excite the catalyst.
[0038]
Example 1
0.5 g of the blue dye No. 1 was dissolved in 1000 cc of distilled water, and a predetermined amount was dropped into 10 g of silicon oxide as a catalyst with a hole pipette, followed by sufficiently stirring to prepare a sample. This sample was allowed to stand at 1 cm below a light source prepared in a dark room for 24 hours, and then quantitatively analyzed by GC-MS to evaluate the decomposition rate.
[0039]
Comparative Example 1
The test was performed in the same manner as in Example 1 except that the light irradiation was not performed.
[0040]
Example 2
A test was performed in the same manner as in Example 1 except that zirconium oxide was used instead of silicon oxide as a catalyst.
[0041]
Comparative Example 2
The test was performed in the same manner as in Example 2 except that the light irradiation was not performed.
[0042]
Comparative Example 3
The test was performed in the same manner as in Example 2 except that the catalyst was not used.
[0043]
Comparative Example 4
The test was performed in the same manner as in Example 2 except that the catalyst was not used and the light irradiation was not performed.
[0044]
Example 3
The test was carried out in the same manner as in Example 2 except that a sample was prepared in place of blue dye No. 1 as an aqueous solution of acetone having a concentration of 100 ppm in acetone water.
[0045]
Comparative Example 5
The test was performed in the same manner as in Example 3 except that the light irradiation was not performed.
[0046]
Comparative Example 6
The test was performed in the same manner as in Example 3 except that the catalyst was not used.
[0047]
Comparative Example 7
The test was performed in the same manner as in Example 3 except that the catalyst was not used and the light irradiation was not performed.
[0048]
Example 4
The test was performed in the same manner as in Example 2 except that a sample was prepared as a mixed solution of 2,4,5-trichlorophenol and acetone at a concentration of 100 ppm in place of the blue pigment.
[0049]
Comparative Example 8
The test was performed in the same manner as in Example 4 except that the light irradiation was not performed.
[0050]
Comparative Example 9
The test was performed in the same manner as in Example 4 except that no catalyst was used.
[0051]
Comparative Example 10
The test was performed in the same manner as in Example 4 except that the catalyst was not used and the light irradiation was not performed.
[0052]
[Table 1]
Figure 2004313832
[0053]
From Table 1, the following findings are obtained.
(1) From Examples 1 to 4, the blue dye, anthracene, and the like were obtained by irradiating light and activating a catalyst, as compared with a state in which nothing was performed (Comparative Example 4, Comparative Example 7, and Comparative Example 10). It can be seen that the decomposition reaction of all of 2,4,5-trichlorophenol progressed remarkably. Since the light irradiated in these examples has an energy range that is insufficient to excite the catalyst used, it can be seen that the resulting decomposition reaction can be distinguished from a so-called photocatalytic reaction.
[0054]
The anthracene of Example 3 was partially converted to an aliphatic compound such as heptanol, and it was confirmed that the ring-opening reaction and the oxidative decomposition reaction of the aromatic ring were in progress.
[0055]
(2) From Comparative Example 1, Comparative Example 2, Comparative Example 5, and Comparative Example 8, it can be seen that decomposition does not proceed unless light irradiation is performed even if a catalyst is present.
[0056]
(3) From Comparative Example 3, Comparative Example 6, and Comparative Example 9, it can be seen that even if light irradiation is performed, decomposition does not proceed in the absence of a catalyst. This confirmed that the reactions of Examples 1 to 4 were different from the conventional photolysis reaction.
[0057]
From the above results, it was found that the reaction proceeds with light energy of about the absorption wavelength of the reactive molecule by using a catalyst without performing high-energy light irradiation that directly decomposes the reactive molecule. It was also shown that the reaction proceeds by the excitation of the reaction molecule without the excitation of the catalyst as in the case of a photocatalyst.
[0058]
As described above, the present invention has been described with respect to various embodiments, but the present invention is not limited to the above embodiments, and can be applied to other embodiments within the scope of the invention described in the claims. It is.
[0059]
【The invention's effect】
According to the present invention, by synthesizing and decomposing a compound by a photochemical reaction using a catalyst, by photoexciting a reaction molecule in a liquid phase to increase the reactivity of the reaction molecule and lowering an activation barrier of the reaction by a catalytic action. For example, decomposition of organic compounds by a photochemical reaction using a metal oxide catalyst, more specifically, treatment of contaminated water containing dioxins and environmental hormones, and industrial wastewater and agricultural wastewater containing organic substances can be performed at low cost. It can be performed with high efficiency.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an outline of a liquid processing apparatus.
FIG. 2 illustrates the principle of a photochemical reaction method.
[Explanation of symbols]
Reference Signs List 10 Daylighting part 20 Reaction part 30 Catalyst 40 Harmful substance 50 Reaction product

Claims (5)

液体中に存在する反応分子に光を照射して光励起させ、該光励起した反応分子に触媒を作用させて反応させることを特徴とする、光化学反応方法。A photochemical reaction method, characterized by irradiating a reaction molecule present in a liquid with light to excite the photomolecule, and causing the catalyst to act on the photoexcited reaction molecule to cause a reaction. 請求項1において、反応分子が有機ハロゲン化合物であることを特徴とする、光化学反応方法。The photochemical reaction method according to claim 1, wherein the reactive molecule is an organic halogen compound. 請求項2において、触媒が、金属酸化物を含有することを特徴とする、光化学反応方法。3. The photochemical reaction method according to claim 2, wherein the catalyst contains a metal oxide. 請求項1から請求項3のいずれかに記載の光化学反応方法を行って液体を処理することを特徴とする、液体の処理方法。A method for treating a liquid, comprising treating the liquid by performing the photochemical reaction method according to any one of claims 1 to 3. 液体中に存在する反応分子に、該反応分子を光励起させ得る光を照射する光照射手段と、
光励起された前記反応分子に触媒を作用させて反応させる触媒反応手段と、
を備えたことを特徴とする、液体処理装置。
Light irradiating means for irradiating the reaction molecules present in the liquid with light capable of photoexciting the reaction molecules,
Catalytic reaction means for causing a catalyst to act on the photoexcited reaction molecule to cause a reaction,
A liquid processing apparatus, comprising:
JP2003107479A 2003-04-11 2003-04-11 Photochemical reaction method, liquid processing method, and liquid processing apparatus Expired - Fee Related JP4667724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107479A JP4667724B2 (en) 2003-04-11 2003-04-11 Photochemical reaction method, liquid processing method, and liquid processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107479A JP4667724B2 (en) 2003-04-11 2003-04-11 Photochemical reaction method, liquid processing method, and liquid processing apparatus

Publications (2)

Publication Number Publication Date
JP2004313832A true JP2004313832A (en) 2004-11-11
JP4667724B2 JP4667724B2 (en) 2011-04-13

Family

ID=33469301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107479A Expired - Fee Related JP4667724B2 (en) 2003-04-11 2003-04-11 Photochemical reaction method, liquid processing method, and liquid processing apparatus

Country Status (1)

Country Link
JP (1) JP4667724B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166175A (en) * 1981-04-07 1982-10-13 Tokyo Shibaura Electric Co Method of decomposing and treating polybiphenyl chloride
JPS594436A (en) * 1982-06-29 1984-01-11 Toshiba Corp Photochemical reaction method using solar light
JPH01281142A (en) * 1988-04-28 1989-11-13 Matsushita Electric Ind Co Ltd Photodecomposition apparatus for halogenated acyclic hydrocarbon compound
JPH04266777A (en) * 1991-02-22 1992-09-22 Towa Kagaku Kk Decomposition treatment of organic halogen compound
JPH09271677A (en) * 1996-04-04 1997-10-21 Natl Inst For Res In Inorg Mater Photo-catalyst for eliminating organic chlorine compound in water
JP2001137832A (en) * 1999-11-18 2001-05-22 Idemitsu Kosan Co Ltd Method for cracking chlorinated dioxins
JP2001190707A (en) * 2000-01-12 2001-07-17 Matsushita Electric Ind Co Ltd Processing method of monochlorodifluoromethane
JP2001231881A (en) * 2000-02-24 2001-08-28 Japan Atom Energy Res Inst Method for decomposing pollutant similar to pcb, furan, and dioxin by using infrared laser
JP2002205063A (en) * 2001-01-10 2002-07-23 Nippon Steel Corp Method for inactivating protozoa
JP2004313835A (en) * 2003-04-11 2004-11-11 Mitsui Eng & Shipbuild Co Ltd Soil treatment method
JP2004313831A (en) * 2003-04-11 2004-11-11 Mitsui Eng & Shipbuild Co Ltd Photochemical reactor and photochemical reaction method
JP2004313830A (en) * 2003-04-11 2004-11-11 Mitsui Eng & Shipbuild Co Ltd Photochemical reaction method, treatment method and treatment apparatus for soil or incineration ash

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166175A (en) * 1981-04-07 1982-10-13 Tokyo Shibaura Electric Co Method of decomposing and treating polybiphenyl chloride
JPS594436A (en) * 1982-06-29 1984-01-11 Toshiba Corp Photochemical reaction method using solar light
JPH01281142A (en) * 1988-04-28 1989-11-13 Matsushita Electric Ind Co Ltd Photodecomposition apparatus for halogenated acyclic hydrocarbon compound
JPH04266777A (en) * 1991-02-22 1992-09-22 Towa Kagaku Kk Decomposition treatment of organic halogen compound
JPH09271677A (en) * 1996-04-04 1997-10-21 Natl Inst For Res In Inorg Mater Photo-catalyst for eliminating organic chlorine compound in water
JP2001137832A (en) * 1999-11-18 2001-05-22 Idemitsu Kosan Co Ltd Method for cracking chlorinated dioxins
JP2001190707A (en) * 2000-01-12 2001-07-17 Matsushita Electric Ind Co Ltd Processing method of monochlorodifluoromethane
JP2001231881A (en) * 2000-02-24 2001-08-28 Japan Atom Energy Res Inst Method for decomposing pollutant similar to pcb, furan, and dioxin by using infrared laser
JP2002205063A (en) * 2001-01-10 2002-07-23 Nippon Steel Corp Method for inactivating protozoa
JP2004313835A (en) * 2003-04-11 2004-11-11 Mitsui Eng & Shipbuild Co Ltd Soil treatment method
JP2004313831A (en) * 2003-04-11 2004-11-11 Mitsui Eng & Shipbuild Co Ltd Photochemical reactor and photochemical reaction method
JP2004313830A (en) * 2003-04-11 2004-11-11 Mitsui Eng & Shipbuild Co Ltd Photochemical reaction method, treatment method and treatment apparatus for soil or incineration ash

Also Published As

Publication number Publication date
JP4667724B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
Di et al. Wavelength-dependent effects of carbon quantum dots on the photocatalytic activity of g-C3N4 enabled by LEDs
Gültekin et al. Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes
Laoufi et al. The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor
Robertson Semiconductor photocatalysis: an environmentally acceptable alternative production technique and effluent treatment process
Al-Ekabi et al. Kinetics studies in heterogeneous photocatalysis. I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix
Checa et al. Graphene oxide/titania photocatalytic ozonation of primidone in a visible LED photoreactor
Bahnemann Photocatalytic detoxification of polluted waters
Desipio et al. Photocatalytic and photo-fenton activity of iron oxide-doped carbon nitride in 3D printed and LED driven photon concentrator
US20210032136A1 (en) Method and System for Purifying Water Using Photocatalysis
Machulek Jr et al. Application of different advanced oxidation processes for the degradation of organic pollutants
Gondal et al. Activity comparison of Fe2O3, NiO, WO3, TiO2 semiconductor catalysts in phenol degradation by laser enhanced photo-catalytic process
WO2002098562A1 (en) Photocatalyst coated magnetic composite particles
JPH029850B2 (en)
Dehdar et al. Step-scheme BiVO4/WO3 heterojunction photocatalyst under visible LED light irradiation removing 4-chlorophenol in aqueous solutions
Wu et al. Preparation of photo-Fenton heterogeneous catalyst (Fe-TS-1 zeolite) and its application in typical azo dye decoloration
Makama et al. Synthesis of CdS sensitized TiO2 photocatalysts: methylene blue adsorption and enhanced photocatalytic activities
Ray Photodegradation of the volatile organic compounds in the gas phase: a review
Garg et al. Degradation mechanism, reaction pathways and kinetics for the mineralization of Bisphenol A using hybrid ZnO/graphene oxide nano-catalysts
Mohammed et al. Decorated ZnO nanorods with Bi2S3 nanosheets for enhanced photocatalytic removal of antibiotics and analgesics: Degradation mechanism and pathway
Shiragami et al. Silica gel-supported porphyrinatoantimony (V) complex acting as visible-light driven photocatalyst for dechlorination of chlorophenols in aqueous solution
Iervolino Visible light active photocatalysts for the removal of inorganic emerging contaminants
JP4575649B2 (en) Photochemical reaction apparatus and photochemical reaction method
JP4667724B2 (en) Photochemical reaction method, liquid processing method, and liquid processing apparatus
JP2005272463A (en) Method for production of aromatic hydroxy compound
JP4130150B2 (en) Photochemical reaction method, soil or incineration ash treatment method and treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees