JP2004313169A - Recombinant bacillus subtilis - Google Patents

Recombinant bacillus subtilis Download PDF

Info

Publication number
JP2004313169A
JP2004313169A JP2003204599A JP2003204599A JP2004313169A JP 2004313169 A JP2004313169 A JP 2004313169A JP 2003204599 A JP2003204599 A JP 2003204599A JP 2003204599 A JP2003204599 A JP 2003204599A JP 2004313169 A JP2004313169 A JP 2004313169A
Authority
JP
Japan
Prior art keywords
gene
cystatin
bacillus subtilis
recombinant
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003204599A
Other languages
Japanese (ja)
Other versions
JP4346368B2 (en
Inventor
Yasuhiro Hayashi
康弘 林
Shunichi Akiba
俊一 秋葉
Yoshihiro Hakamata
佳宏 袴田
Keiji Endo
圭二 遠藤
Katsutoshi Ara
勝俊 荒
Hidekazu Saito
英一 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2003204599A priority Critical patent/JP4346368B2/en
Publication of JP2004313169A publication Critical patent/JP2004313169A/en
Application granted granted Critical
Publication of JP4346368B2 publication Critical patent/JP4346368B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a host vector system of Bacillus subtilis (B. sub.) for effectively producing an objective protein in a large amount, and provide a method for producing the protein by using the host vector system. <P>SOLUTION: A recombinant B. sub. is prepared by transforming host B. sub. from which ≥1 protease genes are eliminated or transformed with a vector having a DNA fragment containing a promoter region, and a secretion signal peptide region in an alkali cellulase-producing gene originated from Bacillus bacteria and a gene coding for the protein. The method for producing the protein is to culture the recombinant B. sub. and isolate the protein from the culture solution. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、組換え枯草菌及びこれを用いた目的タンパク質の製造法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
今日まで、組換えDNA技術による異種タンパク質の生産には、大腸菌(Esherichia coli)をはじめとして、酵母や糸状菌、培養動植物細胞、バチルス属細菌等の宿主ベクター系が用いられてきた。このうち、枯草菌やBacillus brevis等のバチルス属細菌は、種々の酵素タンパク質を培地中に分泌し蓄積するという性質を有することから、大腸菌に次いで遺伝学的研究が行われ、形質転換効率の高い宿主ベクター系が開発されている。例えば、一部のBacillus brevis宿主はタンパク質分泌能力が高く、自身で菌体外にタンパク質分解酵素を生産しないことから、菌体外での異種タンパク質が分解されないといった利点を有し、これまでにヒト成長ホルモンの生産(例えば特許文献1参照)、インスリンの生産(例えば特許文献2参照)等をはじめとする種々の異種タンパク質の生産に用いられている。
【0003】
また、枯草菌は、産業用酵素の供給源のみならず食品業界でも利用されている菌であり、安全性が極めて高いことに加え、菌体外へのタンパク質の分泌が可能であり、菌体内若しくはペリプラズムで異種タンパク質を生産させる大腸菌の系と比較して異種タンパク質の精製操作が大幅に簡略化できるという利点があり、ヒト成長ホルモンの生産に使用できることが報告されている(例えば非特許文献1参照)。
【0004】
しかしながら、Bacillus brevisは工業用宿主としての使用歴を見てもまだ年数が浅く、宿主の安全性の確認を厳密に行う必要がある。また、タンパク質の種類によっては目的産物が検出されないもの、生産されても生物活性が低かったり活性がなかったりするものもあることが知られていた。
【0005】
また、枯草菌についても、その宿主ベクター系は適当なプロモーター領域、分泌シグナルペプチド領域がない場合には、目的産物が細胞内に留まったままであったり、分解を受けやすい状態のまま膜に留まることが知られている。更に、枯草菌はタンパク質分解酵素を菌体外に生産することが知られており、分泌生産された異種タンパク質が膜の上や菌体外で分解されるといった問題があり、いまだ実用的な宿主ベクター系が確立されていない。
【0006】
本発明は、目的タンパク質を効率的且つ大量に製造するための枯草菌宿主ベクター系及びこれを用いた目的タンパク質の製造法を提供することを目的とする。
【0007】
【特許文献1】
特開平7−51072号公報
【特許文献2】
特開2000−316579号
【非特許文献1】
M, Honjo., et. al., J. Biotech., 6:191(1987)
【0008】
【課題を解決するための手段】
本発明者らは、枯草菌の宿主ベクター系を用いたタンパク質の生産方法について種々検討したところ、宿主として1以上のプロテアーゼ遺伝子を削除又は不活性化した枯草菌を用い、バチルス属細菌由来のアルカリセルラーゼ産生遺伝子のプロモーター領域及び分泌シグナルペプチド領域を含む発現ベクターで形質転換させた組換え枯草菌を用いることにより、シスタチン類やヒト成長ホルモン等の目的タンパク質を効率よく大量に分泌生産できることを見出した。
【0009】
すなわち本発明は、1以上のプロテアーゼ遺伝子を削除又は不活性化した宿主枯草菌を、バチルス属細菌由来アルカリセルラーゼ産生遺伝子のプロモーター領域及び分泌シグナルペプチド領域と目的タンパク質をコードする遺伝子とを含むDNA断片を保持するベクターで形質転換させてなる組換え枯草菌を提供するものである。
【0010】
また本発明は、上記組換え枯草菌を培養し、当該培養物中から目的タンパク質を分離するタンパク質の製造法を提供するものである。
【0011】
【発明の実施の形態】
本発明の組換え枯草菌は、1以上のプロテアーゼ遺伝子を削除又は不活性化した宿主枯草菌を、バチルス属細菌由来アルカリセルラーゼ産生遺伝子のプロモーター領域及び分泌シグナルペプチド領域と目的タンパク質をコードする遺伝子とを含むDNA断片を保持するベクターで形質転換させてなるものである。以下、本発明の組換え枯草菌について説明する。
【0012】
本発明に用いられる宿主菌株は、プロテアーゼ遺伝子が欠損又は破壊された枯草菌(Bacillus subtilis)又はプロテアーゼの菌体外分泌が低下した枯草菌であれば特に制限されない。例えば枯草菌168株は全てのゲノム塩基配列が解析されている点で、本発明のプロテアーゼ欠損株として、特にアルカリプロテアーゼ遺伝子を欠損させた枯草菌株として好適に使用できる。
【0013】
削除又は不活性化させるプロテアーゼ遺伝子としては、枯草菌(Bacillus subtilis)の染色体上に存在するプロテアーゼ遺伝子のいずれでもよいが、その中でも菌体外プロテアーゼとして確認されているアルカリプロテアーゼ遺伝子(aprE)[Stahl,M.,L., and Ferrari,E., J.Bacteriol.,158:411(1984);Wong, S.L., et.al., Proc.Natl.Acad.Sci.USA, 81:1184(1984)]、中性プロテアーゼ遺伝子(nprE)[Yang,M.,Y., et.al., J.Bacteriol.,160:15(1984)]をはじめとしてepr[Sloma,A., et.al., J.Bacteriol.,170:5557(1988);Bruckner,R., et.al., Mol.Gen.Genet.,221:486(1990)]、mpr[Rufo,G.A., et.al. J.Bacteriol.,172:1019(1990); Sloma,A., et.al., J.Bacteriol.,172:1024(1990)]、bpf[Sloma,A., et.al., J.Bacteriol.,172:1470(1990);Wu,X.,C., et.al. J.Biol.Chem., 265:6845(1990)]、nprB[Tran,L., et.al., J.Bacteriol.,173:6364(1991)]、vpr[Sloma,A., et.al., J.Bacteriol.,173:6889(1991)]、wprA[Margot,P., and Karamata,D., Microbiology,142:3437(1996)]のいずれかが好ましい。異種タンパク質、特にシスタチン類及びヒト成長ホルモンを生産する場合には、アルカリプロテアーゼ遺伝子(aprE)を削除又は不活性化させるのが好ましい。
【0014】
斯かるプロテアーゼ遺伝子を削除又は不活性化することにより、当該プロテアーゼの機能を消失又は低下させたり、プロテアーゼの菌体外分泌を低下させることができ、分泌生産された異種タンパク質の細胞膜上や菌体外での分解が抑えられる。
尚、削除又は不活性化するプロテアーゼ遺伝子は1以上であればよいが、例えば1〜2、2〜3、3〜4、5〜8、2〜4、2〜6、2〜8のように複数でもよい。
【0015】
このような、プロテアーゼ遺伝子を削除又は不活性化する方法は、公知の方法、例えば標的遺伝子を順次削除又は不活性化する方法や、ランダムな遺伝子の削除又は不活性化変異を与えた後、適当な方法によりプロテーゼ生産性の評価及び遺伝子解析を行うことによって遺伝子群を削除又は不活性化する方法等を用いることができる。
【0016】
標的とする遺伝子を削除又は不活性化するには、例えば相同組換えによる方法を用いればよい。すなわち、標的遺伝子を含むDNA断片を適当なプラスミドベクターにクローニングした後、通常の遺伝子工学技術を用いて遺伝子の全領域又は一部領域を両側のDNA断片を残した形で削除する、塩基置換やフレームシフト等によって構造遺伝子中にナンセンス変異を与える、或いはクローニングやPCR等により単離した目的遺伝子断片中に他のDNA断片を挿入する等の改変を行った後、改変遺伝子を含むDNA断片を、親微生物に取り込ませて、親微生物ゲノムとの間で目的遺伝子の外側の両領域で相同組換えを起こさせることにより、ゲノム上の標的遺伝子を削除或いは不活性化した遺伝子断片と置換することが可能である。
【0017】
本発明組換え枯草菌を形質転換するためのベクターは、バチルス属細菌由来アルカリセルラーゼ産生遺伝子のプロモーター領域及び分泌シグナルペプチド領域と、タンパク質をコードする遺伝子とを含むDNA断片を含むものであればよい。プロモーター領域及び分泌シグナルペプチド領域としては、Bacillus sp. KSM−64(FERM P−10482)由来のDNA断片(配列番号1、特開平6−217781号公報)、Bacillus sp. KSM−S237(FERM P−16067)由来のDNA断片(配列番号2、特開2000−210081号公報)及び、該配列番号1、該配列番号2で示されるDNA断片に1又は数個の塩基が欠失、置換もしくは付加したDNA断片が好適に挙げられ、特にBacillus sp. KSM−S237セルラーゼ由来のDNA断片(配列番号2)が好ましい。
【0018】
斯かるプロモーター領域及び分泌シグナルペプチド領域のセルラーゼ遺伝子からの単離は公知の方法、例えば Maniatisら[Maniatis, T., et.al., MolecularCloning 2nd ed., A Laboratory Manual, Cold Spring Harbor Laboratory(1989)]に記載の方法で行うことができる。また、公知のポリメラアーゼ・チェイン・リアクション(PCR)法によって特異的に増幅することにより効率的に取得できる。[Innis,M.,A., et.al., PCR Protocols, A guide to methods and applications, Academic Press (1990)]
【0019】
目的タンパク質をコードする遺伝子は、上記プロモーター領域及び分泌シグナル領域の下流末端に結合すればよい。当該目的タンパク質としては、各種酵素タンパク質や生理活性ペプチド等、異種のいずれのタンパク質でもよいが、10kDa〜50kDaのタンパク質、特に10kDa〜35kDaのタンパク質が好ましい。また、生理活性タンパク質が好ましく、中でもヒト由来タンパク質、特にシスタチン類及びヒト成長ホルモンが好適である。
【0020】
斯かるバチルス属細菌由来アルカリセルラーゼのプロモーター領域及び分泌シグナルペプチド領域と異種タンパク質をコードする遺伝子とを含むDNA断片を保持する発現ベクターは、枯草菌に保持され増殖するプラスミドであればよく、例えば、Staphylococcus aureus由来のpUB110、Bacillus cereus由来のpBC16、Enterococcus faecalis由来のpAMα1、pAMα1の一部を含むシャトルベクターpHY300PLK等が挙げられる。
【0021】
斯かるベクターを用いて、宿主枯草菌を形質転換するには、プロトプラスト法、コンピテントセル法、エレクトロポレーション法等の公知の方法を用いればよい。
【0022】
斯くして得られる組換え枯草菌(形質転換体)を、当該組換え枯草菌が生育可能な培地中で適当な培養条件で培養することにより、目的タンパク質を大量に生成させることができる。
【0023】
斯かる組換え枯草菌を用いた本発明のタンパク質の製造法は、特にシスタチン類及びヒト成長ホルモンの大量分泌生成に適している。
シスタチン類は、システインプロテアーゼ阻害剤の総称であり、ヒト組織及び体液に広く分布し、カテプシンB、H、L及びSのようなシステインプロテアーゼと密接かつ可逆的な複合体を形成し、これらのプロテアーゼが関与する正常又は病的な過程の調節に関与している。従って、シスタチンは、後天的な肺炎(肺気腫)、劇症肝炎、心筋梗塞、成人呼吸窮迫症候群、細菌毒素に起因するショック様症候群、カテプシンKの選択的阻害による疾患(骨粗しょう症、パジェット病、悪性高カルシウム血症、代謝性骨疾患等)に関与すると考えられている。
【0024】
従来、斯かるシスタチン類の製造は、そのアミノ酸構造をコードする遺伝子を用いた組換え生産が試みられており、シスタチンCを始め、シスタチンA、シスタチンB、シスタチンα及びシスタチンSの組換え大腸菌(coli)による生産等が知られているが、その生産性は低く実用化されるレベルには至っていなかった。本発明の方法を用いれば、シスタチン類を効率よく且つ大量に生産することができる。
【0025】
ここで、シスタチン類としては、その起源や種類に限定されず、ファミリー1(ステフィンファミリー)、ファミリー2(シスタチンファミリー)及びファミリー3(キニノーゲンファミリー)に分類される全てのシスタチンスーパーファミリー並びに、システインプロテアーゼに対する阻害活性を有する特開平7−126294号公報に記載の新規システインプロテアーゼインヒビター、特表2001−512966号公報に記載のCSTINのようなシスタチン様タンパク質が挙げられる。
【0026】
斯かる、1)ファミリー1としては、ヒトシスタチンA、ヒトシスタチンB、ラットシスタチンα、ラットシスタチンβ、ヒトc−Ha−ras oncogene product−p21、オリザシスタチンI、オリザシスタチンII、コーンシスタチン、ソヤシスタチン等が挙げられ、2)ファミリー2としては、ヒトシスタチンC、ヒトシスタチンS、ヒトシスタチンSN、ヒトシスタチンSA、ヒトシスタチンD、ヒトシスタチンM、ヒトロイコシスタチン(シスタチンF)、ラットシスタチンC、ラットシスタチンS、マウスシスタチンC、マウスロイコノシスタチン、チキンシスタチン、ウズラシスタチン、ウシ初乳シスタチン、カープシスタチン、タイワンコブラ毒シスタチン、カブトガニシスタチン、チャムサーモンシスタチン、Drosophiaシスタチン、サーコシスタチン、マムシ毒シスタチン等が挙げられ、3)ファミリー3としては、ヒト低分子量キニノ−ゲン、ヒト高分子量キニノーゲン、ウシ低分子量キニノーゲン、ウシ高分子量キニノーゲン、ラット低分子量キニノーゲン、ラット高分子量キニノーゲン、ラットT−キニノーゲン1、ラットT−キニノーゲン2等が挙げられる。
【0027】
このうち、本発明の組換え枯草菌を用いた製造には、特にファミリー2に属すものが好ましく、特にヒトの唾液由来のシスタチンであるシスタチンS、シスタチンSA、シスタチンSNが適する。
【0028】
ヒト成長ホルモン(hGH)はヒトの脳下垂体より分泌されるペプチドホルモンの1種であり、191アミノ酸からなり、分子量は22,000である。本物質の生理活性としては成長促進、脂肪代謝、糖代謝等が知られており、下垂体性小人症の治療薬として古くから用いられている。また、hGHには、慢性腎不全による低身長、火傷、骨折、骨粗しょう症等の治療等への適応対象の拡大が検討されている。本発明のタンパク質の製造法は、斯かるヒト成長ホルモンの効率的且つ大量生産にも適している。
【0029】
シスタチン類又はヒト成長ホルモンの製造は、1以上のプロテアーゼ遺伝子を削除又は不活性化した宿主枯草菌を、バチルス属細菌由来アルカリセルラーゼ産生遺伝子のプロモーター領域及び分泌シグナルペプチド領域と、シスタチン類又はヒト成長ホルモンをコードする遺伝子とを含むDNA断片を保持するベクターで形質転換させてなる組換え枯草菌を用い、これを適当な培地中で適当な培養条件で培養することにより行うことができる。
尚、シスタチン類又はヒト成長ホルモンをコードする遺伝子は、生体からの抽出や増幅、公知のアミノ酸配列に基づく化学的合成等の公知の方法により取得すればよい。
【0030】
組換え枯草菌の培養に用いる培地の種類としては、適当な窒素源、炭素源、ミネラルを含み、本発明の枯草菌宿主が生育し、目的タンパク質を生産することができるものであればよい。例えば、配列番号2で示されるDNA断片を含む組換え枯草菌168ΔaprE(pH237−US)株によってシスタチン類を生産する場合、炭素源として、ぶどう糖や果糖等の単糖類、しょ糖、麦芽糖等の二糖類又は可溶性澱粉等の多糖類等を配合した培地や、窒素源として、酵母エキス、魚肉エキス、コーンスティープリカー(CSL)等を配合したCM培地等を用いることができる。
【0031】
また、培地のpHは、用いる組換え枯草菌が生育し得る範囲のpHであれば、よいが、pH6.0〜8.0に調整するのが好適である。
培養条件は、15〜42℃、好ましくは28〜37℃で2〜7日間振盪または、通気撹拌培養すればよい。
【0032】
【実施例】
1.試験方法
(1)宿主菌株
枯草菌宿主として、枯草菌 168株からアルカリプロテアーゼ遺伝子(aprE)を欠損させた枯草菌 168ΔaprE株、比較例として枯草菌 168株を用いた。枯草菌 168ΔaprE株の調製法を以下に示す。
【0033】
枯草菌 168株の染色体DNAを鋳型としてプライマーDapr1f(CTTCTAGATTGTCGCGATCACCTCATCCCCCTCCG:配列番号3)及びDapr3(TTTTAAGTAAGTCTAAAGATCCGAGCGTTGCATATGTGGAAG:配列番号5)を用いたPCRでaprEの構造遺伝子(開始コドンを1とする。)の上流(−1460から−33)に相当する遺伝子断片Aを増幅した。同様に枯草菌 168株の染色体DNAを鋳型としてプライマーDapr2(CAACGCTCGGATCTTTAGACTTACTTAAAAGACTATTCTGTG:配列番号4)及びDapr4(CGTCTAGATCTTGCGGCACTTCCGCTGTTATTG:配列番号6)を用いたPCRでaprEの構造遺伝子から下流(268から1590)に相当する遺伝子断片Cを増幅した。遺伝子断片A及びCを鋳型とし、プライマーDapr1f及びDapr4を用いたリコンビナントPCRでaprE遺伝子を含む近傍配列からaprEのSD配列、開始コドン、シグナル配列等を含む前半300bpを欠失させたaprE欠失用PCR断片(ΔaprE)を調製した。またプラスミドpHY300PLKを鋳型にテトラサイクリン耐性遺伝子(Tc)を増幅した。末端平滑化したTc PCR断片をプラスミドpUC18(宝酒造)のHincII部位に挿入し、ΔaprE PCR断片は両端に付したXbaI部位で切断後、同プラスミドのXbaI部位に挿入し、プラスミドpUCTcΔaprEを構築した。プロトプラスト形質転換法によりpUCTcΔaprEを枯草菌168株へ導入し、15ppmのテトラサイクリンを含むDM3再生寒天培地で生育したコロニーを得た。1白金耳をLB培地に植菌・培養(30℃)し、一晩培養液を同組成の培地で希釈し1%Skim Milkを含むLB固体培地に塗布した。30℃で1日培養して取得したコロニーを同組成の固体培地及び、15ppmのテトラサイクリン、1%Skim Milkを含むLB培地に釣菌した。30℃で培養したコロニーからテトラサイクリン感受性株となった株が取得され、PCRによるゲノム解析を行った結果aprE領域に目的の欠失が確認されたため、これを168ΔaprE株とした。
【0034】
(2)プラスミドの調製
遺伝子のサブクローニングに用いる大腸菌宿主としてEsherichia coli HB101株(宝酒造)を使用した。
ヒト顎下腺由来のcDNAからクローニングしてきたシスタチンS遺伝子を含むプラスミドとしてpUSA3(Saitoh,E., and Isemura,S., J.Biochem.116,:399,(1994))を使用した。
ヒト成長ホルモン遺伝子を含むcDNAライブラリーとしてプラスミドDNA型cDNA Library Human Pituitary Gland(宝酒造)を用いた。
Bacillus sp. KSM−S237株セルラーゼ由来のプロモーター領域、分泌シグナルペプチド領域を含むプラスミドとしてpHYEglS(Hakamada,Y., etal, Biosci.Biotechnol.Biochem., 64:2281,(2000))を使用した。
Bacillus sp. KSM−64株セルラーゼ由来のプロモーター領域、分泌シグナルペプチド領域を含むプラスミドとして pCL64(Sumitomo, N., et al, Biosci. Biotechnol. Biochem., 56:872,(1992))を使用した。
遺伝子をサブクローニングするベクターとしてpHY300PLK(宝酒造)を使用した(図1、図2、図3)。
【0035】
(3)使用培地及び培養条件
組換え菌の培養には、表1に示したCM培地を使用し、以下の培養条件で行った。すなわち、大型試験管(シード培地、5mL仕込)にて15時間培養した前培養液を、500mLヒダつき三角フラスコ(メイン培地、20mL仕込)に4%植菌し、培養温度30℃、回転数210rpmで3〜4日間培養を行った。
【0036】
【表1】

Figure 2004313169
【0037】
(4)遺伝子工学的手法
遺伝子断片の増幅にはポリメラーゼ・チェイン・リアクション(PCR)法を用いた。PCR法には、Pwo DNAポリメラーゼ(ロシュー・ダイアグノスティックス社)を用いて、鋳型DNA5ng、順方向プライマー及び逆方向プライマー各20pmolとして、PCR反応(変性温度:94℃−1分、アニール温度:54℃−0.5分、DNA鎖伸張温度:72℃−4分を1サイクルとして30回繰り返す)をDNA Thermal Cycler(パーキン・エルマ社)を用いて行った。増幅された遺伝子断片の塩基配列をサンガー法[F.Sangar, et.al., Proc.Natl.Acad.Sci.USA,,74:5463(1982)]により決定し、PCR法による配列のエラーが起こっていないことを確認した。構築した組換えプラスミドの枯草菌への導入にはプロトプラスト法[Chang,S., and Cohen,N., S.,,Mol.Gen.Genet.,168:111,(1979)]を用いた。
【0038】
(5)組換え菌生産物の解析
培養後の培養液を遠心分離し培養上清と菌体を得た。菌体を菌体破砕緩衝液(50mM リン酸緩衝液(pH7.4)、1mM EDTA、1mM PMSF、1mM DTT、5%グリセロール)で懸濁し、超音波破砕(BIOMIC社7500型、Output 5、Duty Cycle 50%、15分間破砕)後、遠心分離した上清を菌体破砕物とした。
SDSポリアクリルアミド電気泳動(SDS−PAGE)はレディゲルJ(分離ゲル濃度15%、バイオラッド)を用い、泳動後のゲルをクイックCBB(関東化学)にてタンパク質染色した。
(a)シスタチンSの検出
抗体染色はSDS−PAGEで分離したタンパク質をゲルからPVDFフィルター(ミリポア、Immobilonトランスファー膜)上へ電気的に転写後、一次抗体に後記参考例に記載の方法により作製した組換え大腸菌由来のシスタチンSに対する抗シスタチンSマウス抗体、二次抗体にHRP標識の抗マウスIg抗体(アマシャム ファルマシア バイオテク社)を用い、ECL Plusウェスタンブロッティング検出システム(アマシャム ファルマシア バイオテク社)によって、シスタチンSの検出を行った。
(b)ヒト成長ホルモンの検出
抗体染色はSDS−PAGEで分離したタンパク質をゲルからPVDFフィルター(ミリポア、Immobilonトランスファー膜)上へ電気的に転写後、一次抗体にAnti−GrowthHormone抗体(Rabbit Polyclonal、PROGEN BIOTECHNIK GMBH社)、二次抗体にHRP標識の抗Rabbit Ig抗体(アマシャム ファルマシア バイオテク社)を用い、ECL Plusウェスタンブロッティング検出システム(アマシャム ファルマシア バイオテク社)によって、ヒト成長ホルモンの検出を行った。
【0039】
参考例 抗シスタチンS抗体の作製
(1)パパイン阻害活性の測定方法
シスタチンSのパパイン阻害活性はBarretら(Methods in enzymology Vol.80、pp771(1981))に準じて測定した。10mMベンゾイル−L−アルギニン−4−ニトロアニリド(Benzoil−L−arginine−4−nitroanilide)ジメチルスルホキシド溶液を基質とし、2mMのEDTAを含む、200mMリン酸緩衝液にDTTを終濃度8mMとなるように添加した。パパイン1mg/mLの濃度でDTTを含まない緩衝液に溶解した。また、反応停止用溶液として5%トリクロロ酢酸溶液を使用した。測定は以下の手順で行った。測定用チューブに1mLDTTを含む緩衝液と0.05mLのパパイン溶液、試料溶液0.5mLおよび全量2mLとなるよう蒸留水を入れ、25℃で5分間インキュベートした。ついで基質溶液0.05mLを加え攪拌した。25℃で15分反応後、1mLの反応停止液を加え、沈殿が生じた場合は10000rpm、10分間遠心分離を行い、上清の405nmの吸光度を測定した。相対阻害活性は次式(1)より求めた。
相対阻害活性(%)=100−((A0−AI)/A0×100) (1)
A0:阻害剤フリーの吸光度
AI:サンプルの吸光度
【0040】
(2)シスタチンSの組換え大腸菌による製造
ヒト唾液由来シスタチンSは斎藤ら[J.Biochem.116,399−405(1994)]の方法に従って製造した。即ち、ヒトシスタチンSのcDNAを含む発現ベクターを大腸菌(Escherichia coli)JM109株(宝酒造株式会社製)を宿主として組換え操作を行い、組換え体を作成した。組換え大腸菌の培養はアンピシリン(50μg/mL)添加LB培地50mLにて前培養を行った。本培養はM9最小培地にシュークロース(4g/L)、チアミン(2mg/L)、MgSO(1mM)、CaCl(0.1mM)とアンピシリン(50mg/L)を加えた培地16Lを用い30−L容ジャーファーメンターによって、前培養液16mLを添加後、培養温度37℃、通気量4L/min、攪拌数250rpmの条件で行った。培養4時間後(OD600=0.5)にイソプロピルチオガラクトシド(終濃度0.3mM)を添加してさらに4時間培養を行い、シスタチンSを発現した。培養後、Freijeら[J.Biol.Chem.268,15737−15744(1993)]の方法によって菌体処理を行いペリプラズム画分を調製した。
【0041】
(3)シスタチンSの精製
シスタチンSの精製はDEAE−Toyopearl 650C(2.5cm×10cm)によるイオンクロマトグラフィーによって行った。ペリプラズム画分を10mM NHHCO(pH8)にて平衡化したDEAE−Toyopearl 650Cカラム(2.5cm×10cm)にロードする。10mM NHHCO(pH8)で溶出洗浄後、10mM NHHCO(pH8)(250mL)、4%NaCl溶解10mM NHHCO(pH8)(250mL)で形成されるグラジエントで溶出する。組換えシスタチンSを含むフラクションは(1)に示した方法によってパパイン阻害活性を測定することで検出した。
【0042】
パパイン阻害活性を有するフラクションを凍結乾燥後、再度60mLの蒸留水に溶解後、Centriprep3(MILLIPORE社製)にて20mLに脱塩濃縮を行った。さらに、40mLの蒸留水を添加して、同様に脱塩濃縮を2回行った。得られた脱塩濃縮液20mLのうち10mLをさらにCentriprep3にて濃縮を行い1.5mLとした。得られたシスタチンS濃縮液1.5mLをさらに10mM Tris−HClバッファー(pH7.2)で平衡化したToyopearl HW55Fカラム(1.5cm×94cm)によるゲル濾過を行った。組換えシスタチンSを含むフラクションは(1)に示した方法によってパパイン阻害活性を測定することで検出した。
パパイン阻害活性を有するフラクションをCentriprep3にて濃縮を行い2mLとした。得られた濃縮液をプロテインアッセイ(バイオラッド社製)により牛血清アルブミンを標準として定量した結果、678μg/mLであった。
【0043】
(4)抗シスタチンSマウス抗体の作製
(3)によって得られた精製シスタチンSを用いて常法に従って抗シスタチンSマウス抗体を作製した。即ち雌のBALB/cマウスに精製シスタチンS溶液60μLを100μL FCAと混合して腹腔内注射により初回免疫を行った。さらに、14、28、48日後に精製シスタチンS溶液60μLを100μL MPL+TDMエマルジョンと混合して腹腔内注射を行った。52日後にマウス尾静脈より全血を採取し、抗血清を分離し抗シスタチンSマウス抗体とした。
【0044】
比較例1 枯草菌168株によるヒト・シスタチンSの発現
KSM−S237株由来のセルラーゼ産生遺伝子のプロモーター領域、シグナルペプチド領域を利用した組換えプラスミドを構築した。
すなわち、プラスミドpHYEglS5ngを鋳型としS237UE(GCGAATTCGATTTGCCGATGCAACAGGCTTATATTTAG;配列番号8)及びCS237D(CTCCTCCTTGGAGCTCGATGCTGCAAGAGCTGC;配列番号10)の2種類のプライマー各20nmolを用いたPCRによりKSM−S237株由来のセルラーゼ産生遺伝子のプロモーター領域、分泌シグナルペプチド領域をコードする0.6Kbの遺伝子断片を得た。同様にプラスミドpUSA3 5ngを鋳型とし237CSU(GCAGCTCTTGCAGCATCGAGCTCCAAGGAGGAG;配列番号9)及びpSD(GAAAGCTTAGGCTTCTTGACACCTGGAGTTCACCAGGGACATTCTG;配列番号7)の2種類のプライマー各20nmolを用いたPCRによりヒト・シスタチンSをコードする0.4kbの遺伝子断片を得た。この0.4Kb断片の塩基配列をサンガー法により決定し構造遺伝子中のEcoRIサイトをコドンに影響の無いように(AAT→AAC)消去したことを確認した。単離した0.6Kb断片、0.4Kb断片をそれぞれ5ngを鋳型としてS237UE及びpSDの2種類のプライマー各20nmolを用いたPCRによりKSM−S237株由来のセルラーゼ産生遺伝子のプロモーター領域、シグナルペプチド領域の下流末端にヒト・シスタチンSをコードする遺伝子が結合した1.0kb遺伝子断片を得た。得られた1.0Kb断片とプラスミドpHY300PLKをEcoRI及びHindIII処理後、T4DNAリガーゼを用いて結合した。この結合反応物を大腸菌HB101株に導入し、5μg/mLテトラサイクリンを含むLB培地を用いて形質転換体を選択した。組換え大腸菌の保持する組換えプラスミドを常法[D.,M.,Glover, DNA Cloning Volume II,IRL PRESS, Oxford,Washington DC,(1985)]にしたがって調製し、得られた組換えプラスミドの制限酵素切断点の解析を行って組換えプラスミドpH237−USを得た(図1)。プロトプラスト法にて枯草菌168株に組換えプラスミドpH237−USを導入し、得られた枯草菌について培養(30℃、3日間)を行い、培養上清のSDS電気泳動的解析を行った。その結果抗体染色にて菌体破砕物中にヒト・シスタチンSに相当する分子サイズ(14Kd)のタンパク質バンドが検出できたが、培養上清中に抗体に反応するタンパク質バンドは検出できなかった(図4)。
【0045】
比較例2 枯草菌168株によるヒト成長ホルモンの発現
Bacillus sp. KSM−S237株セルラーゼ由来のプロモーター領域、分泌シグナルペプチド領域を利用した組換えプラスミドを構築した。
すなわち、プラスミドpHYEglS 5ngを鋳型としS237UE(GCGAATTCGATTTGCCGATGCAACAGGCTTATATTTAG;配列番号8)及びGH237D(GGTTGGGAATGCTGCAAGAGCTGC;配列番号11)の2種類のプライマー各20nmolを用いたPCRによりKSM−S237株由来のセルラーゼ産生遺伝子のプロモーター領域、シグナルペプチド領域をコードする0.6Kbの遺伝子断片を得た。同様にプラスミドDNA型cDNA Library Human Pituitary Gland(宝酒造)5ngを鋳型とし237GHU(CTTGCAGCATTCCCAACCATTCCCTTATC;;配列番号12)及びGHDH(GAAAGCTTCTAGAAGCCACAGCTGCCCTCCAC;配列番号13)の2種類のプライマー各20nmolを用いたPCRにより0.6kbの遺伝子断片を得た。この0.6Kb断片の塩基配列をサンガー法により決定し本断片がヒト成長ホルモンをコードすることを確認した。単離した0.6Kb断片、0.6Kb断片をそれぞれ5ngを鋳型としてS237UE及びGHDHの2種類のプライマー各20nmolを用いたPCRによりKSM−S237株由来のセルラーゼ産生遺伝子のプロモーター領域、シグナルペプチド領域の下流末端にヒト成長ホルモンをコードする遺伝子が結合した1.2kb遺伝子断片を得た。得られた1.2Kb断片とプラスミドpHY300PLKをEcoRI及びHindIII処理後、T4DNAリガーゼを用いて結合した。この結合反応物を大腸菌HB101株に導入し、5μg/mLテトラサイクリンを含むLB培地を用いて形質転換体を選択した。組換え大腸菌の保持する組換えプラスミドを常法[D., M., Glover, DNA Cloning Volume II,IRL PRESS, Oxford, Washington DC,(1985)]に従って調製し、得られた組換えプラスミドの制限酵素切断点の解析を行って組換えプラスミドpH237−GHを得た(図2)。プロトプラスト法にて枯草菌168株に組換えプラスミドpH237−GHを導入し、得られた枯草菌について培養(30℃、3日間)を行い、培養上清のSDS電気泳動的解析を行った。その結果抗体染色にて、培養上清中に抗体に反応するタンパク質バンドは検出できなかった。
【0046】
比較例3 枯草菌168株によるヒト・シスタチンSの発現
KSM−64株由来のセルラーゼ産生遺伝子のプロモーター領域、分泌シグナルペプチド領域を利用した組換えプラスミドを構築した。
すなわち、プラスミドpCL64 5ngを鋳型としSP64UE(TAGAATTCGAAGACAACGGACATAAGAAA;配列番号14)及びCS64D(CTCCTCCTTGGAGCTCGATGCTGCAAGAGCTGC;配列番号15)の2種類のプライマー各20nmolを用いたPCRによりKSM−64株由来のセルラーゼ産生遺伝子のプロモーター領域、シグナルペプチド領域をコードする0.6Kbの遺伝子断片を得た。同様にプラスミドpUSA3 5ngを鋳型とし64CSU(GCAGCTCTTGCAGCATCGAGCTCCAAGGAGGAG;配列番号16)及びpSD(GAAAGCTTAGGCTTCTTGACACCTGGAGTTCACCAGGGACATTCTG;配列番号7)の2種類のプライマー各20nmolを用いたPCRによりヒト・シスタチンSをコードする0.4kbの遺伝子断片を得た。この0.4Kb断片の塩基配列をサンガー法により決定し構造遺伝子中のEcoRIサイトをコドンに影響の無いように(AAT→AAC)消去したことを確認した
。単離した0.6Kb断片、0.4Kb断片をそれぞれ5ngを鋳型としてSP64UE及びpSDの2種類のプライマー各20nmolを用いたPCRによりKSM−64株由来のセルラーゼ産生遺伝子のプロモーター領域、シグナルペプチド領域の下流末端にヒト・シスタチンSをコードする遺伝子が結合した1.0kb遺伝子断片を得た。得られた1.0Kb断片とプラスミドpHY300PLKをEcoRI及びHindIII処理後、T4DNAリガーゼを
用いて結合した。この結合反応物を大腸菌HB101株に導入し、5μg/mLテトラサイクリンを含むLB培地を用いて形質転換体を選択した。組換え大腸菌の保持する組換えプラスミドを常法[D., M., Glover, DNA Cloning Volume II,IRL PRESS, Oxford, Washington DC,(1985)]にしたがって調製し、得られた組換えプラスミドの制限酵素切断点の解析を行って組換えプラスミドpH64−USを得た(図3)。プロトプラスト法にて枯草菌168株に組換えプラスミドpH64−USを導入し、得られた枯草菌について培養(30℃、3日間)を行い、培養上清のSDS電気泳動的解析を行った。その結果抗体染色にて、培養上清中に抗体に反応するタンパク質バンドは検出できなかった。
【0047】
実施例1 アルカリアルカリプロテーゼ遺伝子欠損株(ΔaprE株)によるシスタチンの発現
組換えプラスミドpH237−USをBacillus subtilis 168ΔaprE株に導入し、得られた組換え体について培養(30℃、4日間)を行い、培養上清のSDS電気泳動的解析を行った。その結果、抗体染色にてシスタチンが大量に菌体外分泌されていることが確認され、タンパク質染色においても充分に生産が確認できる生産レベルであることが認められた(図5)。
【0048】
実施例2 アルカリプロテアーゼ遺伝子欠損株(168△aprE株)によるヒト成長ホルモンの発現
組換えプラスミドpH237−GHを枯草菌168△aprE株に導入し、得られた組換え体について培養を行い、培養上清のSDS電気泳動的解析を行った。その結果、抗体染色にてヒト成長ホルモンが菌体外分泌されていることが確認された(図6)。
【0049】
実施例3 アルカリプロテアーゼ遺伝子欠損株(168△aprE株)によるシスタチンの発現
組換えプラスミドpH64−USを枯草菌168△aprE株に導入し、得られた組換え体について培養を行い、培養上清のSDS電気泳動的解析を行った。その結果、抗体染色にてシスタチンが菌体外分泌されていることが確認された(図7)。
【0050】
【発明の効果】
本発明の組換え枯草菌を用いれば、目的タンパク質を効率よく且つ大量に生産することができる。
【0051】
【配列表】
Figure 2004313169
Figure 2004313169
Figure 2004313169
Figure 2004313169
Figure 2004313169
Figure 2004313169
Figure 2004313169

【図面の簡単な説明】
【図1】シスタチン組換えプラスミドの構築(S237プロモーター領域、分泌シグナルペプチド領域)を示す図である。
【図2】ヒト成長ホルモン組換えプラスミドの構築(S237プロモーター領域、分泌シグナルペプチド領域)を示す図である。
【図3】シスタチン組替えプラスミドの構築(64プロモーター領域、分泌シグナルペプチド領域)を示す図である。
【図4】S237プロモーター領域及び分泌シグナルペプチド領域を導入した組換え枯草菌生産物(ヒト・シスタチンS)の解析結果を示す図である(比較例1)。
【図5】S237プロモーター領域及び分泌シグナルペプチド領域を導入した組換え枯草菌生産物(ヒト・シスタチンS)の解析結果を示す図である(実施例1)。
【図6】S237プロモーター領域及び分泌シグナルペプチド領域を導入した組換え枯草菌生産物(ヒト成長ホルモン)の解析結果を示す図である(実施例2)。
【図7】64プロモーター領域及び分泌シグナルペプチド領域を導入した組換え枯草菌生産物(ヒト・シスタチンS)の解析結果を示す図である(実施例3)。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a recombinant Bacillus subtilis and a method for producing a target protein using the same.
[0002]
Problems to be solved by the prior art and the invention
To date, the production of heterologous proteins by recombinant DNA technology has involved E. coli (Escherichia  coli), Yeast, filamentous fungi, cultured animal and plant cells, and Bacillus bacterium. Of these, Bacillus subtilis andBacillus  brevisBacteria belonging to the genus Bacillus and the like have the property of secreting and accumulating various enzyme proteins in the culture medium, so that genetic studies are conducted after Escherichia coli, and a host vector system with high transformation efficiency has been developed. . For example, someBacillus  brevisSince the host has a high ability to secrete proteins and does not produce proteolytic enzymes outside the cells by itself, it has the advantage that the heterologous protein is not degraded outside the cells. It is used for the production of various heterologous proteins such as the production of insulin (see, for example, Patent Document 2) and the like.
[0003]
Bacillus subtilis is a bacterium used not only as a source of industrial enzymes but also in the food industry. In addition to being extremely safe, it can secrete proteins outside the cells, Alternatively, there is an advantage that the operation of purifying a heterologous protein can be greatly simplified as compared with an Escherichia coli system that produces a heterologous protein in the periplasm, and it has been reported that it can be used for the production of human growth hormone (for example, Non-Patent Document 1). reference).
[0004]
However,Bacillus  brevisSince the history of use as an industrial host is still young, it is necessary to strictly confirm the safety of the host. It has also been known that, depending on the type of protein, the target product is not detected, and even if produced, the biological activity is low or inactive.
[0005]
Also, for Bacillus subtilis, if the host vector system does not have an appropriate promoter region and secretory signal peptide region, the target product may remain in the cell or remain on the membrane in a state that is susceptible to degradation. It has been known. Furthermore, Bacillus subtilis is known to produce proteolytic enzymes outside the cells, and there is a problem that the secreted and produced heterologous protein is degraded on the membrane or outside the cells, and it is still a practical host. No vector system has been established.
[0006]
An object of the present invention is to provide a Bacillus subtilis host vector system for efficiently producing a target protein in large quantities, and a method for producing the target protein using the same.
[0007]
[Patent Document 1]
JP-A-7-51072
[Patent Document 2]
JP-A-2000-316579
[Non-patent document 1]
M, Honjo. , Et. al. , J. et al. Biotech. , 6: 191 (1987).
[0008]
[Means for Solving the Problems]
The present inventors have conducted various studies on a method for producing a protein using a Bacillus subtilis host vector system, and found that Bacillus subtilis in which one or more protease genes have been deleted or inactivated was used as a host, and an alkaline bacterium derived from Bacillus sp. By using a recombinant B. subtilis transformed with an expression vector containing a promoter region of a cellulase-producing gene and a secretory signal peptide region, it was found that target proteins such as cystatins and human growth hormone could be efficiently secreted and produced in large quantities. .
[0009]
That is, the present invention relates to a host B. subtilis in which one or more protease genes have been deleted or inactivated, and a DNA fragment comprising a promoter region and a secretory signal peptide region of a Bacillus bacterium-derived alkaline cellulase producing gene and a gene encoding a target protein. The present invention provides a recombinant B. subtilis transformed with a vector having the same.
[0010]
The present invention also provides a method for producing a protein, which comprises culturing the above recombinant Bacillus subtilis and isolating the target protein from the culture.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The recombinant Bacillus subtilis of the present invention is a host Bacillus subtilis in which one or more protease genes have been deleted or inactivated, and a gene encoding a target protein and a promoter region and a secretory signal peptide region of a Bacillus bacterium-derived alkaline cellulase producing gene. It is obtained by transforming with a vector holding a DNA fragment containing Hereinafter, the recombinant Bacillus subtilis of the present invention will be described.
[0012]
The host strain used in the present invention includes Bacillus subtilis (protease gene deficient or disrupted).Bacillus  subtilis) Or Bacillus subtilis with reduced extracellular secretion of protease. For example, Bacillus subtilis 168 strain can be suitably used as the protease-deficient strain of the present invention, particularly as the Bacillus subtilis strain deficient in the alkaline protease gene, in that all of the genomic nucleotide sequences have been analyzed.
[0013]
Protease genes to be deleted or inactivated include Bacillus subtilis (Bacillus  subtilis) May be any of the protease genes present on the chromosome, and among them, the alkaline protease gene (aprE) [Stahl, M .; , L .; , And Ferrari, E .; , J. et al. Bacteriol. , 158: 411 (1984); Wong, S .; L. , Et. al. , Proc. Natl. Acad. Sci. USA, 81: 1184 (1984)], a neutral protease gene (nprE) [Yang, M .; , Y. , Et. al. , J. et al. Bacteriol. , 160: 15 (1984)]epr[Sloma, A .; , Et. al. , J. et al. Bacteriol. , 170: 5557 (1988); Bruckner, R .; , Et. al. , Mol. Gen. Genet. , 221: 486 (1990)].mpr[Rufo, G .; A. , Et. al. J. Bacteriol. , 172: 1019 (1990); Sloma, A .; , Et. al. , J. et al. Bacteriol. 172: 1024 (1990)],bpf[Sloma, A .; , Et. al. , J. et al. Bacteriol. 172: 1470 (1990); Wu, X. et al. , C.I. , Et. al. J. Biol. Chem. , 265: 6845 (1990)],nprB[Tran, L .; , Et. al. , J. et al. Bacteriol. 173: 6364 (1991)].vpr[Sloma, A .; , Et. al. , J. et al. Bacteriol. 173: 6889 (1991)].wprA[Margot, P .; , And Karamata, D .; , Microbiology, 142: 3437 (1996)]. When producing heterologous proteins, especially cystatins and human growth hormone, the alkaline protease gene (aprE) Is preferably deleted or inactivated.
[0014]
By deleting or inactivating such a protease gene, the function of the protease can be lost or reduced, or the extracellular secretion of the protease can be reduced, and the secreted and produced heterologous protein can be expressed on the cell membrane or extracellularly. Decomposition is suppressed.
The protease gene to be deleted or inactivated may be one or more. For example, as in 1-2, 2-3, 3-4, 5-8, 2-4, 2-6, 2-8, There may be more than one.
[0015]
Such a method for deleting or inactivating a protease gene is a known method, for example, a method for sequentially deleting or inactivating a target gene, or a method for deleting or inactivating mutation of a random gene, followed by an appropriate method. A method of deleting or inactivating a gene group by performing prosthesis productivity evaluation and gene analysis by a simple method can be used.
[0016]
In order to delete or inactivate a target gene, for example, a method by homologous recombination may be used. That is, after cloning a DNA fragment containing the target gene into an appropriate plasmid vector, the entire region or a partial region of the gene is deleted using a normal genetic engineering technique while leaving DNA fragments on both sides, After a nonsense mutation is imparted to the structural gene by frame shift or the like, or a modification such as insertion of another DNA fragment into the target gene fragment isolated by cloning, PCR, or the like is performed, a DNA fragment containing the modified gene is The target gene on the genome can be deleted or replaced with an inactivated gene fragment by incorporating it into the parent microorganism and causing homologous recombination between the parent microorganism genome and both regions outside the target gene. It is possible.
[0017]
The vector for transforming the recombinant Bacillus subtilis of the present invention may be any as long as it contains a DNA fragment containing a promoter region and a secretory signal peptide region of an alkaline cellulase-producing gene derived from a bacterium belonging to the genus Bacillus, and a gene encoding a protein. . As the promoter region and secretory signal peptide region,Bacillus  sp. A DNA fragment derived from KSM-64 (FERM P-10482) (SEQ ID NO: 1, JP-A-6-217881),Bacillus  sp. KSM-S237 (FERM P-16067) -derived DNA fragment (SEQ ID NO: 2, JP-A-2000-210081) and one or several bases in the DNA fragment represented by SEQ ID NO: 1 and SEQ ID NO: 2 Preferable examples include a deleted, substituted or added DNA fragment.Bacillus  sp. A DNA fragment (SEQ ID NO: 2) derived from KSM-S237 cellulase is preferred.
[0018]
Isolation of such a promoter region and a secretory signal peptide region from a cellulase gene can be performed by a known method, for example, Maniatis et al. [Maniatis, T. et al. , Et. al. , Molecular Cloning 2nd ed. , A Laboratory Manual, Cold Spring Harbor Laboratory (1989)]. In addition, it can be obtained efficiently by specifically amplifying by the known polymerasease chain reaction (PCR) method. [Innis, M .; , A. , Et. al. , PCR Protocols, A guide to methods and applications, Academic Press (1990)]
[0019]
The gene encoding the target protein may be linked to the downstream end of the promoter region and the secretory signal region. The target protein may be any of heterologous proteins such as various enzyme proteins and physiologically active peptides, but is preferably a 10 kDa to 50 kDa protein, particularly preferably a 10 kDa to 35 kDa protein. Further, a physiologically active protein is preferable, and among them, a human-derived protein, particularly, cystatins and human growth hormone are preferable.
[0020]
Such a Bacillus bacterium-derived alkaline cellulase-derived alkaline cellulase-derived promoter vector and a secretion signal peptide region and an expression vector holding a DNA fragment containing a gene encoding a heterologous protein may be any plasmid that is maintained and propagated by Bacillus subtilis.Staphylococcus  aureusPUB110 of origin,Bacillus  cereusPBC16 of origin,Enterococcus  faecalisPAMα1, a shuttle vector pHY300PLK containing a part of pAMα1, and the like.
[0021]
To transform host Bacillus subtilis using such a vector, known methods such as a protoplast method, a competent cell method, and an electroporation method may be used.
[0022]
By culturing the thus obtained recombinant Bacillus subtilis (transformant) under a suitable culture condition in a medium in which the recombinant B. subtilis can grow, a large amount of the target protein can be produced.
[0023]
The method for producing the protein of the present invention using such a recombinant B. subtilis is particularly suitable for the production of large amounts of cystatins and human growth hormone.
Cystatins are a general term for cysteine protease inhibitors, which are widely distributed in human tissues and body fluids, form close and reversible complexes with cysteine proteases such as cathepsins B, H, L and S, and form these proteases. Are involved in the regulation of normal or pathological processes. Therefore, cystatin is acquired pneumonia (emphysema), fulminant hepatitis, myocardial infarction, adult respiratory distress syndrome, shock-like syndrome caused by bacterial toxins, diseases caused by selective inhibition of cathepsin K (osteoporosis, Paget's disease, Malignant hypercalcemia, metabolic bone disease, etc.).
[0024]
Conventionally, in the production of such cystatins, recombinant production using a gene encoding the amino acid structure thereof has been attempted, and recombinant Escherichia coli of cystatin A, cystatin B, cystatin α and cystatin S, including cystatin C,E.coli) Is known, but its productivity is low and it has not reached a practical level. By using the method of the present invention, cystatins can be produced efficiently and in large quantities.
[0025]
Here, the cystatins are not limited to their origins and types, but all cystatin superfamilies classified into family 1 (stefin family), family 2 (cystatin family) and family 3 (kininogen family), and cysteine A novel cysteine protease inhibitor described in JP-A-7-126294, which has an inhibitory activity on protease, and a cystatin-like protein such as CSTIN described in JP-A-2001-512966 are exemplified.
[0026]
Thus, 1) Family 1 includes human cystatin A, human cystatin B, rat cystatin α, rat cystatin β, human c-Ha-ras oncogene product-p21, oryzacystatin I, oryzacystatin II, corn cystatin, soyastatin, etc. 2) Family 2 includes human cystatin C, human cystatin S, human cystatin SN, human cystatin SA, human cystatin D, human cystatin M, human leukocystatin (cystatin F), rat cystatin C, rat cystatin S , Mouse cystatin C, mouse leuconocystatin, chicken cystatin, quail cystatin, bovine colostrum cystatin, carpcystatin, taiwan cobra venom cystatin, horseshoe crab statin, Cham salmon cystatin Down,DrosophiaCystatin, circocystatin, viper venom cystatin, etc. 3) Family 3 includes human low molecular weight kininogen, human high molecular weight kininogen, bovine low molecular weight kininogen, bovine high molecular weight kininogen, rat low molecular weight kininogen, rat high molecular weight Kininogen, rat T-kininogen 1, rat T-kininogen 2, and the like.
[0027]
Among them, for production using the recombinant Bacillus subtilis of the present invention, those belonging to family 2 are particularly preferable, and cystatin S, cystatin SA and cystatin SN, which are cystatins derived from human saliva, are particularly suitable.
[0028]
Human growth hormone (hGH) is one of the peptide hormones secreted from the human pituitary gland and consists of 191 amino acids and has a molecular weight of 22,000. Known physiological activities of this substance include growth promotion, fat metabolism, glucose metabolism and the like, and it has been used for a long time as a therapeutic drug for pituitary dwarfism. In addition, the expansion of the application of hGH to treatment of short stature due to chronic renal failure, burns, fractures, osteoporosis and the like is being studied. The method for producing the protein of the present invention is also suitable for efficient and mass production of such human growth hormone.
[0029]
The production of cystatins or human growth hormone is carried out by removing or inactivating one or more protease genes from a host Bacillus subtilis, and the promoter region and secretory signal peptide region of a Bacillus-derived alkaline cellulase-producing gene, and cystatins or human growth hormone. It can be carried out by using a recombinant Bacillus subtilis transformed with a vector carrying a DNA fragment containing a gene encoding a hormone and culturing it in a suitable medium under suitable culture conditions.
The gene encoding cystatins or human growth hormone may be obtained by a known method such as extraction or amplification from a living body, or chemical synthesis based on a known amino acid sequence.
[0030]
The type of medium used for culturing the recombinant Bacillus subtilis is not particularly limited as long as it contains an appropriate nitrogen source, carbon source, and mineral, and can grow the Bacillus subtilis host of the present invention and produce the target protein. For example, a recombinant B. subtilis 168Δ containing the DNA fragment represented by SEQ ID NO: 2aprE(PH237-US) When cystatins are produced by a strain, a medium containing a monosaccharide such as glucose or fructose, a disaccharide such as sucrose or maltose, or a polysaccharide such as soluble starch as a carbon source, or a nitrogen source , A CM extract containing yeast extract, fish meat extract, corn steep liquor (CSL), and the like.
[0031]
The pH of the medium may be any pH within a range in which the recombinant Bacillus subtilis used can grow, but is preferably adjusted to pH 6.0 to 8.0.
Culture conditions may be shaking at 15 to 42 ° C., preferably 28 to 37 ° C. for 2 to 7 days or aeration and stirring.
[0032]
【Example】
1. Test method
(1) Host strain
As a Bacillus subtilis host, alkaline protease gene (from Bacillus subtilis 168 strain)aprEBacillus subtilis 168ΔaprEAs a comparative example, Bacillus subtilis 168 strain was used. Bacillus subtilis 168ΔaprEThe method for preparing the strain is shown below.
[0033]
PCR was performed using primers Dapr1f (CTTCTAGATTGTTCCGGATCACCCTCATCCCCCTCCG: SEQ ID NO: 3) and Dapr3 (TTTTTAAGTAAGTCTCAAAGATCCGAGCGTTGCATAGTGGAAG: SEQ ID NO: 5) with the chromosomal DNA of B. subtilis 168 as a template.aprEA gene fragment A corresponding to the upstream (from -1460 to -33) of the structural gene of (1) is amplified. Similarly, PCR was performed using primers Dapr2 (CAACGCTCGGGATCTTTAGACTTACTTAAAAGACTATTTCTGTG: SEQ ID NO: 4) and Dapr4 (CGTCTAGATCTTGCGGCACTTCCGCTGTATTTG: SEQ ID NO: 6) with chromosomal DNA of Bacillus subtilis 168 as a template.aprEA gene fragment C corresponding to the downstream (268 to 1590) was amplified from the structural gene. Recombinant PCR using gene fragments A and C as templates and primers Dapr1f and Dapr4aprEFrom neighboring sequences including genesaprEDeleted the first 300 bp including the SD sequence, initiation codon, signal sequence, etc.aprEPCR fragment for deletion (ΔaprE) Was prepared. In addition, the tetracycline resistance gene (Tcr) Was amplified. Tc with blunt endr  The PCR fragment was converted to plasmid pUC18 (Takara Shuzo).HincInsertion at site II, ΔaprE  PCR fragments attached to both endsXbaAfter cleavage at the I site,XbaI site and the plasmid pUCTcrΔaprEWas built. PUCTc by protoplast transformationrΔaprEWas introduced into B. subtilis strain 168 to obtain colonies grown on a DM3 regeneration agar medium containing 15 ppm of tetracycline. One platinum loop was inoculated and cultured (30 ° C.) in an LB medium, and the overnight culture was diluted with a medium of the same composition and applied to an LB solid medium containing 1% Skim Milk. Colonies obtained by culturing at 30 ° C. for 1 day were picked on a solid medium of the same composition and an LB medium containing 15 ppm of tetracycline and 1% Skim Milk. A strain that became a tetracycline sensitive strain was obtained from a colony cultured at 30 ° C., and the result of genome analysis by PCR was performed.aprESince the desired deletion was confirmed in the region, it was changed to 168ΔaprEStocks.
[0034]
(2) Preparation of plasmid
Escherichia coli host used for gene subcloningEscherichia  coli  HB101 strain (Takara Shuzo) was used.
As a plasmid containing the cystatin S gene cloned from cDNA derived from human submandibular gland, pUSA3 (Saitoh, E., and Isemura, S., J. Biochem. 116, 399, (1994)) was used.
As a cDNA library containing the human growth hormone gene, plasmid DNA type cDNA Library Human Pituitary Grand (Takara Shuzo) was used.
Bacillus  sp. PHYEglS (Hakamada, Y., et al., Biosci. Biotechnol. Biochem., 64: 2281, (2000)) was used as a plasmid containing a KSM-S237 strain cellulase-derived promoter region and a secretory signal peptide region.
Bacillus  sp. PCL64 (Sumitomo, N., et al, Biosci. Biotechnol. Biochem., 56: 872, (1992)) was used as a plasmid containing a KSM-64 strain cellulase-derived promoter region and a secretory signal peptide region.
PHY300PLK (Takara Shuzo) was used as a vector for subcloning the gene (FIGS. 1, 2 and 3).
[0035]
(3) Medium and culture conditions used
Recombinant bacteria were cultured using the CM medium shown in Table 1 under the following culture conditions. That is, 4% of the preculture liquid cultured in a large test tube (seed medium, charged 5 mL) for 15 hours was inoculated into a 500 mL erlenmeyer flask (main medium, charged 20 mL) with a fold, at a culture temperature of 30 ° C. and a rotation speed of 210 rpm. For 3 to 4 days.
[0036]
[Table 1]
Figure 2004313169
[0037]
(4) Genetic engineering techniques
Polymerase chain reaction (PCR) was used for amplification of the gene fragment. In the PCR method,Pwo  Using a DNA polymerase (Roche Diagnostics), 5 ng of template DNA, 20 pmol each of a forward primer and a reverse primer, a PCR reaction (denaturation temperature: 94 ° C.-1 minute, annealing temperature: 54 ° C.-0.5) And the DNA chain elongation temperature: 72 ° C., repeated 4 times for 30 minutes), using a DNA Thermal Cycler (Perkin Elmer). The nucleotide sequence of the amplified gene fragment was determined by the Sanger method [F. Sangar, et. al. , Proc. Natl. Acad. Sci. USA, 74: 5463 (1982)], and it was confirmed that no sequence error occurred by the PCR method. To introduce the constructed recombinant plasmid into Bacillus subtilis, a protoplast method [Chang, S .; , And Cohen, N .; , S.M. , Mol. Gen. Genet. , 168: 111, (1979)].
[0038]
(5) Analysis of recombinant bacterial products
The culture solution after the culture was centrifuged to obtain a culture supernatant and cells. The cells are suspended in a cell disruption buffer (50 mM phosphate buffer (pH 7.4), 1 mM EDTA, 1 mM PMSF, 1 mM DTT, 5% glycerol), and sonicated (BIOMIC 7500, Output 5, Duty 5). (Cycle 50%, crushed for 15 minutes), and centrifuged supernatant was used as a crushed cell.
For SDS polyacrylamide electrophoresis (SDS-PAGE), Ready Gel J (separation gel concentration: 15%, Bio-Rad) was used, and the gel after electrophoresis was stained with Quick CBB (Kanto Chemical).
(A) Detection of cystatin S
Antibody staining was performed by electrically transferring a protein separated by SDS-PAGE from a gel onto a PVDF filter (Millipore, Immobilon transfer membrane), and then, as a primary antibody, cystatin S derived from recombinant Escherichia coli produced by the method described in Reference Examples below. Cystatin S was detected by an ECL Plus western blotting detection system (Amersham Pharmacia Biotech) using an anti-cystatin S mouse antibody against H.sup. And an HRP-labeled anti-mouse Ig antibody (Amersham Pharmacia Biotech) as a secondary antibody.
(B) Detection of human growth hormone
Antibody staining was performed by electrically transferring a protein separated by SDS-PAGE from a gel onto a PVDF filter (Millipore, Immobilon transfer membrane), and then, as a primary antibody, an anti-growth hormone antibody (Rabbit Polyclonal, PROGEN BIOTECHNIK GMBH) and a secondary antibody. The human growth hormone was detected by an ECL Plus western blotting detection system (Amersham Pharmacia Biotech) using an HRP-labeled anti-Rabbit Ig antibody (Amersham Pharmacia Biotech).
[0039]
Reference example Preparation of anti-cystatin S antibody
(1) Method for measuring papain inhibitory activity
The papain inhibitory activity of cystatin S was measured according to Barret et al. (Methods in Enzymology Vol. 80, pp 771 (1981)). Using 10 mM benzoyl-L-arginine-4-nitroanilide (Benzoil-L-arginine-4-nitroanilide) dimethylsulfoxide solution as a substrate, DTT was adjusted to a final concentration of 8 mM in a 200 mM phosphate buffer containing 2 mM EDTA. Was added. Papain was dissolved at a concentration of 1 mg / mL in DTT-free buffer. A 5% trichloroacetic acid solution was used as a reaction stopping solution. The measurement was performed according to the following procedure. A buffer solution containing 1 mL DTT, 0.05 mL of a papain solution, 0.5 mL of a sample solution, and distilled water so that the total volume became 2 mL were added to a measurement tube, and the mixture was incubated at 25 ° C. for 5 minutes. Then, 0.05 mL of the substrate solution was added and stirred. After reacting at 25 ° C. for 15 minutes, 1 mL of a reaction stop solution was added. If precipitation occurred, centrifugation was performed at 10,000 rpm for 10 minutes, and the absorbance at 405 nm of the supernatant was measured. The relative inhibitory activity was determined by the following equation (1).
Relative inhibitory activity (%) = 100 − ((A0−AI) / A0 × 100) (1)
A0: Inhibitor-free absorbance
AI: absorbance of sample
[0040]
(2) Production of cystatin S by recombinant Escherichia coli
Cystatin S derived from human saliva is described in Saito et al. [J. Biochem. 116, 399-405 (1994)]. That is, an expression vector containing the cDNA of human cystatin S is transformed into E. coli (Escherichia  coli) Recombinant operation was performed using JM109 strain (Takara Shuzo Co., Ltd.) as a host to prepare a recombinant. Preculture of the recombinant Escherichia coli was performed in 50 mL of LB medium supplemented with ampicillin (50 μg / mL). In the main culture, sucrose (4 g / L), thiamine (2 mg / L), MgSO4(1 mM), CaCl2(0.1 mM) and 16 L of medium to which ampicillin (50 mg / L) was added, and after adding 16 mL of the pre-culture liquid by a 30-L jar fermenter, the culture temperature was 37 ° C., the aeration rate was 4 L / min, and the stirring speed was 250 rpm. Was performed under the following conditions. After 4 hours of culture (OD600 = 0.5), isopropylthiogalactoside (final concentration: 0.3 mM) was added, and the cells were further cultured for 4 hours to express cystatin S. After the culture, Freige et al. [J. Biol. Chem. 268, 15737-15744 (1993)] to prepare a periplasmic fraction.
[0041]
(3) Purification of cystatin S
Purification of cystatin S was performed by ion chromatography using DEAE-Toyopearl 650C (2.5 cm × 10 cm). The periplasmic fraction was adjusted to 10 mM NH4HCO3Load onto a DEAE-Toyopearl 650C column (2.5 cm × 10 cm) equilibrated at (pH 8). 10 mM NH4HCO3(PH 8) after elution washing, 10 mM NH4HCO3(PH 8) (250 mL), 4% NaCl dissolved 10 mM NH4HCO3Elution with a gradient formed of (pH 8) (250 mL). Fractions containing recombinant cystatin S were detected by measuring papain inhibitory activity by the method described in (1).
[0042]
The fraction having papain inhibitory activity was freeze-dried, dissolved again in 60 mL of distilled water, and then desalted and concentrated to 20 mL with Centriprep3 (MILLIPORE). Further, 40 mL of distilled water was added, and desalting and concentration were similarly performed twice. From 20 mL of the obtained desalted concentrated solution, 10 mL was further concentrated with Centriprep3 to 1.5 mL. Gel filtration was performed on a Toyopearl HW55F column (1.5 cm × 94 cm) equilibrated with 1.5 mL of the obtained cystatin S concentrated solution with a 10 mM Tris-HCl buffer (pH 7.2). Fractions containing recombinant cystatin S were detected by measuring papain inhibitory activity by the method described in (1).
The fraction having papain inhibitory activity was concentrated to 2 mL by Centriprep3. The obtained concentrate was quantified by a protein assay (manufactured by Bio-Rad) using bovine serum albumin as a standard, and as a result, was 678 μg / mL.
[0043]
(4) Preparation of anti-cystatin S mouse antibody
Using the purified cystatin S obtained in (3), an anti-cystatin S mouse antibody was prepared according to a conventional method. That is, a female BALB / c mouse was immunized with 60 μL of purified cystatin S solution mixed with 100 μL of FCA and intraperitoneally injected. Further, 14, 28 and 48 days later, 60 μL of the purified cystatin S solution was mixed with 100 μL of the MPL + TDM emulsion and injected intraperitoneally. 52 days later, whole blood was collected from the tail vein of the mouse, and the antiserum was separated and used as an anti-cystatin S mouse antibody.
[0044]
Comparative Example 1 Expression of human cystatin S by Bacillus subtilis 168 strain
A recombinant plasmid using the promoter region and the signal peptide region of the cellulase-producing gene derived from the KSM-S237 strain was constructed.
That is, a PCR was carried out using two types of primers of S237UE (GCGAATTCGATTTGCCGATGCACAAGGCTTATATTTAG; SEQ ID NO: 8) and CS237D (CTCCTCCTTGGAGCTCGATGCTGCACAGAGCTGC; SEQ ID NO: 10) using the plasmid pHYEglS5ng as a template, and a S-cell-derived 2nA-derived PCR gene using a 37-cell secretion gene with a gene derived from a S-cell-derived 2nK-derived PCR gene using a 2-cell-derived K-derived gene as a promoter. A 0.6 Kb gene fragment encoding the signal peptide region was obtained. Similarly, using 5ng of plasmid pUSA3 as a template, PCR of 20 nmol of each of two types of primers using 237 CSU (GCAGCTCTTGCAGCATCGAGCTCCAAGGGAGG; SEQ ID NO: 9) and pSD (GAAAGCTTAGGCTTCTTGACACCTGGAGTTCACCAGGGACATTCTGG; Got. The nucleotide sequence of this 0.4 Kb fragment was determined by the Sanger method, and theEcoIt was confirmed that the RI site was deleted without affecting codons (AAT → AAC). The promoter region and the signal peptide region of the cellulase-producing gene derived from the KSM-S237 strain were subjected to PCR using the isolated 0.6 Kb fragment and the 0.4 Kb fragment with 5 ng each as a template and 20 nmol of each of two kinds of primers, S237UE and pSD. A 1.0 kb gene fragment was obtained in which the gene encoding human cystatin S was bound to the downstream end. The obtained 1.0 Kb fragment and plasmid pHY300PLK wereEcoRI andHinAfter the dIII treatment, ligation was performed using T4 DNA ligase. This ligation product was introduced into Escherichia coli HB101 strain, and a transformant was selected using an LB medium containing 5 μg / mL tetracycline. The recombinant plasmid carried by the recombinant Escherichia coli was prepared in the usual manner [D. , M .; , Glover, DNA Cloning Volume II, IRL PRESS, Oxford, Washington DC, (1985)], and the obtained recombinant plasmid was analyzed for restriction enzyme cleavage points to obtain a recombinant plasmid pH237-US. (FIG. 1). Recombinant plasmid pH237-US was introduced into B. subtilis 168 strain by the protoplast method, and the obtained B. subtilis was cultured (30 ° C., 3 days), and SDS electrophoretic analysis of the culture supernatant was performed. As a result, a protein band having a molecular size (14 Kd) corresponding to human cystatin S was detected in the disrupted bacterial cells by antibody staining, but a protein band reactive with the antibody was not detected in the culture supernatant ( (Fig. 4).
[0045]
Comparative Example 2 Expression of human growth hormone by Bacillus subtilis 168 strain
Bacillus  sp. A recombinant plasmid using a promoter region and a secretory signal peptide region derived from the KSM-S237 strain cellulase was constructed.
Specifically, a KSM-produced PCR gene derived from a SSM-derived 37% -produced KSM-based PCR gene using a 5 ng plasmid pHYEglS as a template, and a SSMUE-derived PCR gene using two primers, S237UE (GCGAATTCGATTTGCCGATGCAACAGGCTTATAATTTAG; SEQ ID NO: 8) and GH237D (GGTTGGGAATGCTGCAAGAGCTGC; A 0.6 Kb gene fragment encoding the signal peptide region was obtained. Similarly, 237GHU (CTTGCAGCATTCCCAACCATTCCCTTATC ;; SEQ ID NO: 12) and GHDH (GAAACTTCTAAGAGCCACAGCTGCCCTCCCACn with a sequence of 20 kB of each primer of SEQ ID NO: 13 using 5 ng of a plasmid DNA type cDNA Library Human Pituitary Grand (Takara Shuzo) as a template and GHGH (GAAAGCTTCTAGAAGCCACAGCTGCCCTCCCn). Was obtained. The nucleotide sequence of this 0.6 Kb fragment was determined by the Sanger method, and it was confirmed that this fragment encodes human growth hormone. The promoter region and the signal peptide region of the cellulase-producing gene derived from the KSM-S237 strain were subjected to PCR using the isolated 0.6 Kb fragment and the 0.6 Kb fragment with 5 ng each as a template and 20 nmol of each of two primers of S237UE and GHDH. A 1.2 kb gene fragment having a gene encoding human growth hormone bound to the downstream end was obtained. The obtained 1.2 Kb fragment and plasmid pHY300PLK wereEcoRI andHinAfter the dIII treatment, ligation was performed using T4 DNA ligase. This ligation product was introduced into Escherichia coli HB101 strain, and a transformant was selected using an LB medium containing 5 μg / mL tetracycline. The recombinant plasmid carried by the recombinant Escherichia coli was prepared in the usual manner [D. , M .; , Glover, DNA Cloning Volume II, IRL PRESS, Oxford, Washington DC, (1985)], and the obtained recombinant plasmid was analyzed for restriction enzyme cleavage points to obtain a recombinant plasmid pH237-GH ( (Fig. 2). The recombinant plasmid pH237-GH was introduced into the Bacillus subtilis 168 strain by the protoplast method, and the resulting Bacillus subtilis was cultured (30 ° C., 3 days), and SDS electrophoretic analysis of the culture supernatant was performed. As a result, no protein band reacting with the antibody could be detected in the culture supernatant by antibody staining.
[0046]
Comparative Example 3 Expression of human cystatin S by B. subtilis strain 168
A recombinant plasmid was constructed using the promoter region and the secretory signal peptide region of the cellulase production gene derived from the KSM-64 strain.
That is, a cellulase gene derived from a KSM-64 strain-derived promoter and a cellulase gene derived from a KSM-64 strain-producer gene was generated by PCR using 5 ng of plasmid pCL64 as a template and 20 nmol of each of SP64UE (TAGAATTCGAAGACAACGGACATAAGAAA; SEQ ID NO: 14) and CS64D (CTCCTCCTTGGAGCTCGATGCTGCAAAGAGCTGC; SEQ ID NO: 15). A 0.6 Kb gene fragment encoding the signal peptide region was obtained. Similarly, PCR was carried out using two types of primers, 64 cSU (GCAGCTCTTGCAGCATCGAGGCTCAAGGGAGGAG; SEQ ID NO: 16) and pSD (GAAAGCTTAGGCTTCTTGACACCTGGAGTTCACCAGGGGACATTCTGG; SEQ ID NO: 7) using 5 ng of the plasmid pUSA3 as a template. Got. The nucleotide sequence of this 0.4 Kb fragment was determined by the Sanger method, and theEcoIt was confirmed that the RI site was deleted without affecting codons (AAT → AAC)
. The promoter region and the signal peptide region of the cellulase-producing gene derived from the KSM-64 strain were subjected to PCR using the isolated 0.6 Kb fragment and the 0.4 Kb fragment with 5 ng each as a template and 20 nmol of each of two kinds of primers of SP64UE and pSD. A 1.0 kb gene fragment was obtained in which the gene encoding human cystatin S was bound to the downstream end. The obtained 1.0 Kb fragment and plasmid pHY300PLK wereEcoRI andHinAfter dIII treatment, T4 DNA ligase
Coupled. This ligation product was introduced into Escherichia coli HB101 strain, and a transformant was selected using an LB medium containing 5 μg / mL tetracycline. The recombinant plasmid carried by the recombinant Escherichia coli was prepared in the usual manner [D. , M .; , Glover, DNA Cloning Volume II, IRL PRESS, Oxford, Washington DC, (1985)], and the obtained recombinant plasmid was analyzed for restriction enzyme cleavage points to obtain a recombinant plasmid pH64-US. (FIG. 3). Recombinant plasmid pH64-US was introduced into B. subtilis 168 strain by the protoplast method, and the obtained B. subtilis was cultured (30 ° C., 3 days), and SDS electrophoretic analysis of the culture supernatant was performed. As a result, no protein band reacting with the antibody could be detected in the culture supernatant by antibody staining.
[0047]
Example 1 Alkaline alkaline prosthesis gene-deficient strain (ΔaprEExpression of cystatin
Recombinant plasmid pH237-USBacillus  subtilis  168ΔaprEThe resulting recombinant was cultured (30 ° C., 4 days), and the culture supernatant was analyzed by SDS electrophoresis. As a result, antibody staining confirmed that a large amount of cystatin was extracellularly secreted, and that protein production was at a production level at which production could be sufficiently confirmed (FIG. 5).
[0048]
Example 2 Alkaline protease gene-deficient strain (168%aprEOf human growth hormone by Strain
The recombinant plasmid pH237-GH was replaced with B. subtilis 16816.aprEThe resulting recombinant was cultured, and the culture supernatant was subjected to SDS electrophoretic analysis. As a result, it was confirmed by antibody staining that human growth hormone was secreted extracellularly (FIG. 6).
[0049]
Example 3 Alkaline protease gene deficient strain (168%aprEExpression of cystatin
The recombinant plasmid pH64-US was replaced with B. subtilis 16816.aprEThe resulting recombinant was cultured, and the culture supernatant was subjected to SDS electrophoretic analysis. As a result, it was confirmed by antibody staining that cystatin was secreted extracellularly (FIG. 7).
[0050]
【The invention's effect】
Use of the recombinant Bacillus subtilis of the present invention enables efficient and large-scale production of the target protein.
[0051]
[Sequence list]
Figure 2004313169
Figure 2004313169
Figure 2004313169
Figure 2004313169
Figure 2004313169
Figure 2004313169
Figure 2004313169

[Brief description of the drawings]
FIG. 1 shows the construction of a cystatin recombinant plasmid (S237 promoter region, secretory signal peptide region).
FIG. 2 shows the construction of a human growth hormone recombinant plasmid (S237 promoter region, secretory signal peptide region).
FIG. 3 shows the construction of a cystatin recombinant plasmid (64 promoter region, secretory signal peptide region).
FIG. 4 is a view showing the results of analysis of a recombinant Bacillus subtilis product (human cystatin S) into which an S237 promoter region and a secretory signal peptide region have been introduced (Comparative Example 1).
FIG. 5 is a view showing the results of analysis of a recombinant Bacillus subtilis product (human cystatin S) into which an S237 promoter region and a secretory signal peptide region have been introduced (Example 1).
FIG. 6 shows the results of analysis of a recombinant Bacillus subtilis product (human growth hormone) into which an S237 promoter region and a secretory signal peptide region have been introduced (Example 2).
FIG. 7 shows the results of analysis of a recombinant Bacillus subtilis product (human cystatin S) into which a 64 promoter region and a secretory signal peptide region have been introduced (Example 3).

Claims (5)

1以上のプロテアーゼ遺伝子を削除又は不活性化した宿主枯草菌を、バチルス属細菌由来アルカリセルラーゼ産生遺伝子のプロモーター領域及び分泌シグナルペプチド領域と目的タンパク質をコードする遺伝子とを含むDNA断片を保持するベクターで形質転換させてなる組換え枯草菌。A host Bacillus subtilis, in which one or more protease genes have been deleted or inactivated, is transformed with a vector containing a DNA fragment containing a promoter region and a secretory signal peptide region of a Bacillus bacterium-derived alkaline cellulase producing gene and a gene encoding a target protein. Recombinant Bacillus subtilis obtained by transformation. バチルス属細菌が、Bacillus sp. KSM−64(FERM P−10482)又はBacillus sp. KSM−S237(FERM P−16067)である請求項1記載の組換え枯草菌。 Bacillus sp. KSM-64 (FERM P-10482) or Bacillus sp. The recombinant Bacillus subtilis according to claim 1, which is KSM-S237 (FERM P-16067). プロテアーゼ遺伝子が、アルカリプロテアーゼ遺伝子(aprE)である請求項1又は2記載の組換え枯草菌。3. The recombinant Bacillus subtilis according to claim 1, wherein the protease gene is an alkaline protease gene ( aprE ). 請求項1〜3のいずれか1項記載の組換え枯草菌を培養し、当該培養物中から目的タンパク質を分離するタンパク質の製造法。A method for producing a protein, comprising culturing the recombinant Bacillus subtilis according to any one of claims 1 to 3, and isolating the target protein from the culture. 目的タンパク質が、シスタチン類又はヒト成長ホルモンである請求項4記載の製造法。The method according to claim 4, wherein the target protein is a cystatin or human growth hormone.
JP2003204599A 2002-08-02 2003-07-31 Recombinant Bacillus subtilis Expired - Fee Related JP4346368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003204599A JP4346368B2 (en) 2002-08-02 2003-07-31 Recombinant Bacillus subtilis

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002226244 2002-08-02
JP2003054026 2003-02-28
JP2003204599A JP4346368B2 (en) 2002-08-02 2003-07-31 Recombinant Bacillus subtilis

Publications (2)

Publication Number Publication Date
JP2004313169A true JP2004313169A (en) 2004-11-11
JP4346368B2 JP4346368B2 (en) 2009-10-21

Family

ID=33479503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003204599A Expired - Fee Related JP4346368B2 (en) 2002-08-02 2003-07-31 Recombinant Bacillus subtilis

Country Status (1)

Country Link
JP (1) JP4346368B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068148A1 (en) * 2004-12-20 2006-06-29 Kao Corporation Recombinant microorganism
JP2006211934A (en) * 2005-02-02 2006-08-17 Kao Corp Recombinant microorganism
JP2006325586A (en) * 2005-04-28 2006-12-07 Kao Corp Recombinant microorganism
WO2007043327A1 (en) * 2005-10-13 2007-04-19 Kao Corporation Novel bacillus subtilis mutant strain
JP2008048732A (en) * 2006-07-28 2008-03-06 Kao Corp Method for producing dipicolinic acid or its salt
JP2009038985A (en) * 2007-08-06 2009-02-26 Kao Corp Microorganism and method for producing protein or polypeptide by using the same
JP2020092616A (en) * 2018-12-10 2020-06-18 花王株式会社 Method for producing monoacylglycerol lipase

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069986A (en) * 1999-09-03 2001-03-21 Kao Corp Plasmid vector
JP2001231569A (en) * 2000-02-24 2001-08-28 Kao Corp Alkali cellulase gene
JP2002112792A (en) * 2000-10-11 2002-04-16 Kao Corp HIGHLY PRODUCTIVE alpha-AMYLASE
JP2002171987A (en) * 2000-12-08 2002-06-18 Kao Corp Alkaline cellulase gene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069986A (en) * 1999-09-03 2001-03-21 Kao Corp Plasmid vector
JP2001231569A (en) * 2000-02-24 2001-08-28 Kao Corp Alkali cellulase gene
JP2002112792A (en) * 2000-10-11 2002-04-16 Kao Corp HIGHLY PRODUCTIVE alpha-AMYLASE
JP2002171987A (en) * 2000-12-08 2002-06-18 Kao Corp Alkaline cellulase gene

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 68, no. 7, JPN6008062662, July 2002 (2002-07-01), pages 3261 - 3269, ISSN: 0001326566 *
CURRENT OPINION IN BIOTECHNOLOGY, vol. 6, JPN6008036814, 1995, pages 517 - 522, ISSN: 0001094894 *
JOURNAL OF BACTERIOLOGY, vol. 184, no. 1, JPN6008036816, January 2002 (2002-01-01), pages 76 - 81, ISSN: 0001094895 *
JOURNAL OF INDUSTRIAL MICROBIOLOGY AND BIOTECHNOLOGY, vol. 19, JPN6008062660, 1997, pages 227 - 231, ISSN: 0001326567 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068148A1 (en) * 2004-12-20 2006-06-29 Kao Corporation Recombinant microorganism
JP2006174707A (en) * 2004-12-20 2006-07-06 Kao Corp Recombinant microorganism
JP4485341B2 (en) * 2004-12-20 2010-06-23 花王株式会社 Recombinant microorganism
US7829322B2 (en) 2004-12-20 2010-11-09 Kao Corporation Recombinant microorganism comprising inactivation of the AprX gene
JP2006211934A (en) * 2005-02-02 2006-08-17 Kao Corp Recombinant microorganism
JP4643999B2 (en) * 2005-02-02 2011-03-02 花王株式会社 Recombinant microorganism
JP2006325586A (en) * 2005-04-28 2006-12-07 Kao Corp Recombinant microorganism
WO2007043327A1 (en) * 2005-10-13 2007-04-19 Kao Corporation Novel bacillus subtilis mutant strain
US7981659B2 (en) 2005-10-13 2011-07-19 Kao Corporation Bacillus subtilis mutant strain
JP2008048732A (en) * 2006-07-28 2008-03-06 Kao Corp Method for producing dipicolinic acid or its salt
JP2009038985A (en) * 2007-08-06 2009-02-26 Kao Corp Microorganism and method for producing protein or polypeptide by using the same
JP2020092616A (en) * 2018-12-10 2020-06-18 花王株式会社 Method for producing monoacylglycerol lipase

Also Published As

Publication number Publication date
JP4346368B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
Peng et al. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food
Ye et al. High‐level secretory production of intact, biologically active staphylokinase from Bacillus subtilis
Yao et al. Characterization of a fibrinolytic enzyme secreted by Bacillus velezensis BS2 isolated from sea squirt jeotgal
CN111601894B (en) Method for producing M23A family protease
JP4346368B2 (en) Recombinant Bacillus subtilis
Kang et al. Efficient production of intact human parathyroid hormone in a Saccharomyces cerevisiae mutant deficient in yeast aspartic protease 3 (YAP3)
Fraipont et al. Engineering and overexpression of periplasmic forms of the penicillin-binding protein 3 of Escherichia coli
Olędzka et al. High-level expression, secretion, and purification of the thermostable aqualysin I from Thermus aquaticus YT-1 in Pichia pastoris
JP3550409B2 (en) Dipeptidyl aminopeptidase of dictyosterium
Park et al. Efficient recovery of secretory recombinant proteins from protease negative mutant Escherichia coli strains
US6531294B1 (en) Preparation of pancreatic procarboxypeptidase B, isoforms and muteins thereof and their use
JP2004097153A (en) Recombinant bacillus megaterium
Pérez-Sánchez et al. High-level production of a recombinant Vibrio proteolyticus leucine aminopeptidase and its use for N-terminal methionine excision from interferon alpha-2b
JP7233203B2 (en) Method for producing M23A family protease
RU2502803C2 (en) PLASMID FOR EXPRESSION IN CELLS OF BACTERIUM BELONGING TO Escherichia CLASS, NON-ACTIVE PREDECESSOR OF DNase I OF HUMAN OR ITS MUTEINS; BACTERIUM BELONGING TO Escherichia CLASS, - PRODUCER OF NON-ACTIVE PREDECESSOR OF RECOMBINANT DNase I OF HUMAN OR ITS MUTEIN; PREDECESSOR OF RECOMBINANT DNase I OF HUMAN OR ITS MUTEIN; METHOD FOR OBTAINING RECOMBINANT DNase I OF HUMAN OR ITS MUTEIN; METHOD FOR OBTAINING CONJUGATES OF POLYETHYLENE GLYCOL AND RECOMBINANT MUTEIN OF HUMAN DNase I, FERMENTATIVE ACTIVE CONJUGATE OF MUTEIN OF RECOMBINANT DNase I OF HUMAN
WO2006054595A1 (en) Novel high alkaline protease and use thereof
EP0352387B1 (en) Method for preparing a hirudin
Kang et al. A codon-optimized endoprotease Endo-Pro-Aspergillus niger: Over expression and high-density fermentation in Pichia pastoris
JPH0522508B2 (en)
US10947521B2 (en) Process for producing recombinant trypsin
KR930003913B1 (en) Method for preparation of polypeptide having thrombin inhibiting activity
JP3516318B2 (en) Novel endopeptidase
Akiba et al. Extracellular production of human cystatin S and cystatin SA by Bacillus subtilis
EP3221449B1 (en) Process for refolding recombinant chymotrypsin
KR100844992B1 (en) Method for Extracellular Production of Human Epidermal Growth Factor by Co-expression of OmpF and Human Epidermal Growth Factor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees