JP2004313170A - Method for producing soybean whey-fractionated product - Google Patents
Method for producing soybean whey-fractionated product Download PDFInfo
- Publication number
- JP2004313170A JP2004313170A JP2003284120A JP2003284120A JP2004313170A JP 2004313170 A JP2004313170 A JP 2004313170A JP 2003284120 A JP2003284120 A JP 2003284120A JP 2003284120 A JP2003284120 A JP 2003284120A JP 2004313170 A JP2004313170 A JP 2004313170A
- Authority
- JP
- Japan
- Prior art keywords
- soybean
- supernatant
- trypsin inhibitor
- weight
- precipitate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Enzymes And Modification Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Plant Substances (AREA)
Abstract
Description
本発明は大豆に含まれる、生理活性を有するトリプシンインヒビター及び澱粉の糖化酵素であるβ−アミラーゼの濃縮物等の有用な分画物を簡単に製造する方法に関する。 The present invention relates to a method for easily producing useful fractions such as a trypsin inhibitor having a physiological activity and a concentrate of β-amylase which is a saccharifying enzyme of starch contained in soybean.
大豆に含まれる生理活性物質の一つであるトリプシンインヒビターは、分子量約20,000、等電点4.5のKunitz型及び分子量約8,000、等電点4.2のBBI型が知られており、生理作用として癌性胸・腹水貯留抑制剤(特許文献1)、炎症性浮腫亢進抑制剤(特許文献2)、酵素インヒビターを含有するスキンケア組成物を有する使い捨て吸収性製品(特許文献3)等が報告されている。 As a trypsin inhibitor which is one of the physiologically active substances contained in soybean, a Kunitz type having a molecular weight of about 20,000 and an isoelectric point of 4.5 and a BBI type having a molecular weight of about 8,000 and an isoelectric point of 4.2 are known. A disposable absorbent product having a skin care composition containing a cancerous pleural and ascites retention inhibitor (Patent Document 1), an inflammatory edema enhancement inhibitor (Patent Document 2), and an enzyme inhibitor (Patent Document 3) ) Etc. have been reported.
大豆β―アミラーゼは澱粉のアミロースを非還元末端からマルトースの形で加水分解して切り出す酵素で分子量57,000、等電点5.5を有し、水飴やマルトースの製造へ利用されたり、澱粉の老化防止剤としてパンや和菓子に直接用いられている。また大豆にはα−アミラーゼ活性が極めて少なく、大豆β−アミラーゼは他の植物由来のβ―アミラーゼより耐熱性が強いことより、高純度のマルトース製造や食品の老化防止用途において優位性が認められている。 Soybean β-amylase is an enzyme that hydrolyzes amylose of starch from its non-reducing end in the form of maltose and has a molecular weight of 57,000 and an isoelectric point of 5.5, and is used for producing starch syrup and maltose. It is directly used in bread and Japanese confectionery as an anti-aging agent. In addition, soybeans have extremely low α-amylase activity, and soybean β-amylase has higher heat resistance than other plant-derived β-amylases, indicating superiority in the production of high-purity maltose and antiaging of foods. ing.
大豆に含まれる少糖類は生理活性を持つ糖質が多く、スタキオース、ラフィノース、ベルバスコース、ピニトール、chiro−イノシトール、myo−イノシトール、ショ糖等が存在するが、この内ビフィズス菌増殖促進効果を持つ糖質はスタキオース、ラフィノース、ベルバスコースで、ビフィズス因子としての利用が特許文献4や特許文献5等に報告されている。 Oligosaccharides contained in soybeans are high in carbohydrates having a physiological activity, and include stachyose, raffinose, verbascose, pinitol, chiro-inositol, myo-inositol, sucrose, etc. The carbohydrates possessed are stachyose, raffinose and verbascose, and their use as bifidobacteria has been reported in Patent Documents 4 and 5 and the like.
大豆トリプシンインヒビターの分画方法として実験室レベルでは等電点沈殿、塩析、イオン交換クロマトグラフィー、ゲル濾過等の組み合わせにより種々の精製法が提案されている。工業的な方法として限外濾過膜とイオン交換クロマトグラフィーを組み合わせた特許文献6、トリプシンインヒビター抽出法とイオン交換クロマトグラフィーを組み合わせた特許文献7等がある。 At the laboratory level, various purification methods have been proposed as a fractionation method of soybean trypsin inhibitor by a combination of isoelectric point precipitation, salting out, ion exchange chromatography, gel filtration and the like. Industrial methods include Patent Document 6 combining an ultrafiltration membrane and ion exchange chromatography, and Patent Document 7 combining a trypsin inhibitor extraction method and ion exchange chromatography.
大豆β−アミラーゼの分画方法として限外濾過膜を利用した特許文献8や特許文献9、吸着剤として合成ケイ酸アルミニウムを利用した特許文献10等がある。 There are Patent Documents 8 and 9 using an ultrafiltration membrane as a fractionation method of soybean β-amylase, and Patent Document 10 using a synthetic aluminum silicate as an adsorbent.
大豆少糖類の分画方法として大豆ホエーを塩化カルシウム存在下に水酸化カルシウムで中和し生じた沈殿と共にたん白を低減化する特許文献11、大豆ホエーを加熱した後リン酸でpH3.0以下に調整し生じた沈殿と共にたん白を低減化する特許文献12等がある。 Patent Document 11 discloses a method for fractionating soybean oligosaccharides in which soybean whey is neutralized with calcium hydroxide in the presence of calcium chloride to reduce protein with precipitation, and after heating soybean whey, the pH is adjusted to 3.0 or less with phosphoric acid. Patent Document 12 and the like in which protein is reduced together with the resulting precipitate.
以上のように、大豆トリプシンインヒビター、大豆β―アミラーゼ、大豆少糖類は極めて有用な物質であり工業化へ通じる簡単な分離技術が確立できれば社会的な貢献は大きい。
一方、従来技術の大豆トリプシンインヒビターの分画法、大豆β−アミラーゼの分画法、大豆少糖類の分画方法の例を挙げてきたが、全てにおいて目的物質に特化した方法が論じられており、様々な有用成分を含む大豆ホエーを総合的に利用しようとする技術的な提案はない。
As described above, soybean trypsin inhibitor, soybean β-amylase, and soybean oligosaccharide are extremely useful substances, and if a simple separation technique leading to industrialization can be established, social contribution will be great.
On the other hand, examples of the conventional methods for fractionating soybean trypsin inhibitor, fractionating soybean β-amylase, and fractionating soybean oligosaccharides have been given. Therefore, there is no technical proposal to comprehensively use soy whey containing various useful components.
大豆ホエーに塩を添加してたん白を回収する方法は実験レベルで用いられるが多量の塩を必要とするため現実的ではなく、特定成分回収のためイオン交換クロマトグラフィーへ直接多成分が混在している大豆ホエーを供するのも現実的ではない。
限外濾過膜によりたん白を分画する方法は有効ではあるが、大豆ホエーはトリプシンインヒビターを主成分とする澱が徐々に発生して限外濾過膜の目詰まりの原因となりフラックスの低下を招くため、希薄な大豆ホエーの高濃度濃縮は困難である。
また、大豆トリプシンインヒビターと大豆β−アミラーゼは分子量の差が小さく、大豆ホエーを直接限外濾過膜で処理してそれぞれを分離して利用しようとした場合には不向きである。ましてや、BBI型トリプシンインヒビター画分、Kunitz型トリプシンインヒビター画分、β−アミラーゼ画分を希薄な大豆ホエーから、それぞれを限外濾過膜により分画することは不可能に近い。
以上に鑑み、本発明は、塩を添加する必要なく大豆ホエーを大豆トリプシンインヒビター濃縮物(好ましくはBBI型とKunitz型を主体とする画分)にそれぞれ分画し、大豆β−アミラーゼ濃縮物及び大豆少糖類濃縮物とに分画することを目的とした。
The method of recovering protein by adding salt to soy whey is used at the experimental level, but it is not practical because it requires a large amount of salt, and multiple components are directly mixed into ion exchange chromatography to recover specific components. It is also not realistic to serve soy whey that is.
Although the method of fractionating proteins with an ultrafiltration membrane is effective, soybean whey gradually causes precipitation of trypsin inhibitor as a main component and causes clogging of the ultrafiltration membrane, leading to a decrease in flux. Therefore, it is difficult to concentrate the concentrated soybean whey at a high concentration.
Also, the difference in molecular weight between soybean trypsin inhibitor and soybean β-amylase is small, and it is unsuitable when soybean whey is directly treated with an ultrafiltration membrane and separated from each other. Furthermore, it is almost impossible to fractionate the BBI-type trypsin inhibitor fraction, the Kunitz-type trypsin inhibitor fraction, and the β-amylase fraction from dilute soybean whey with an ultrafiltration membrane.
In view of the above, the present invention provides a method for fractionating soybean whey into soybean trypsin inhibitor concentrates (preferably, fractions mainly composed of BBI type and Kunitz type) without adding salt, soybean β-amylase concentrate and It was intended to be fractionated into soy oligosaccharide concentrate.
本発明者らは、分離大豆蛋白の製造工程で副産される大豆ホエーを濃縮した後pHを特定範囲に調整することにより大豆ホエーに存在するトリプシンインヒビターの活性の80%以上を沈殿として回収できる知見を得た。
次に前記工程で分離した上清に極性溶剤を加えて分別を試みたところ大豆ホエーに存在するβ−アミラーゼの活性の85%以上を沈殿として回収できる知見を得た。
また、一方、回収したトリプシンインヒビターの沈殿を特定のpHの範囲で加水し一部溶解させることでBBI型とKunitz型を主体とする画分に分画できる知見を得た。
そして、次に前記工程で分離した上清を、限外濾過膜を用いてβ−アミラーゼの濃縮を試みたところ、予め発生する沈殿をトリプシンインヒビター画分として除去しているため、フラックスの低下がほとんどなく、大豆ホエーに存在するβ−アミラーゼ力価の85%以上を濃縮液として回収できる知見を得た。
The inventors of the present invention can collect 80% or more of the activity of trypsin inhibitor present in soy whey as a precipitate by concentrating soy whey by-produced in the production process of isolated soy protein and then adjusting the pH to a specific range. Obtained knowledge.
Next, when a polar solvent was added to the supernatant separated in the above step to perform fractionation, it was found that 85% or more of the activity of β-amylase present in soybean whey could be recovered as a precipitate.
On the other hand, it has been found that by hydrolyzing and partially dissolving the recovered precipitate of trypsin inhibitor in a specific pH range, it can be fractionated into a fraction mainly composed of BBI type and Kunitz type.
Then, when the supernatant separated in the above step was attempted to concentrate β-amylase using an ultrafiltration membrane, the precipitate generated in advance was removed as a trypsin inhibitor fraction, so that the flux was reduced. There was almost no discovery that 85% or more of the β-amylase titer present in soy whey could be recovered as a concentrate.
本発明は以上の知見により完成された次の方法である。
1.次の工程を含むことを特徴とする大豆ホエー分画物の製造法。
(a)大豆ホエーを濃縮し、酸性条件下で析出する凝集沈殿物を回収する工程。
(b)得られた上清を高分子画分と低分子画分に分画する工程。
2.工程(a)で回収する凝集沈殿物が大豆トリプシンインヒビター濃縮物、工程(b)で得られる高分子画分が大豆β−アミラーゼ濃縮物であり、低分子画分が大豆少糖類である1.の製造法。
3.工程(a)の大豆ホエーの濃縮を、pH3.5〜8.5で行い、固形分が30重量%〜50重量%の範囲まで濃縮する1.の製造法。
4.工程(a)の大豆ホエーの濃縮を、品温20℃−80℃で行う1.の製造法。
5.工程(a)の凝集沈殿物の析出する工程をpH1.7〜5.2で行う1.の製造法。
6.工程(a)で得られる沈殿物へ加水しpH2.0〜4.8の範囲で部分的再溶解を行い、これを固液分画する1.の製造法。
7.固液分画で得られる液体部がBBI型トリプシンインヒビター濃縮物であり、固体部物がKunitz型トリプシンインヒビター濃縮物である6.の製造法。
8.工程(b)が、得られた上清に極性溶剤を添加し、新たな上清と析出する沈殿に分画する分画工程(b−1)若しくは得られた上清を限外濾過膜にて処理し、濃縮液と透過液に分画する工程(b−2)、又はその組み合わせたものである1.の製造法。
9.工程(b−1)で、極性溶剤がエタノールであり、極性溶剤を加えた上清中の水とエタノールの合計に対するエタノール濃度が30重量%〜85重量%、且つ温度が−5℃〜15℃の範囲で実施する8.の製造法。
10.工程(b−2)において限外濾過膜の分画分子量が5,000〜250,000の範囲である8.の製造法。
11.工程(b−2)を、温度が65℃以下、pHが4.0〜7.0、上清の固形分が50重量%以下の範囲内で行う8.の製造法。
12.工程(b−1)で得られる新たな上清、或は工程(b−2)で得られる透過液を固形分50重量%〜85重量%に濃縮する8.の製造法。
The present invention is the following method completed based on the above findings.
1. A method for producing a soy whey fraction, comprising the following steps.
(A) a step of concentrating soy whey and collecting coagulated sediment precipitated under acidic conditions;
(B) a step of fractionating the obtained supernatant into a high molecular fraction and a low molecular fraction;
2. The coagulated precipitate recovered in step (a) is a soybean trypsin inhibitor concentrate, the high molecular fraction obtained in step (b) is a soybean β-amylase concentrate, and the low molecular fraction is soybean oligosaccharide. Manufacturing method.
3. The concentration of the soy whey in the step (a) is performed at pH 3.5 to 8.5, and the solid content is concentrated to the range of 30% by weight to 50% by weight. Manufacturing method.
4. Concentrating the soy whey in step (a) at a product temperature of 20 ° C to 80 ° C. Manufacturing method.
5. The step (a) of depositing the aggregated precipitate is performed at pH 1.7 to 5.2. Manufacturing method.
6. Water is added to the precipitate obtained in the step (a) and partially redissolved in the range of pH 2.0 to 4.8, and this is subjected to solid-liquid fractionation. Manufacturing method.
7. 5. The liquid part obtained by the solid-liquid fractionation is a BBI-type trypsin inhibitor concentrate, and the solid part is a Kunitz-type trypsin inhibitor concentrate. Manufacturing method.
8. In the step (b), a polar solvent is added to the obtained supernatant, and a fractionation step (b-1) in which the supernatant is fractionated into a new supernatant and a precipitated precipitate, or the obtained supernatant is applied to an ultrafiltration membrane. (B-2) for separating the concentrate into a concentrate and a permeate, or a combination thereof. Manufacturing method.
9. In the step (b-1), the polar solvent is ethanol, the ethanol concentration is 30% by weight to 85% by weight based on the total of water and ethanol in the supernatant to which the polar solvent is added, and the temperature is -5 ° C to 15 ° C. 7. Implement within the range of Manufacturing method.
10. 7. In the step (b-2), the molecular weight cut off of the ultrafiltration membrane is in the range of 5,000 to 250,000. Manufacturing method.
11. 7. Step (b-2) is performed at a temperature of 65 ° C. or less, a pH of 4.0 to 7.0, and a solid content of the supernatant of 50% by weight or less. Manufacturing method.
12. 7. Concentrate the fresh supernatant obtained in step (b-1) or the permeate obtained in step (b-2) to a solid content of 50% to 85% by weight. Manufacturing method.
本発明により、大豆ホエーを大豆トリプシンインヒビター濃縮物、大豆β−アミラーゼ濃縮物及び/又は大豆少糖類濃縮物の3つの画分に分画することが可能となった。
更に大豆トリプシンインヒビター濃縮物よりBBI型トリプシンインヒビターとKunitz型トリプシンインヒビターの分画が可能となり、大豆β−アミラーゼをUF膜によるダイアフィルトレーションを行うと高度濃縮が可能となった。
そして、これらの分画物は大豆トリプシンインヒビター、大豆β−アミラーゼ、大豆少糖類の中間原料とすることが可能になったものである。
本発明の工程を利用すれば大豆ホエーから効率良く大豆トリプシンインヒビター、大豆β−アミラーゼ、及び大豆少糖類を一連の工程で分離することができるものであり、大豆ホエーを総合的に利用することが可能になったものである。
According to the present invention, it has become possible to fractionate soy whey into three fractions: soybean trypsin inhibitor concentrate, soybean β-amylase concentrate and / or soybean oligosaccharide concentrate.
Furthermore, fractionation of the BBI-type trypsin inhibitor and the Kunitz-type trypsin inhibitor from the soybean trypsin inhibitor concentrate became possible, and the diafiltration of soybean β-amylase with a UF membrane enabled high concentration.
These fractions can be used as intermediate raw materials for soybean trypsin inhibitor, soybean β-amylase, and soybean oligosaccharides.
By using the process of the present invention, soybean trypsin inhibitor, soybean β-amylase, and soybean oligosaccharide can be efficiently separated from soybean whey in a series of steps, and soybean whey can be comprehensively used. It is now possible.
工程(a):大豆ホエーを濃縮し、酸性条件下で析出する凝集沈殿物を回収する工程。
本発明で用いる大豆ホエーは、大豆トリプシンインヒビターや大豆β−アミラーゼが活性を有している大豆ホエーを用いる。すなわち、それが生じる過程で大豆トリプシンインヒビターや大豆β−アミラーゼが失活するほどの熱履歴を受けていないものがよい。
大豆ホエーは、大豆から分離大豆蛋白、あるいは濃縮大豆蛋白を製造する過程で副生する。熱披瀝の少ない大豆ホエーは、例えば、低変性脱脂大豆を水によって中性付近で抽出後オカラ成分を除去した脱脂豆乳を、等電点付近(例えばpH4.5付近)で大豆蛋白質を凝集沈殿させて除いた溶液として得ることができる。
Step (a): a step of concentrating soy whey and collecting coagulated sediment precipitated under acidic conditions.
As the soybean whey used in the present invention, a soybean whey in which soybean trypsin inhibitor or soybean β-amylase has activity is used. That is, it is preferable that the soybean trypsin inhibitor and the soybean β-amylase do not have such a heat history as to deactivate them in the process of occurrence.
Soy whey is a by-product in the process of producing isolated soy protein or soy protein concentrate from soy. Soy whey with a small amount of heat can be obtained by, for example, extracting low-denatured defatted soybeans near neutral with water and removing the okara component, and coagulating and precipitating soybean proteins near the isoelectric point (for example, near pH 4.5). It can be obtained as a solution that has been removed.
工業的に分離大豆蛋白を製造する過程で副産される大豆ホエーは、多量に品質の安定した原料として利用することができるので好都合であり、通常このホエーは典型的には、固形分が約3%程度で、その固形分組成(以下において「dry%」ともいう)は粗蛋白質20%、灰分20%、糖質60%程度で構成されており、脱脂大豆からの水抽出倍率が変わっても大豆ホエーの固形分組成の変動は殆ど無い傾向にある。そして、固形分が3%程度であれば、大豆トリプシンインヒビターが活性として5unit/ml程度、大豆β−アミラーゼが活性として100unit/ml程度含まれており、本発明に好適に用いることができる。 Soy whey, which is a by-product of industrially producing isolated soy protein, is advantageous because it can be used in large quantities as a stable raw material, and this whey typically has a solids content of about About 3%, its solid content composition (hereinafter also referred to as “dry%”) is composed of about 20% crude protein, about 20% ash, and about 60% sugar, and the water extraction ratio from defatted soybeans changes. There is also a tendency that the solid content composition of soy whey hardly fluctuates. When the solid content is about 3%, the activity of soybean trypsin inhibitor is about 5 unit / ml, and the activity of soybean β-amylase is about 100 unit / ml, which can be suitably used in the present invention.
本明細書における大豆トリプシンインヒビター活性の測定法はA.O.C.S.の公定法に基づいたBAPA法を用い、大豆β−アミラーゼ活性の測定は基質として馬鈴薯澱粉を用いホエー(アミラーゼ溶液)を反応させ生成した還元糖をSomogi−Nelson法で定量する方法で行い、40℃で10分間に1mgのグルコースに相当する糖を生成するのに要する酵素量を1unitとした。 The method for measuring soybean trypsin inhibitor activity herein is described in O. C. S. The measurement of the soybean β-amylase activity was carried out by using the potato starch as a substrate and reacting with whey (amylase solution) to determine the reducing sugar produced by the Somogi-Nelson method. The amount of enzyme required to produce a sugar equivalent to 1 mg of glucose in 10 minutes at 10 ° C. was defined as 1 unit.
工程(a)における大豆ホエーの濃縮は、pH3.5〜8.5好ましくはpH4.5〜7.0、溶液温度(品温)は20℃〜80℃好ましくは20℃〜65℃で行い、固形分を30重量%〜50重量%、好ましくは35重量%〜45重量%の範囲まで濃縮することが適当である。 The concentration of soy whey in the step (a) is performed at pH 3.5 to 8.5, preferably pH 4.5 to 7.0, and at a solution temperature (product temperature) of 20 ° C to 80 ° C, preferably 20 ° C to 65 ° C, It is appropriate to concentrate the solids to a range of 30% to 50%, preferably 35% to 45% by weight.
pH3.5未満ではβ−アミラーゼが不安定になりやすく、pH8.5を越えるとトリプシンインヒビターが不安定になりやすい。又、溶液温度が20℃未満となると減圧装置では機械的な限界のあることがあり、65℃を越えるとβーアミラーゼの活性が低下する傾向にあるが、70℃で60%の活性を残存する。すなわち上記pH、温度と濃度の範囲外では、大豆トリプシンインヒビター活性の回収率が低下する傾向となり、また工程(b)で回収するβ−アミラーゼの活性も低下する傾向となる。 If the pH is less than 3.5, β-amylase tends to be unstable, and if the pH exceeds 8.5, the trypsin inhibitor tends to be unstable. If the solution temperature is lower than 20 ° C., there may be a mechanical limit in the decompression device, and if it exceeds 65 ° C., the activity of β-amylase tends to decrease, but 60% activity remains at 70 ° C. . That is, when the pH, temperature and concentration are out of the above ranges, the recovery of soybean trypsin inhibitor activity tends to decrease, and the activity of β-amylase recovered in step (b) also tends to decrease.
なお、トリプシンインヒビターのKunitz型はpH4.5の等電点を、BBI型はpH4.2の等電点を、β−アミラーゼはpH5.5の等電点を有するが、大豆ホエーをそのまま夫々の等電点でpHを調整して等電点沈殿を試みても目的物質の凝集沈殿は生じない、或いは極めて微量である。 The Kunitz type trypsin inhibitor has an isoelectric point of pH 4.5, the BBI type has an isoelectric point of pH 4.2, and the β-amylase has an isoelectric point of pH 5.5, but soy whey is used as it is. Even if the isoelectric point precipitation is attempted by adjusting the pH at the isoelectric point, coagulation and precipitation of the target substance do not occur, or the amount is extremely small.
固形分は上記範囲に調整することにより、ホエー中の灰分濃度が相対的に高まり塩析と同様な効果が得られ、トリプシンインヒビター画分を特異的に分画することができる。
従来は大豆ホエーより蛋白質を回収する方法として塩析法があるが、例えば大豆トリプシンインヒビターを塩によって沈殿させようとした場合、固形分が3%の大豆ホエーに対し14%もの大量の塩の添加が必要となるため現実的ではなかった。
By adjusting the solid content to the above range, the ash concentration in the whey is relatively increased, and the same effect as salting out is obtained, so that the trypsin inhibitor fraction can be specifically fractionated.
Conventionally, there is a salting-out method as a method for recovering protein from soybean whey. For example, when an attempt is made to precipitate soybean trypsin inhibitor with salt, a large amount of salt as much as 14% is added to soybean whey having a solid content of 3%. It was not realistic because it was necessary.
濃縮手段は公知の手段を利用できるが、減圧下で濃縮すると温度上昇を防ぎ効率良く濃縮できる。 A known means can be used as the concentrating means. Concentration under reduced pressure can prevent the temperature from rising and can be concentrated efficiently.
上記のように濃縮した大豆ホエーは、酸性条件下、好ましくはpH1.7〜5.2、より好ましくは2.7〜4.8の範囲に調整することにより析出する凝集沈殿物と上清を分画する。この凝集沈殿物は大豆トリプシンインヒビターが濃縮されている。
pH1.7〜5.2の範囲外であっても、β−アミラーゼの低pHによる失活に十分注意して温度を20℃以下で行えば可能である。
The soy whey concentrated as described above is subjected to acidic conditions, preferably to a pH of 1.7 to 5.2, and more preferably to a pH in the range of 2.7 to 4.8. Fractionate. This aggregate precipitate is enriched in soybean trypsin inhibitor.
Even when the pH is out of the range of 1.7 to 5.2, the temperature can be reduced to 20 ° C. or less with sufficient care for the inactivation of β-amylase due to low pH.
このようにして得る凝集沈殿物は大豆トリプシンインヒビター濃縮物であり、加水しpH2.0〜4.8好ましくはpH3.0〜pH4.4の範囲で一部溶解を行い更に固液分画することができる。この固液分画により得られる液体部がBBI型トリプシンインヒビター濃縮物、固体部物がKunitz型トリプシンインヒビター濃縮物とすることができる。これは加水により塩濃度が、濃縮ホエーのそれより低くなるため、BBI型トリプシンインヒビターは再溶解してくるのに対してKunitz型トリプシンインヒビターは溶解せず、両者を上清と沈殿とに分画することができるのである。 The coagulated precipitate thus obtained is a soybean trypsin inhibitor concentrate, which is partially dissolved in a range of pH 2.0 to 4.8, preferably pH 3.0 to pH 4.4, and further subjected to solid-liquid fractionation. Can be. The liquid part obtained by the solid-liquid fractionation can be a BBI-type trypsin inhibitor concentrate, and the solid part can be a Kunitz-type trypsin inhibitor concentrate. Since the salt concentration becomes lower than that of concentrated whey due to the addition of water, the BBI-type trypsin inhibitor re-dissolves, whereas the Kunitz-type trypsin inhibitor does not dissolve, and both are separated into a supernatant and a precipitate. You can do it.
加水の程度は凝集沈殿物(含水物)に対し1.5倍以上、好ましくは2から10倍、もっとも好ましくは2.5から4倍が好ましい。 The degree of water addition is 1.5 times or more, preferably 2 to 10 times, and most preferably 2.5 to 4 times the amount of the aggregated precipitate (hydrated product).
この分画(固液分離)の手段としては公知の固液分離装置、例えば遠心分離装置、膜分離装置などを利用することができる。 As a means for this fractionation (solid-liquid separation), a known solid-liquid separator, for example, a centrifugal separator, a membrane separator or the like can be used.
工程(b):工程(a)で得られた上清を高分子画分と低分子画分に分画する工程。
この分画は、工程(a)で得られた上清に極性溶剤を添加して析出する凝集物と新たな上清に分画する工程(b−1)、もしくは、上清を限外濾過膜にて処理し、濃縮液と透過液に分画する工程(b−2)、又はその組み合わせにより行うことができる。
Step (b): a step of fractionating the supernatant obtained in step (a) into a high molecular fraction and a low molecular fraction.
This fractionation is carried out by adding a polar solvent to the supernatant obtained in the step (a), and then separating the aggregate into a new supernatant with the aggregated substance (b-1), or ultrafiltration of the supernatant It can be performed by the step (b-2) of treating with a membrane and fractionating into a concentrated solution and a permeated solution, or a combination thereof.
先ず工程(b−1)に関して説明する。
工程(a)で得られた上清に極性溶剤を添加して析出する凝集物と上清とに分画する。この凝集物は大豆β−アミラーゼ濃縮物として有用であり、新たに生じた上清はオリゴ糖の原料として供することができる。この新たに生じた上清は、好ましくは濃縮して固形分50%以上にすることが好ましい。
First, the step (b-1) will be described.
A polar solvent is added to the supernatant obtained in the step (a) to fractionate into aggregates and supernatant which precipitate. This aggregate is useful as a soybean β-amylase concentrate, and the newly generated supernatant can be used as a raw material for oligosaccharides. The newly generated supernatant is preferably concentrated to a solid content of 50% or more.
ここに用いる極性溶剤は食用途にはエタノールが好ましく、エタノールを加えた上清中の水とエタノールの合計に対するエタノールの濃度を30重量%〜85重量%好ましくは50重量%〜80重量%に調整し、−5℃〜15℃好ましくは0℃〜10℃の範囲に置くことにより行われるのがよい。
上記エタノール濃度が低いとβ−アミラーゼは低濃度のエタノール溶液には溶解し、高いと糖質も析出する。殺菌効果の観点では上記エタノール濃度は65重量%〜75重量%で行うのがより適当である。
上記温度よりも高いとβ−アミラーゼ画分の活性低下がすすみやすい。
The polar solvent used here is preferably ethanol for food use, and the concentration of ethanol is adjusted to 30% to 85% by weight, preferably 50% to 80% by weight based on the sum of water and ethanol in the supernatant to which ethanol has been added. However, the temperature is preferably set in a range of -5C to 15C, preferably 0C to 10C.
If the ethanol concentration is low, β-amylase is dissolved in a low-concentration ethanol solution, and if it is high, saccharides are also precipitated. From the viewpoint of the bactericidal effect, it is more appropriate to carry out the ethanol concentration at 65% by weight to 75% by weight.
If the temperature is higher than the above temperature, the activity of the β-amylase fraction tends to decrease.
なお、工程(a)で得られる上清は固形分が概ね30重量%〜50重量%と高いため、母液の少糖類が工程(b−1)で沈殿に多く分配されるのを避けるために、工程(a)の上清を適宜希釈してエタノール沈殿の際少糖類を上清へ溶解させ回収率を上げることも可能である。 Since the supernatant obtained in the step (a) has a high solid content of about 30% to 50% by weight, the oligosaccharides in the mother liquor should be distributed in the step (b-1) in a large amount to the precipitate. Alternatively, the supernatant in step (a) can be appropriately diluted to dissolve oligosaccharides in the supernatant during ethanol precipitation to increase the recovery rate.
工程(b−1)で得られる新たな上清は少糖類画分を50重量%以上に濃縮することにより、保管や輸送に備えた減容化と、腐敗防止をしておくのが好ましい。また少糖類の原料として流動性がありかつ腐敗の極めて少ない濃度範囲が好ましく、通常50重量%〜85重量%、好ましくは55重量%〜80重量%の固形分とすることが適当である。
この上清濃縮物から脱塩などの精製処理を行って精製少糖類とすることができる。
The fresh supernatant obtained in the step (b-1) is preferably prepared by concentrating the oligosaccharide fraction to 50% by weight or more to reduce the volume for storage and transportation and to prevent spoilage. The raw material for the oligosaccharide preferably has a concentration range that is fluid and has a very low level of spoilage. The solid content is usually 50% to 85% by weight, preferably 55% to 80% by weight.
A purified oligosaccharide can be obtained by subjecting the supernatant concentrate to a purification treatment such as desalting.
次に本発明の工程(b−2)に関して説明する。
工程(a)で得られた上清を、限外濾過膜を用いて濃縮液と透過液に分画する。
この濃縮液は大豆β−アミラーゼ濃縮物として有用であり、透過液は大豆少糖類の原料として供することができる。
Next, the step (b-2) of the present invention will be described.
The supernatant obtained in the step (a) is fractionated into a concentrate and a permeate using an ultrafiltration membrane.
This concentrate is useful as a soybean β-amylase concentrate, and the permeate can be used as a raw material for soybean oligosaccharides.
ここで行う限外濾過は分画分子量5,000〜250,000、好ましくは分画分子量10,000〜100,000の範囲の限外濾過膜を使用することが好ましい。
工程(a)で得られた上清は限外濾過工程へ希釈せずに用いることができるが、濃縮を進めて行くと濃縮液の固形分が高まりフラックス(透過流束)が低下してくるため、濃縮液の固形分を50重量%以下、好ましくは45重量%以下に維持するため適宜加水して限外濾過を行なうダイアフィルトレーション方式を採用できる。
限外濾過膜へ通液する溶液の温度が高い程フラックスは高くなるがβ−アミラーゼが失活しない程度の高温である65℃、好ましくは55℃以下で行うのが望ましく、このときのpHもβ−アミラーゼが安定なpH4.0〜pH7.0、好ましくはpH4.5〜pH6.0の範囲で行うのが望ましく、β−アミラーゼはpH6.0以上でも安定であるがpH6.0以上では酸性側で溶解しているフィチン酸の不溶化に伴う澱が発生するため好ましくない。
In the ultrafiltration performed here, it is preferable to use an ultrafiltration membrane having a cut-off molecular weight of 5,000 to 250,000, preferably a cut-off molecular weight of 10,000 to 100,000.
The supernatant obtained in step (a) can be used without dilution in the ultrafiltration step, but as the concentration proceeds, the solid content of the concentrate increases and the flux (permeate flux) decreases. Therefore, a diafiltration method in which water is appropriately added and ultrafiltration is performed to maintain the solid content of the concentrated liquid at 50% by weight or less, preferably 45% by weight or less can be adopted.
The higher the temperature of the solution passed through the ultrafiltration membrane, the higher the flux, but the temperature is high enough to not deactivate β-amylase, 65 ° C., preferably at 55 ° C. or lower, and the pH at this time is also preferable. β-Amylase is preferably carried out in the range of pH 4.0 to pH 7.0, preferably pH 4.5 to pH 6.0, and β-amylase is stable even at pH 6.0 or more, but is acidic at pH 6.0 or more. It is not preferable because a precipitate is generated due to insolubilization of phytic acid dissolved on the side.
工程(b−2)で得られる透過液は少糖類を50重量%以上含有しているが灰分を20重量%以上含むため脱塩を施し食品素材として提供することができる。 The permeate obtained in step (b-2) contains 50% by weight or more of oligosaccharides, but contains 20% by weight or more of ash, so that it can be desalted and provided as a food material.
他方、工程(b−2)で得られる透過液の少糖類画分を50重量%以上に濃縮することにより、保管や輸送に備えた減容化と腐敗防止しておくのが好ましい。
例えば、この透過液は大豆少糖類の原料として流動性がありかつ腐敗の極めて少ない濃度範囲が好ましく、通常50重量%〜85重量%、好ましくは55重量%〜80重量%の固形分とすることが適当である。
この透過液濃縮物から脱塩などの精製処理を行って精製少糖類とすることができる。
On the other hand, it is preferable that the oligosaccharide fraction of the permeate obtained in the step (b-2) is concentrated to 50% by weight or more to reduce the volume for storage and transportation and to prevent spoilage.
For example, the permeated liquid is preferably a flowable soybean oligosaccharide raw material and has a very low concentration of spoilage, and usually has a solid content of 50% to 85% by weight, preferably 55% to 80% by weight. Is appropriate.
A purified oligosaccharide can be obtained by subjecting the permeate concentrate to a purification treatment such as desalting.
以上の工程により大豆ホエーから効率よく大豆トリプシンインヒビター、βアミラーゼ及び大豆オリゴ糖を一連の工程で分離することができる。 Through the above steps, soybean trypsin inhibitor, β-amylase and soybean oligosaccharide can be efficiently separated from soybean whey in a series of steps.
以下に実施例を示し本発明の実施態様を説明する。 Examples will be described below to describe embodiments of the present invention.
〔実施例1〕
(a)工程:
分離大豆蛋白製造工程で得られた大豆ホエー70kg(固形分2.9重量%、pH4.6、総トリプシンインヒビター活性357,000unit、総β−アミラーゼ活性9,120,000unit、粗蛋白質含有量20.1dry%、灰分19.7dry%、糖質60.2dry%)を大川原製作所製エバポール(CEP−L型)にて大豆ホエーの蒸発温度50℃(加熱温度80℃)の条件で減圧濃縮して固形分41.3重量%、総トリプシンインヒビター活性333,000unit、総β−アミラーゼ活性8,530,000unitの濃縮ホエーを4,600g(付着等で約300gロス)得た。
濃縮ホエーを15℃に冷却してリン酸によりpH4.0に調整して3時間静置した後遠心分離(1,500G×10分)を行い上清と沈殿に分けた。
分離した上清((a)工程上清)は4,297g得られ固形分は40.0重量%、総トリプシンンインヒビター活性40,000unit、総β−アミラーゼ活性は8,200,000unitとなり、沈殿((a)工程沈殿)は324g得られ、固形分は55.0重量%、総トリプシンインヒビター活性305,000unit、総βアミラーゼ活性700,000unitであった。
従って両酵素活性の分配率は、トリプシンインヒビターは上清に11.6%、沈殿に88.4%、β−アミラーゼは上清に92.1%、沈殿に7.9%の割合であった。
[Example 1]
(A) Step:
70 kg of soy whey (solid content: 2.9% by weight, pH 4.6, total trypsin inhibitor activity: 357,000 units, total β-amylase activity: 9,120,000 units, crude protein content: 20 kg) 1 dry%, ash content 19.7 dry%, carbohydrate 60.2 dry%) were concentrated under reduced pressure at 50 ° C. (heating temperature 80 ° C.) of soybean whey using an evapor (CEP-L type) manufactured by Okawara Seisakusho and solidified. 4,600 g of concentrated whey having a total trypsin inhibitor activity of 333,000 units and a total β-amylase activity of 8,530,000 units were obtained in an amount of 41.3% by weight (about 300 g loss due to adhesion or the like).
The concentrated whey was cooled to 15 ° C., adjusted to pH 4.0 with phosphoric acid, allowed to stand for 3 hours, centrifuged (1,500 G × 10 minutes), and separated into a supernatant and a precipitate.
4,297 g of the separated supernatant (step (a) supernatant) was obtained, the solid content was 40.0% by weight, the total trypsin inhibitor activity was 40,000 units, the total β-amylase activity was 8,200,000 units, and the 324 g of ((a) step precipitation) was obtained, the solid content was 55.0% by weight, the total trypsin inhibitor activity was 305,000 units, and the total β-amylase activity was 700,000 units.
Therefore, the distribution ratio of both enzyme activities was 11.6% for the trypsin inhibitor in the supernatant, 88.4% for the precipitate, 92.1% for β-amylase in the supernatant, and 7.9% for the precipitate. .
(b−1)工程:
(a)工程上清4,200gを8℃に冷却し1級エタノール(純度99.5%)を4,000g(エタノール濃度は61.3重量%)、プロペラ攪拌を行いながら静かに添加すると柔らかい餅のような凝集物を形成しそのまま分離することも可能であったが、15分後に遠心分離(1,500G×10分)して上清と沈殿に分けた。
分離した沈殿((b−1)工程沈殿)は2,028g得られ、固形分55.2重量%、総β−アミラーゼ活性は7,970,000unit、総トリプシンインヒビター活性は9,800unitであった。
上清はロータリーエバポレーターで単蒸留(加熱温度65℃)を行い、エタノールの除去を行い固形分29.8重量%の溶液((b−1)工程上清)を2,530g得た。
(B-1) Step:
(A) Process The supernatant of 4,200 g was cooled to 8 ° C. and 4,000 g of primary ethanol (purity: 99.5%) (ethanol concentration: 61.3% by weight) was softly added with gentle stirring with propeller stirring. Although it was possible to form aggregates like rice cakes and separate them as they were, they were separated into supernatant and precipitate by centrifugation (1,500 G × 10 minutes) after 15 minutes.
2,028 g of the separated precipitate (step (b-1) precipitate) was obtained, the solid content was 55.2% by weight, the total β-amylase activity was 7,970,000 units, and the total trypsin inhibitor activity was 9,800 units. .
The supernatant was subjected to simple distillation (heating temperature: 65 ° C.) using a rotary evaporator, and ethanol was removed to obtain 2,530 g of a solution having a solid content of 29.8% by weight ((b-1) process supernatant).
(b−1)工程沈殿は3倍量程度の水を加えホモミキサー(3,000rpm)で攪拌溶解させるとほぼ完全に溶解するため、本沈殿を原料にβ−アミラーゼの高度精製が可能である。
(b−1)工程上清2,500gをさらに薄膜式フラッシュエバポレーター(東京理科製MF−10A型)にて蒸発温度60℃、加熱温度90℃で減圧濃縮し固形分60.1重量%の濃縮物を1,120g得た。
この濃縮物は固形分重量あたり糖質を76.3重量%含み、その内の32.0%が3糖類以上の少糖類であった。
(B-1) Step The precipitation can be almost completely dissolved by adding about 3 times the amount of water and stirring and dissolving with a homomixer (3,000 rpm), so that the β-amylase can be highly purified using this precipitation as a raw material. .
(B-1) Process The supernatant (2,500 g) was further concentrated under reduced pressure at a vaporization temperature of 60 ° C. and a heating temperature of 90 ° C. using a thin-film flash evaporator (MF-10A manufactured by Tokyo Rika) to concentrate 60.1 wt% solids. The product was obtained in an amount of 1,120 g.
This concentrate contained 76.3% by weight of saccharide per solid weight, of which 32.0% was oligosaccharides of 3 or more saccharides.
〔実施例2〕
実施例1と同様の大豆ホエーを用い、同様の方法で減圧濃縮して固形分重量51.5%まで濃縮した濃縮ホエー300g(総トリプシンインヒビター活性26,000unit、総β−アミラーゼ活性698,000unit)を15℃に冷却しpH4.0に調整し、3時間静置した後遠心分離(1,500G×10分)により上清と沈殿に分けた。
[Example 2]
The same soybean whey as in Example 1 was concentrated under reduced pressure in the same manner as described in Example 1 and concentrated to a solid content of 51.5%. 300 g of concentrated whey (total trypsin inhibitor activity 26,000 units, total β-amylase activity 698,000 units). Was cooled to 15 ° C., adjusted to pH 4.0, allowed to stand for 3 hours, and then separated into a supernatant and a precipitate by centrifugation (1,500 G × 10 minutes).
分離した上清は271g得られ固形分50.9重量%、総トリプシンインヒビター活性15,000unit、総β−アミラーゼ活性611,000unitとなり、沈殿は34g得られ固形分48.8重量%、総トリプシンインヒビター活性13,000unit、総β−アミラーゼ活性101,000unitであった。
固形分51.5重量%まで濃縮するとトリプシンインヒビターの選択的な沈殿の程度が実施例1と比べ劣った。
271 g of the separated supernatant was obtained, having a solid content of 50.9% by weight, total trypsin inhibitor activity of 15,000 units and total β-amylase activity of 611,000 units, and 34 g of precipitate were obtained, 48.8% by weight of solid content, and total trypsin inhibitor. The activity was 13,000 units, and the total β-amylase activity was 101,000 units.
When concentrated to a solid content of 51.5% by weight, the degree of selective precipitation of the trypsin inhibitor was inferior to that of Example 1.
〔実施例3〕
実施例1と同様の大豆ホエーを用い、同様の方法で減圧濃縮して、固形分28.7重量%まで濃縮した濃縮ホエー300g(総トリプシンインヒビター活性15,000unit、総β−アミラーゼ活性361,000unit)を15℃に冷却しpH4.0に調整し、3時間静置した後遠心分離(1,500G×10分)により上清と沈殿に分けた。
分離した上清は286g得られ固形分は重量27.9%、総トリプシンインヒビター活性は7,300unit、総β−アミラーゼ活性は320,000unitとなり、沈殿は18g得られ固形分35.2重量%、総トリプシンインヒビター活性8,100unit、総β−アミラーゼ活性54,000unitであった。
固形分28.7重量%の濃度ではトリプシンインヒビターの沈殿の程度は実施例1と比べ不十分であった。
[Example 3]
The same soybean whey as in Example 1 was concentrated under reduced pressure in the same manner as described in Example 1, and 300 g of concentrated whey concentrated to a solid content of 28.7% by weight (total trypsin inhibitor activity 15,000 units, total β-amylase activity 361,000 units) ) Was cooled to 15 ° C., adjusted to pH 4.0, allowed to stand for 3 hours, and then separated into a supernatant and a precipitate by centrifugation (1,500 G × 10 minutes).
286 g of the separated supernatant was obtained, the solid content was 27.9% by weight, the total trypsin inhibitor activity was 7,300 units, the total β-amylase activity was 320,000 units, the precipitate was 18 g, and the solid content was 35.2% by weight. Total trypsin inhibitor activity was 8,100 units and total β-amylase activity was 54,000 units.
At a concentration of 28.7% by weight solids, the extent of trypsin inhibitor precipitation was insufficient compared to Example 1.
〔実施例4〕
実施例1と同様の方法で(a)工程を実施し、固形分42.3重量%の(a)工程上清を300g(総β−アミラーゼ活性625,000unit)に室温(25℃)でエタノール270gを攪拌し静かに添加(アルコール濃度60.6%)した後遠心分離(1,500G×10分)により上清と沈殿に分けた。沈殿は145g得られ、固形分は56.4%、総β−アミラーゼ活性は313,000unitであった。
実施例1の(b−1)工程沈殿の(a)工程上清からの固形物収率が66.6%であったのに比べ実施例4の固形物収率は64.4%とほぼ同等であった。
しかし、実施例1のβ−アミラーゼ活性の回収率は97%とほぼ全量回収できたのに対して実施例4では50%となり、温度による失活があったと考えられる。
[Example 4]
Step (a) was carried out in the same manner as in Example 1, and 300 g (total β-amylase activity: 625,000 units) of the supernatant of the step (a) having a solid content of 42.3% by weight was added to ethanol at room temperature (25 ° C.). 270 g was stirred and gently added (alcohol concentration: 60.6%), and then separated into a supernatant and a precipitate by centrifugation (1,500 G × 10 minutes). 145 g of a precipitate was obtained, the solid content was 56.4%, and the total β-amylase activity was 313,000 units.
The yield of solids from the supernatant of the step (a) in the precipitation of the step (b-1) of Example 1 was 66.6%, whereas the yield of solids from Example 4 was 64.4%, which was almost 64.4%. It was equivalent.
However, the recovery rate of β-amylase activity in Example 1 was 97%, which was almost the entire amount, whereas that in Example 4 was 50%, and it is considered that there was inactivation due to temperature.
〔応用例1〕
実施例1と同様に調製した(a)工程沈殿100g(固形分56.1%、総トリプシンインヒビター活性95,000unit)へ水500gを加え、ホモミキサー(3,000rpm×15分)にて攪拌溶解させた後、遠心分離(1,500G×10分)にて上清と沈殿に分けた結果、上清は580g(固形分7.9%、総トリプシンインヒビター活性93,000unit)得られ、沈殿は20g(固形分51.5%、総トリプシンインヒビター活性3,500unit)得られた。
本結果より、(a)工程で凝集沈殿したトリプシンインヒビターは加水することで再溶解するため、(a)工程沈殿からトリプシンインヒビターの高度精製が可能である。
[Application Example 1]
Step (a) prepared in the same manner as in Example 1 To 100 g of precipitate (solid content: 56.1%, total trypsin inhibitor activity: 95,000 units), 500 g of water was added, and the mixture was stirred and dissolved with a homomixer (3,000 rpm × 15 minutes). After centrifugation (1,500 G × 10 minutes), the supernatant was separated into a precipitate, and as a result, 580 g (solid content: 7.9%, total trypsin inhibitor activity: 93,000 units) of the supernatant was obtained. 20 g (solid content 51.5%, total trypsin inhibitor activity 3,500 units) were obtained.
From these results, the trypsin inhibitor aggregated and precipitated in the step (a) is redissolved by adding water, so that the trypsin inhibitor can be highly purified from the precipitation in the step (a).
〔実施例5〕
(a)工程:
大豆ホエー200kg(乾物固形分3.0重量%、pH4.6、総トリプシンインヒビター力価960,000unit、総β−アミラーゼ力価22,400,000unit、粗たん白含有量20.3dry%、灰分20.1dry%、糖質59.6dry%)を大川原製作所製エバポール(CEP−L型)にて大豆ホエーの蒸発温度50℃、加熱温度80℃の条件で減圧濃縮して乾物固形分42.2重量%、総トリプシンインヒビター力価930,000unit(66unit/g)、総β−アミラーゼ力価22,010,000unit(1572unit/g)の濃縮ホエーを14,000g(付着等で約200gロス)得た。
濃縮ホエーを15℃に冷却してリン酸によりpH4.0に調整し10℃にて3時間静置した後遠心分離(1,500G×10分)を行い上清と沈殿に分けた。
分離した上清((a)工程上清)は12,850g得られ乾物固形分は重量41.3%、総トリプシンンインヒビター力価110,500unit(8.6unit/g)、総β−アミラーゼ活性は20,500,000unit(1,595unit/g)となり、沈殿((a)工程沈殿)は1,150g得られ、乾物固形分は52.3重量%、総トリプシンインヒビター活性820,000unit(713unit/g)、総βアミラーゼ力価1,530,000unit(1330unit/g)であった。
従って両酵素活性の分配率は、トリプシンインヒビターは上清に11.9%、沈殿に88.1%、β−アミラーゼは上清に93.1%、沈殿に6.9%の割合であった。
[Example 5]
(A) Step:
200 kg of soy whey (dry matter solid content 3.0% by weight, pH 4.6, total trypsin inhibitor titer 960,000 units, total β-amylase titer 22,400,000 units, crude protein content 20.3 dry%, ash 20 .1dry%, carbohydrate 59.6dry%) was concentrated under reduced pressure at a temperature of 50 ° C. and a heating temperature of 80 ° C. of soybean whey using an evapor (CEP-L type) manufactured by Okawara Seisakusho Co., Ltd., and 42.2 wt. Thus, 14,000 g of concentrated whey having a total trypsin inhibitor titer of 930,000 units (66 units / g) and a total β-amylase titer of 22,010,000 units (1572 units / g) were obtained (about 200 g loss due to adhesion or the like).
The concentrated whey was cooled to 15 ° C., adjusted to pH 4.0 with phosphoric acid, allowed to stand at 10 ° C. for 3 hours, centrifuged (1,500 G × 10 minutes), and separated into a supernatant and a precipitate.
The separated supernatant (the supernatant in the step (a)) was obtained in an amount of 12,850 g, the dry matter solid content was 41.3%, the total trypsin inhibitor titer was 110,500 units (8.6 units / g), the total β-amylase activity. Is 20,500,000 units (1,595 units / g), 1,150 g of precipitate (step (a) precipitation) is obtained, the dry matter solid content is 52.3% by weight, the total trypsin inhibitor activity is 820,000 units (713 units / g). g), the total β-amylase titer was 1,530,000 units (1330 units / g).
Therefore, the distribution ratio of both enzyme activities was 11.9% for the trypsin inhibitor in the supernatant, 88.1% for the precipitate, 93.1% for β-amylase in the supernatant, and 6.9% for the precipitate. .
(a)工程沈殿の再溶解:
(a)工程沈殿1,000gへ水2,000gを加え沈殿させたpH4.0を維持しながらホモミキサーを用いて(4,000rpm×15分)間攪拌し溶解させた後遠心分離(5,000G×10分)して上清と沈殿に分けた。
上清は2,767g得られ固形分14.2%、総トリプシンインヒビター力価595,000unit(215unit/g)で、沈殿は233g得られ固形分55.8%総トリプシンインヒビター力価221,000unit(948unit/g)となった。
上清と沈殿のたん白をSDS電気泳動で分析した。
(A) Redissolving the process precipitate:
(A) Step While maintaining the pH of 4.0 g by adding 2,000 g of water to 1,000 g of the precipitate, the mixture was stirred and dissolved using a homomixer (4,000 rpm × 15 minutes) and then centrifuged (5, 5). 000 G x 10 minutes) to separate into a supernatant and a precipitate.
2,767 g of the supernatant was obtained, having a solid content of 14.2% and a total trypsin inhibitor titer of 595,000 units (215 units / g), and 233 g of precipitate was obtained, having a solid content of 55.8% and a total trypsin inhibitor titer of 221,000 units ( 948 units / g).
The supernatant and the protein of the precipitate were analyzed by SDS electrophoresis.
(a)工程上清、(a)工程沈殿、レクチン、(a)工程沈殿再溶解沈殿、(a)工程沈殿再溶解上清のたん白をSDS電気泳動パターンにより図1に示す。
図1より、分子量42kDa以下のたん白の挙動を示しているが、レーン(1)にはトリプシンインヒビターがほとんど存在せず(BBI型が若干残存する)レーン(2)へ分配されている。
レーン(2)を加水再溶解したレーン(3)の沈殿側にはKunitz型トリプシンインヒビターが、レーン(4)の上清側にはBBI型トリプシンインヒビターがそれぞれ分配された。
以上のように(a)工程沈殿から溶解性の違いによりKunitz型トリプシンインヒビターとBBI型トリプシンインヒビターが粗分画できることが分かった。
The protein of the (a) step supernatant, the (a) step precipitate, the lectin, the (a) step precipitate re-dissolved precipitate, and the protein of the (a) step precipitate re-dissolved supernatant are shown in FIG. 1 by the SDS electrophoresis pattern.
FIG. 1 shows the behavior of a protein having a molecular weight of 42 kDa or less, but the protein is distributed to lane (2), in which almost no trypsin inhibitor is present in lane (1) (some BBI type remains).
Kunitz-type trypsin inhibitor was distributed on the precipitation side of lane (3) in which lane (2) was hydrolyzed and redissolved, and BBI-type trypsin inhibitor was distributed on the supernatant side of lane (4).
As described above, it was found from the precipitation in the step (a) that the Kunitz-type trypsin inhibitor and the BBI-type trypsin inhibitor could be roughly fractionated due to the difference in solubility.
(b−2)工程:
(a)工程上清の濃度を40Brix(固形分は約38%、β−アミラーゼ力価1,470U/g)に加水して調整、ダイセンメンブラン(株)製限外濾過膜(分画分子量30,000、膜面積1.4m2、中空糸モジュール)を用い、濃縮側の濃度を40Brixに維持するため適宜加水を行いながら流量1m3/hr、背圧3kg/cm2、液温45℃、pH4.5の条件下でβ−アミラーゼ力価が10倍程度濃縮されるまで運転を行った結果を表1に示す。
(B-2) Step:
(A) Step The concentration of the supernatant was adjusted by adding water to 40 Brix (solid content: about 38%, β-amylase titer: 1,470 U / g), and an ultrafiltration membrane (molecular weight cut off: 30) manufactured by Daisen Membrane Co., Ltd. 2,000, a membrane area of 1.4 m 2, a hollow fiber module), a flow rate of 1 m 3 / hr, a back pressure of 3 kg / cm 2, a liquid temperature of 45 ° C., and a pH of 4.5 while appropriately adding water to maintain the concentration on the concentration side at 40 Brix. Table 1 shows the results of the operation under the conditions described above until the β-amylase titer was concentrated about 10-fold.
(表1)
(Table 1)
(a)工程上清を40Brixに調整し12.8kgを処理した。
UF膜濃縮液の濃度を40Brix程度に維持するため、60分、90分、110分、120分、にそれぞれ加水を行った。
濃縮を進めて行くと濃度が高まるにつれてフラックスが低下するが、加水し濃度を調整することでフラックスが回復するため目詰まりを起こしていないと考えられ、運転は130分で終了したがフラックスの著しい低下が無いことより、更なる濃縮が可能である。
平均フラックスは4.1kg/m2/hrで、得られた濃縮液は乾物固形分38.0%、β−アミラーゼ力価13,500U/g(乾物換算は35,500U/g)であった。また、UF膜透過液の組成を表2に示す。
(A) Process The supernatant was adjusted to 40 Brix and 12.8 kg was treated.
To maintain the concentration of the UF membrane concentrated solution at about 40 Brix, water was added for 60 minutes, 90 minutes, 110 minutes, and 120 minutes, respectively.
As the concentration increases, the flux decreases as the concentration increases.However, it is considered that clogging does not occur because the flux recovers by adjusting the water concentration, and the operation was completed in 130 minutes, but the flux was remarkable. Further concentration is possible because there is no decrease.
The average flux was 4.1 kg / m2 / hr, and the obtained concentrate had a solid content of 38.0% of dry matter and a β-amylase titer of 13,500 U / g (35,500 U / g in terms of dry matter). Table 2 shows the composition of the UF membrane permeate.
(表2)
(Table 2)
また、高速液体クロマトグラフ(検出器/日立製作所製L−6200、ポンプ/L3350、カラム/Shodex Sugar SC−1011)にて移動相に水を用いて糖質の分析を行った結果、乾物固形分中にはオリゴ糖(ラフィノース+スタキオース)27.8%、ピ二トール7.3%、chiro−イノシトール1.0%、myo−イノシトール2.6%、等が含まれた大豆少糖類濃縮物であった。 In addition, as a result of performing saccharide analysis using water as a mobile phase with a high performance liquid chromatograph (detector / L-6200 manufactured by Hitachi, pump / L3350, column / Shodex Sugar SC-1011), dry matter solid content was determined. A soy oligosaccharide concentrate containing 27.8% of oligosaccharides (raffinose + stachyose), 7.3% of pinitol, 1.0% of chiro-inositol, 2.6% of myo-inositol, etc. there were.
〔実施例6〕
UF膜透過液を加水し乾物固形分20%、(灰分4.5%)に調整して電気透析装置(旭化成製マイクロ・アシライザーS3、カートリッジ/AC−220−550)にて脱塩を行った結果、1.0mS/cm(灰分0.2%、乾物固形分16.5%)程度まで電気伝導度を低下させると風味良好な大豆少糖類濃縮物となった。
[Example 6]
The UF membrane permeate was adjusted to a dry matter solid content of 20% (ash content: 4.5%) by adding water, and desalting was performed by an electrodialysis device (Asahi Kasei Micro Acylyzer S3, cartridge / AC-220-550). As a result, when the electric conductivity was reduced to about 1.0 mS / cm (ash content 0.2%, dry matter solid content 16.5%), a soybean oligosaccharide concentrate having a good flavor was obtained.
〔実施例7〕(UF膜(限外濾過膜)濃縮とエタノール沈殿を組み合わせた実施例)
(a)工程上清の濃度を40Brix(固形分は約38%、β−アミラーゼ力価1,470U/g)に加水して調整、ダイゼンメンブラン(株)製限外濾過膜(分画分子量30,000、膜面積1.4m2、中空糸モジュール)を用い、濃縮側の濃度を40Brixに維持するため適宜加水を行いながら流量1m3/hr、背圧3kg/cm2、液温45℃、pH4.5の条件下でβ−アミラーゼ力価が10倍程度濃縮されるまで運転を行い得られた、乾物固形分38.0%、β−アミラーゼ力価13,500U/g(乾物換算は35,500U/g)の濃縮液100gを液温8℃に調整、エタノールも8℃に調整し150gを濃縮液に添加、10分静置後遠心分離により沈殿を得た。
沈殿は乾物固形分59.2%、β−アミラーゼ力価23,400U/g(乾物換算は39,500U/g)となりβ−アミラーゼが更に濃縮された。
また、エタノール沈殿上清にβ−アミラーゼ活性は無かった。
[Example 7] (Example combining UF membrane (ultrafiltration membrane) concentration and ethanol precipitation)
(A) Process The concentration of the supernatant was adjusted by adding water to 40 Brix (solid content: about 38%, β-amylase titer: 1,470 U / g), and an ultrafiltration membrane manufactured by Daisen Membrane Co., Ltd. 2,000, a membrane area of 1.4 m 2, a hollow fiber module), a flow rate of 1 m 3 / hr, a back pressure of 3 kg / cm 2, a liquid temperature of 45 ° C., and a pH of 4.5 while appropriately adding water to maintain the concentration on the concentration side at 40 Brix. The operation was carried out under the conditions described above until the β-amylase titer was concentrated about 10-fold. The dry matter solid content was 38.0%, and the β-amylase titer was 13,500 U / g (35,500 U / g in terms of dry matter). 100 g of the concentrated solution of g) was adjusted to a liquid temperature of 8 ° C., ethanol was also adjusted to 8 ° C., 150 g was added to the concentrated solution, and the mixture was allowed to stand for 10 minutes and centrifuged to obtain a precipitate.
The precipitate had a dry matter solid content of 59.2% and a β-amylase titer of 23,400 U / g (39,500 U / g in terms of dry matter), and the β-amylase was further concentrated.
The ethanol precipitation supernatant did not have β-amylase activity.
〔実施例8〕
実施例1と同様な方法で大豆ホエーを減圧濃縮して固形分40.6重量%まで濃縮した濃縮ホエー450g(総トリプシンインヒビター力価30,500unit)を9個の100mlビーカーへ50g(総トリプシンインヒビター力価3,300unit)ずつ分注し15℃に冷却後、夫々をpH1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5に塩酸或いは水酸化ナトリウムで調整し8時間静置した後遠心分離(1,500G×10分)により上清と沈殿に分け上清の総トリプシンインヒビター活性を測定した。
夫々の上清の総トリプシンインヒビター力価はpH1.5/2,500unit、pH2.0/1,650unit、pH2.5/1,330unit、pH3.0/820unit、pH3.5/540unit、pH4.0/350unit、pH4.5/980unit、pH5.0/1,480unit、pH5.5/2,120unitとなりpH3.0〜pH4.5の範囲で総トリプシンインヒビター力価の7割以上が沈殿側へ分配されたことになる。
Example 8
In the same manner as in Example 1, soy whey was concentrated under reduced pressure to a solid content of 40.6% by weight, and 450 g of concentrated whey (total trypsin inhibitor titer: 30,500 units) was transferred to nine 100 ml beakers in 50 g (total trypsin inhibitor). After titration at 3,300 units) and cooling to 15 ° C., each was adjusted to pH 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, The mixture was adjusted to 5.5 with hydrochloric acid or sodium hydroxide, allowed to stand for 8 hours, separated into a supernatant and a precipitate by centrifugation (1,500 G × 10 minutes), and the total trypsin inhibitor activity of the supernatant was measured.
The total trypsin inhibitor titer of each supernatant was pH 1.5 / 2,500 unit, pH 2.0 / 1,650 unit, pH 2.5 / 1,330 unit, pH 3.0 / 820 unit, pH 3.5 / 540 unit, pH 4.0. / 350 unit, pH 4.5 / 980 unit, pH 5.0 / 1, 480 unit, pH 5.5 / 2, 120 unit, and more than 70% of the total trypsin inhibitor titer is distributed to the precipitation side in the range of pH 3.0 to pH 4.5. It will be.
〔実施例9〕
実施例1と同様な方法で調製した凝集沈殿(トリプシンインヒビター画分)50gを水酸化ナトリウム或いは塩酸にてpH4.0、pH4.4、pH4.8、pH5.2、pH5.6、pH6.0の夫々のpHを維持しながら150gの水を加えホモミキサー(4000rpm×20分・20℃)にて攪拌し再溶解を促した。
攪拌再溶解後、日立工機製高速遠心分離機にて5,000G×20分で遠心分離した上清のたん白をSDS−電気泳動パターン(トリプシンインヒビターの分画)を図2に示す。
図2によるとレーン(4)のpH4.4ではKSTIが上清に分配されないが、レーン(5)のpH4.8及びそれ以上のpHでは上清にKSTIが混入しBBIとKSTIに分画できない。
また、KSTIとBBIの分画pH下限ではpH4.0、pH3.0、pH2.0、pH1.0で検討し、図は示していないがpH3.0ではKSTIは上清に分配されないが、pH2.0以下では上清にKSTIが混入した。
[Example 9]
50 g of aggregated precipitate (trypsin inhibitor fraction) prepared in the same manner as in Example 1 was treated with sodium hydroxide or hydrochloric acid at pH 4.0, pH 4.4, pH 4.8, pH 5.2, pH 5.6, pH 6.0. While maintaining the respective pH values, 150 g of water was added, and the mixture was stirred with a homomixer (4000 rpm × 20 minutes / 20 ° C.) to promote re-dissolution.
FIG. 2 shows an SDS-electrophoresis pattern (trypsin inhibitor fractionation) of the supernatant protein that was centrifuged at 5,000 G × 20 minutes using a high-speed centrifuge manufactured by Hitachi Koki after stirring and re-dissolving.
According to FIG. 2, KSTI is not distributed to the supernatant at pH 4.4 in lane (4), but at pH 4.8 or higher in lane (5), KSTI is mixed into the supernatant and cannot be fractionated into BBI and KSTI. .
In addition, the lower limit of the fractionation pH of KSTI and BBI was examined at pH 4.0, pH 3.0, pH 2.0, and pH 1.0, and although not shown in the figure, at pH 3.0, KSTI is not distributed to the supernatant, At a pH of 0.0 or less, KSTI was mixed into the supernatant.
本発明の製造法を利用すれば大豆ホエーから効率良く大豆トリプシンインヒビター、大豆β−アミラーゼ、及び大豆少糖類を一連の工程で分離することができるものであり、大豆ホエーを総合的に利用することが可能になったものである。 By using the production method of the present invention, soybean trypsin inhibitor, soybean β-amylase, and soybean oligosaccharide can be efficiently separated from soybean whey in a series of steps. Is made possible.
[図1]
(1) マーカー
(2)(a)工程の上清
(3)(a)工程の沈殿
(4)(a)工程の沈殿再溶解沈殿
(5)(a)工程の沈殿再溶解上清
[図2]
(1) マーカー
(2) 全沈殿
(3) pH4.0
(4) pH4.4
(5) pH4.8
(6) pH5.2
(7) pH5.6
(8) pH6.0
[Fig. 1]
(1) Marker
(2) Supernatant of step (a)
(3) Precipitation of step (a)
(4) Redissolved precipitation in step (a)
(5) Precipitated redissolved supernatant in step (a) [Fig. 2]
(1) Marker
(2) Total precipitation
(3) pH 4.0
(4) pH 4.4
(5) pH 4.8
(6) pH 5.2
(7) pH 5.6
(8) pH 6.0
Claims (12)
(a)大豆ホエーを濃縮し、酸性条件下で析出する凝集沈殿物を回収する工程。
(b)得られた上清を高分子画分と低分子画分に分画する工程。 A method for producing a soy whey fraction, comprising the following steps.
(A) a step of concentrating soy whey and collecting coagulated sediment precipitated under acidic conditions;
(B) a step of fractionating the obtained supernatant into a high molecular fraction and a low molecular fraction;
9. The method according to claim 8, wherein the fresh supernatant obtained in step (b-1) or the permeate obtained in step (b-2) is concentrated to a solid content of 50 to 85% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003284120A JP4165329B2 (en) | 2002-07-31 | 2003-07-31 | Production method of soybean whey fraction |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002223228 | 2002-07-31 | ||
JP2003094128 | 2003-03-31 | ||
JP2003284120A JP4165329B2 (en) | 2002-07-31 | 2003-07-31 | Production method of soybean whey fraction |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004313170A true JP2004313170A (en) | 2004-11-11 |
JP4165329B2 JP4165329B2 (en) | 2008-10-15 |
Family
ID=33479502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003284120A Expired - Fee Related JP4165329B2 (en) | 2002-07-31 | 2003-07-31 | Production method of soybean whey fraction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4165329B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103756987A (en) * | 2014-02-18 | 2014-04-30 | 山东绿健生物技术有限公司 | Method for preparing beta-amylase and soybean oligosaccharides |
JP2014099944A (en) * | 2006-07-31 | 2014-05-29 | Agere Systems Inc | Methods and apparatus for low-density parity check decoding using hardware sharing and serial sum-product architecture |
JP2014518087A (en) * | 2011-06-29 | 2014-07-28 | ソレイ リミテッド ライアビリティ カンパニー | Liquid food composition comprising soy whey protein isolated from a processed stream |
JP2014518088A (en) * | 2011-06-29 | 2014-07-28 | ソレイ リミテッド ライアビリティ カンパニー | Dessert composition comprising soy whey protein isolated from a processed stream |
JP2020117518A (en) * | 2012-02-01 | 2020-08-06 | オラムド エルティーディー. | Protease inhibitor-containing compositions, compositions comprising those compositions, and methods for producing and using those compositions |
WO2022118803A1 (en) * | 2020-12-01 | 2022-06-09 | 不二製油グループ本社株式会社 | Method of producing flavor composition containing soybean whey |
WO2022202996A1 (en) * | 2021-03-26 | 2022-09-29 | 不二製油グループ本社株式会社 | Method for producing soybean whey fermentation flavor ingredient for bread, and method for producing breads including said method |
WO2022210451A1 (en) * | 2021-03-30 | 2022-10-06 | 不二製油グループ本社株式会社 | Method for manufacturing soybean whey fermented seasoning |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3533187B2 (en) | 2001-01-19 | 2004-05-31 | Necエレクトロニクス株式会社 | Driving method of color liquid crystal display, circuit thereof, and portable electronic device |
-
2003
- 2003-07-31 JP JP2003284120A patent/JP4165329B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014099944A (en) * | 2006-07-31 | 2014-05-29 | Agere Systems Inc | Methods and apparatus for low-density parity check decoding using hardware sharing and serial sum-product architecture |
JP2014518087A (en) * | 2011-06-29 | 2014-07-28 | ソレイ リミテッド ライアビリティ カンパニー | Liquid food composition comprising soy whey protein isolated from a processed stream |
JP2014518088A (en) * | 2011-06-29 | 2014-07-28 | ソレイ リミテッド ライアビリティ カンパニー | Dessert composition comprising soy whey protein isolated from a processed stream |
JP2020117518A (en) * | 2012-02-01 | 2020-08-06 | オラムド エルティーディー. | Protease inhibitor-containing compositions, compositions comprising those compositions, and methods for producing and using those compositions |
CN103756987A (en) * | 2014-02-18 | 2014-04-30 | 山东绿健生物技术有限公司 | Method for preparing beta-amylase and soybean oligosaccharides |
WO2022118803A1 (en) * | 2020-12-01 | 2022-06-09 | 不二製油グループ本社株式会社 | Method of producing flavor composition containing soybean whey |
WO2022202996A1 (en) * | 2021-03-26 | 2022-09-29 | 不二製油グループ本社株式会社 | Method for producing soybean whey fermentation flavor ingredient for bread, and method for producing breads including said method |
WO2022210451A1 (en) * | 2021-03-30 | 2022-10-06 | 不二製油グループ本社株式会社 | Method for manufacturing soybean whey fermented seasoning |
Also Published As
Publication number | Publication date |
---|---|
JP4165329B2 (en) | 2008-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120329993A1 (en) | Soy whey protein compositions and methods for recovering same | |
US20220022491A1 (en) | Preparation of pulse protein products ("yp810") | |
EP2605666B1 (en) | Improved production of protein solutions from soy | |
AU2019271991B2 (en) | Preparation of soy protein products ("s810") | |
WO2009080768A2 (en) | Tomato product and process to prepare the same | |
WO2013073404A1 (en) | Rice-protein composition and method for manufacturing same | |
JP2014518072A (en) | Canola protein product with low phytic acid content ("C702") | |
JP4165329B2 (en) | Production method of soybean whey fraction | |
JP2688509B2 (en) | Extraction and purification method of hemicellulose | |
JP5599994B2 (en) | Separation method of sialyl lactose material | |
CN100348611C (en) | Method for producing soybean trypsin inhibitor concentration | |
AU1753800A (en) | Method of manufacturing composition with high ganglioside content | |
CN110483634B (en) | Purification method of soybean trypsin inhibitor crude extract | |
JP3480965B2 (en) | Method for preparing amylase inhibitor | |
JP3513193B2 (en) | Method for producing soybean β-amylase preparation | |
JP2635210B2 (en) | Manufacturing method of soybean oligosaccharide | |
JP4886358B2 (en) | Foaming agent comprising soluble polypeptide derived from pea whey as active ingredient and carbonated beverage containing the same | |
JP2012231717A (en) | Method for producing soybean enzyme preparation | |
WO2006052003A1 (en) | Soluble polypeptide derived from pea whey, foaming agent and process for producing the same | |
JPH1066572A (en) | Production of soybean trypsin inhibitor of high purity | |
EP0637592B1 (en) | Processes of producing amylase inhibitors | |
JP2012228234A (en) | Method for producing soybean enzyme preparation | |
CN1294144C (en) | Process for producing soy-bean whey separator | |
JPH0150385B2 (en) | ||
JP4548339B2 (en) | High glutamine / glutamic acid-containing polypeptide mixture and process for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060731 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080428 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080708 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080721 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130808 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130808 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |