JP2004312547A - Patch antenna apparatus - Google Patents

Patch antenna apparatus Download PDF

Info

Publication number
JP2004312547A
JP2004312547A JP2003105565A JP2003105565A JP2004312547A JP 2004312547 A JP2004312547 A JP 2004312547A JP 2003105565 A JP2003105565 A JP 2003105565A JP 2003105565 A JP2003105565 A JP 2003105565A JP 2004312547 A JP2004312547 A JP 2004312547A
Authority
JP
Japan
Prior art keywords
metal frame
dielectric substrate
patch
patch antenna
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003105565A
Other languages
Japanese (ja)
Inventor
Genshu To
元珠 竇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2003105565A priority Critical patent/JP2004312547A/en
Priority to US10/812,334 priority patent/US7079078B2/en
Publication of JP2004312547A publication Critical patent/JP2004312547A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a patch antenna apparatus suitable for receiving ground waves and signal waves from a low evaluation-satellite. <P>SOLUTION: An antenna element 2 and a metal frame 3 are disposed on a ground plane 1 to configure a patch antenna apparatus. The antenna element 2 is configured so that a patch electrode 5 and a ground electrode 6 are provided on both top and bottom surfaces of a dielectric substrate 4 respectively, and current-feed pins 7 are connected to the patch electrode 5. The metal frame 3 is erected on a position surrounding the external peripheral surface of the dielectric substrate 4, and the height dimension of the metal frame 3 is set at a value slightly larger than the thickness dimension of the dielectric substrate 4. Since radio waves reflected from the antenna element 2 are reflected when they reach the metal frame 3, the radio waves travelling in the same phase so interfere that the travelling direction is changed more downward than the existing direction when they go over the metal frame 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、車載用小型アンテナ等として用いて好適なパッチアンテナ装置に係り、特に、その放射パターンのビーム整形に関する。
【0002】
【従来の技術】
パッチアンテナは、上面にパッチ電極を設けた誘電体基板をグラウンド面上に設置し、このパッチ電極に給電ピン等を介して所定の高周波電流を給電するようになした平面アンテナであり、衛星波を受信する車載用小型アンテナ等として広く採用されている。かかるパッチアンテナにおいて高利得化を図るためには、グラウンド面がパッチ電極に比べて十分に大面積であることが必要である。また、パッチアンテナの性能を安定させるために、誘電体基板の下面にグラウンド面と接触または近接して対向するアース電極を設けた構成のものが多い(例えば、特許文献1参照)。
【0003】
一般に、パッチアンテナの最大放射方向はパッチ電極の真上方向なので、例えば車輛のルーフ面上等に設置したパッチアンテナによって、天頂付近に位置する衛星からの信号波を効率よく受信することができる。
【0004】
【特許文献1】
特開平6−224620号公報(第2〜4頁、図1)
【0005】
【発明が解決しようとする課題】
しかしながら、最大放射方向が天頂方向であるパッチアンテナでは、地上波を効率よく受信することはできない。そのため、最近計画されているSバンドラジオ放送(S−band Digital Audio Radio Satellite)のように、衛星からの信号波を地上のリピータが受信して再送信するというシステムにおいて、車輛のルーフ面上等に従来のパッチアンテナを設置しても、リピータからの地上波を受信する平面アンテナとしては利用できず、ポールアンテナのように上方へ高く突出するアンテナが必要となってしまう。また、最大放射方向が天頂方向であるパッチアンテナは、仰角の低い衛星からの信号波を受信する場合にも不向きである。
【0006】
本発明は、このような従来技術の実情に鑑みてなされたもので、その目的は、地上波や低仰角の衛星からの信号波を受信するのに好適なパッチアンテナ装置を提供することにある。
【0007】
【課題を解決するための手段】
上述した目的を達成するために、本発明によるパッチアンテナ装置は、グラウンド面上に設置された誘電体基板の上面にパッチ電極を設け、このパッチ電極に給電手段を接続すると共に、前記誘電体基板の外周面を包囲する位置に金属枠を設ける構成とした。
【0008】
このように構成されたパッチアンテナ装置では、パッチ電極とグラウンド面との間の電界変化によって放射された電波が金属枠に到達すると反射されるため、同一位相で進行していく電波は該金属枠を乗り越える際に、進行方向をそれまでよりも下向きに変化させる干渉を受けることとなる。その結果、このパッチアンテナ装置はパッチ電極の真上方向での利得が低下し、最大放射方向がパッチ電極の真上から斜め上方へと変化する。したがって、このパッチアンテナ装置は車輛のルーフ面上等に設置しても、地上波や低仰角の衛星からの信号波を効率よく受信することが可能となる。
【0009】
かかる構成において、前記金属枠の高さ寸法は前記誘電体基板に近いほど低く設定することができるが、金属枠を誘電体基板からある程度離隔させたほうが共振周波数帯域を広げることができるため、金属枠の高さ寸法を誘電体基板の厚さ寸法よりも大きく設定しておくことが好ましい。
【0010】
また、かかる構成において、前記金属枠の平面視形状を前記誘電体基板の外形の平面視形状と略相似形にしておけば、スペースファクタが向上するため好ましい。
【0011】
【発明の実施の形態】
以下、発明の実施の形態について図面を参照して説明すると、図1は本発明の実施形態例に係るパッチアンテナ装置の縦断面図、図2は該パッチアンテナ装置の平面図、図3は該パッチアンテナ装置の金属枠によって放射ビームが整形される様子を示す説明図、図4は該パッチアンテナ装置の放射パターンを比較例と共に示す特性図である。
【0012】
図1,2に示すパッチアンテナ装置は、グラウンド面1上にアンテナ素子2と金属枠3とを設置して概略構成されており、グラウンド面1としては例えば車輛の金属ボディ等が好適である。アンテナ素子2は、合成樹脂等の誘電体材料からなる誘電体基板4と、誘電体基板4の上面に設けられたパッチ電極5と、誘電体基板4の下面のほぼ全面に設けられたアース電極6と、誘電体基板4を貫通してパッチ電極5に接続された給電ピン7とによって構成され、給電ピン7は図示せぬ給電回路に接続されている。本実施形態例の場合、誘電体基板4として用いられる誘電体材料の比誘電率εrはεr≒6であり、パッチ電極5は一辺の長さが20mmの正方形であって、円偏波を受信するためにパッチ電極5の適宜2箇所に給電ピン7を接続する2点給電を行っている。
【0013】
金属枠3は誘電体基板4の外周面を包囲する位置に立設されており、この金属枠3の高さ寸法は誘電体基板4の厚さ寸法よりも若干大きく設定されている。本実施形態例の場合、誘電体基板4の外形の平面視形状が正方形なので、金属枠3の平面視形状も略正方形にすることにより、誘電体基板4と金属枠3との間隔を全周に亘って一定にしている。具体的には、誘電体基板4は一辺の長さが30mm、厚さ寸法が6mmの角板であり、一方、金属枠3は一辺32mmの正方形状に配置され、その高さ寸法は8mmである。
【0014】
このように構成されたパッチアンテナ装置は、給電ピン7を介してパッチ電極5に所定の高周波電流を給電すると、パッチ電極5とグラウンド面1やアース電極6との間の電界変化に応じた電波(例えば周波数2.338GHzの放射ビーム)が放射されるが、この電波は金属枠3に到達すると反射されるため、図3に示すように、同一位相で進行していく電波は金属枠3を乗り越える際に、進行方向をそれまでよりも下向きに変化させる干渉を受けることとなる。すなわち、金属枠3が存在しないと仮定した場合、アンテナ素子2からの放射ビームの同一位相面は図3に鎖線で示すような曲線となるが、アンテナ素子2を金属枠3で包囲している本実施形態例においては、放射ビームの同一位相面が金属枠3の影響で図3に実線で示すような曲線になる。その結果、このパッチアンテナ装置はパッチ電極5の真上方向での利得が低下して、放射パターンが図4に実線で示すように真上から押し潰されたような偏平形状となり、その最大放射方向はパッチ電極5の斜め上方(仰角30°付近)になっている。なお、図4において、鎖線で示す放射パターンは金属枠3が存在しない場合の比較例であり、その最大放射方向はパッチ電極5の真上(天頂方向)になっている。
【0015】
上述したように、本実施形態例に係るパッチアンテナ装置は、誘電体基板4の周囲に金属枠3を配設することによってパッチ電極5の真上方向での利得を低下させ、最大放射方向が低仰角な向きとなるようにビーム整形しているので、飛来する信号波の仰角が20°程度でも受信可能なパッチアンテナ装置となっている。それゆえ、このパッチアンテナ装置は車輛のルーフ面上等に設置しても、地上波や低仰角の衛星からの信号波を効率よく受信することが可能で、Sバンドラジオ放送等に好適な車載用小型アンテナとして利用できる。
【0016】
なお、上記実施形態例のように、金属枠3の平面視形状を誘電体基板4の外形の平面視形状と略相似形にしておけば、スペースファクタが向上するため好ましいが、両者が相似形でなくてもほぼ同様のビーム整形効果を期待できる。また、金属枠3の高さ寸法は誘電体基板4に近いほど低く設定することができるが、金属枠3を誘電体基板4からある程度離隔させたほうが共振周波数帯域を広げることができるため、上記実施形態例のように、金属枠3の高さ寸法を誘電体基板4の厚さ寸法よりも大きく設定しておくほうが好ましい。
【0017】
さらに、上記実施形態例では、円偏波を受信するために2点給電を行っているが、パッチ電極5に縮退分離素子を装荷して1点給電で円偏波を受信する場合や、直線偏波を受信する場合にも、本発明は適用可能である。
【0018】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
【0019】
誘電体基板の周囲に金属枠を配設することによってパッチ電極の真上方向での利得を低下させ、もって最大放射方向が低仰角な向きとなるようにビーム整形したパッチアンテナ装置なので、車輛のルーフ面上等に設置しても地上波や低仰角の衛星からの信号波を効率よく受信することができる。
【図面の簡単な説明】
【図1】本発明の実施形態例に係るパッチアンテナ装置の縦断面図である。
【図2】該パッチアンテナ装置の平面図である。
【図3】該パッチアンテナ装置の金属枠によって放射ビームが整形される様子を示す説明図である。
【図4】該パッチアンテナ装置の放射パターンを比較例と共に示す特性図である。
【符号の説明】
1 グラウンド面
2 アンテナ素子
3 金属枠
4 誘電体基板
5 パッチ電極
6 アース電極
7 給電ピン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a patch antenna device suitable for use as a small-sized vehicle-mounted antenna or the like, and particularly to a beam shaping of a radiation pattern thereof.
[0002]
[Prior art]
A patch antenna is a planar antenna in which a dielectric substrate provided with a patch electrode on an upper surface is placed on a ground plane, and a predetermined high-frequency current is supplied to the patch electrode via a power supply pin or the like. It is widely adopted as a small-sized in-vehicle antenna for receiving a signal. In order to increase the gain of such a patch antenna, the ground plane needs to have a sufficiently large area as compared with the patch electrode. In addition, in order to stabilize the performance of the patch antenna, there is often a configuration in which a ground electrode is provided on the lower surface of the dielectric substrate so as to be in contact with or close to the ground surface (for example, see Patent Document 1).
[0003]
In general, since the maximum radiation direction of the patch antenna is directly above the patch electrode, a signal wave from a satellite located near the zenith can be efficiently received by, for example, a patch antenna installed on a roof surface of a vehicle or the like.
[0004]
[Patent Document 1]
JP-A-6-224620 (pages 2 to 4, FIG. 1)
[0005]
[Problems to be solved by the invention]
However, a patch antenna whose maximum radiation direction is the zenith direction cannot receive ground waves efficiently. Therefore, in a system in which a signal wave from a satellite is received and retransmitted by a terrestrial repeater, such as a recently planned S-band digital audio satellite (S-band Digital Audio Satellite), such as on the roof surface of a vehicle. Even if a conventional patch antenna is installed, it cannot be used as a planar antenna for receiving terrestrial waves from a repeater, and an antenna that protrudes upwards like a pole antenna is required. A patch antenna whose maximum radiation direction is the zenith direction is also unsuitable for receiving a signal wave from a satellite having a low elevation angle.
[0006]
The present invention has been made in view of such a situation of the related art, and an object of the present invention is to provide a patch antenna device suitable for receiving a terrestrial wave or a signal wave from a low-elevation angle satellite. .
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, a patch antenna device according to the present invention is provided with a patch electrode provided on an upper surface of a dielectric substrate provided on a ground plane, a feeder connected to the patch electrode, and A metal frame is provided at a position surrounding the outer peripheral surface of the.
[0008]
In the patch antenna device configured as described above, the radio waves radiated by the change in the electric field between the patch electrode and the ground plane are reflected when reaching the metal frame. When the vehicle gets over the vehicle, the vehicle is subject to interference that changes the traveling direction downward. As a result, in this patch antenna device, the gain in the direction directly above the patch electrode decreases, and the maximum radiation direction changes from directly above the patch electrode to obliquely upward. Therefore, even if this patch antenna device is installed on the roof surface of a vehicle or the like, it is possible to efficiently receive a terrestrial wave or a signal wave from a satellite having a low elevation angle.
[0009]
In such a configuration, the height dimension of the metal frame can be set lower as the metal frame is closer to the dielectric substrate.However, since the resonance frequency band can be increased by separating the metal frame to some extent from the dielectric substrate, It is preferable that the height of the frame is set to be larger than the thickness of the dielectric substrate.
[0010]
In such a configuration, it is preferable that the shape of the metal frame in a plan view be substantially similar to the shape of the outer shape of the dielectric substrate in a plan view because a space factor is improved.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a patch antenna device according to an embodiment of the present invention, FIG. 2 is a plan view of the patch antenna device, and FIG. FIG. 4 is an explanatory diagram showing how a radiation beam is shaped by a metal frame of the patch antenna device. FIG. 4 is a characteristic diagram showing a radiation pattern of the patch antenna device together with a comparative example.
[0012]
The patch antenna device shown in FIGS. 1 and 2 is schematically constructed by installing an antenna element 2 and a metal frame 3 on a ground plane 1, and the ground plane 1 is preferably, for example, a metal body of a vehicle. The antenna element 2 includes a dielectric substrate 4 made of a dielectric material such as a synthetic resin, a patch electrode 5 provided on an upper surface of the dielectric substrate 4, and an earth electrode provided on substantially the entire lower surface of the dielectric substrate 4. 6 and a power supply pin 7 penetrating through the dielectric substrate 4 and connected to the patch electrode 5. The power supply pin 7 is connected to a power supply circuit (not shown). In the case of the present embodiment, the relative permittivity εr of the dielectric material used as the dielectric substrate 4 is εr ≒ 6, the patch electrode 5 is a square having a side length of 20 mm, and receives a circularly polarized wave. To this end, two-point power supply is performed in which the power supply pins 7 are connected to two appropriate positions of the patch electrode 5.
[0013]
The metal frame 3 is erected at a position surrounding the outer peripheral surface of the dielectric substrate 4, and the height of the metal frame 3 is set slightly larger than the thickness of the dielectric substrate 4. In the case of the present embodiment, since the outer shape of the dielectric substrate 4 is square when viewed in plan, the shape of the metal frame 3 in plan view is also substantially square, so that the distance between the dielectric substrate 4 and the metal frame 3 can be reduced all around. Is constant over a period of time. Specifically, the dielectric substrate 4 is a square plate having a side length of 30 mm and a thickness dimension of 6 mm, while the metal frame 3 is arranged in a square shape with a side length of 32 mm and a height dimension of 8 mm. is there.
[0014]
When a predetermined high-frequency current is supplied to the patch electrode 5 via the power supply pin 7, the patch antenna apparatus configured as described above receives a radio wave corresponding to a change in the electric field between the patch electrode 5 and the ground plane 1 or the ground electrode 6. (E.g., a radiation beam having a frequency of 2.338 GHz), which is reflected when it reaches the metal frame 3, so that the radio waves traveling in the same phase as shown in FIG. When the vehicle gets over the vehicle, the vehicle receives interference that changes the traveling direction downward. That is, assuming that the metal frame 3 does not exist, the same phase plane of the radiation beam from the antenna element 2 has a curve shown by a chain line in FIG. 3, but the antenna element 2 is surrounded by the metal frame 3. In the present embodiment, the same phase plane of the radiation beam becomes a curve shown by a solid line in FIG. As a result, in this patch antenna device, the gain in the direction directly above the patch electrode 5 is reduced, and the radiation pattern becomes a flat shape as crushed from directly above as shown by the solid line in FIG. The direction is obliquely above the patch electrode 5 (around an elevation angle of 30 °). In FIG. 4, a radiation pattern indicated by a chain line is a comparative example in the case where the metal frame 3 does not exist, and the maximum radiation direction is directly above the patch electrode 5 (the zenith direction).
[0015]
As described above, the patch antenna device according to the present embodiment reduces the gain just above the patch electrode 5 by disposing the metal frame 3 around the dielectric substrate 4 so that the maximum radiation direction can be reduced. Since the beam is shaped so as to have a low elevation angle, the patch antenna device can receive even when the elevation angle of the incoming signal wave is about 20 °. Therefore, even if this patch antenna device is installed on the roof surface of a vehicle or the like, it can efficiently receive a terrestrial wave or a signal wave from a satellite having a low elevation angle, and is suitable for an S-band radio broadcast or the like. It can be used as a small antenna.
[0016]
It is preferable to make the shape of the metal frame 3 in a plan view substantially similar to the shape of the outer shape of the dielectric substrate 4 in a plan view as in the above embodiment, since the space factor is improved, but both are similar. However, almost the same beam shaping effect can be expected. The height dimension of the metal frame 3 can be set lower as the metal frame 3 is closer to the dielectric substrate 4, but the resonance frequency band can be broadened by separating the metal frame 3 from the dielectric substrate 4 to some extent. As in the embodiment, it is preferable that the height of the metal frame 3 is set to be larger than the thickness of the dielectric substrate 4.
[0017]
Further, in the above embodiment, two-point power supply is performed to receive circularly polarized waves. However, a case where a degenerate separation element is loaded on the patch electrode 5 to receive circularly polarized waves with one point power supply, The present invention is applicable to the case of receiving a polarized wave.
[0018]
【The invention's effect】
The present invention is implemented in the form described above, and has the following effects.
[0019]
By arranging a metal frame around the dielectric substrate, the gain in the direction directly above the patch electrode is reduced, and thus the beam is shaped so that the maximum radiation direction is at a low elevation angle. Even if it is installed on a roof surface or the like, ground waves and signal waves from low-elevation angle satellites can be efficiently received.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a patch antenna device according to an embodiment of the present invention.
FIG. 2 is a plan view of the patch antenna device.
FIG. 3 is an explanatory diagram showing how a radiation beam is shaped by a metal frame of the patch antenna device.
FIG. 4 is a characteristic diagram showing a radiation pattern of the patch antenna device together with a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ground surface 2 Antenna element 3 Metal frame 4 Dielectric substrate 5 Patch electrode 6 Ground electrode 7 Feeding pin

Claims (3)

グラウンド面上に設置された誘電体基板の上面にパッチ電極を設け、このパッチ電極に給電手段を接続すると共に、前記誘電体基板の外周面を包囲する位置に金属枠を設けたことを特徴とするパッチアンテナ装置。A patch electrode is provided on an upper surface of a dielectric substrate provided on a ground plane, a feeding means is connected to the patch electrode, and a metal frame is provided at a position surrounding the outer peripheral surface of the dielectric substrate. Patch antenna device. 請求項1の記載において、前記金属枠の高さ寸法を前記誘電体基板の厚さ寸法よりも大きく設定したことを特徴とするパッチアンテナ装置。2. The patch antenna device according to claim 1, wherein a height dimension of the metal frame is set to be larger than a thickness dimension of the dielectric substrate. 請求項1または2の記載において、前記金属枠の平面視形状を前記誘電体基板の外形の平面視形状と略相似形にしたことを特徴とするパッチアンテナ装置。3. The patch antenna device according to claim 1, wherein the shape of the metal frame in a plan view is substantially similar to the shape of the dielectric substrate in a plan view.
JP2003105565A 2003-04-09 2003-04-09 Patch antenna apparatus Withdrawn JP2004312547A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003105565A JP2004312547A (en) 2003-04-09 2003-04-09 Patch antenna apparatus
US10/812,334 US7079078B2 (en) 2003-04-09 2004-03-29 Patch antenna apparatus preferable for receiving ground wave and signal wave from low elevation angle satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003105565A JP2004312547A (en) 2003-04-09 2003-04-09 Patch antenna apparatus

Publications (1)

Publication Number Publication Date
JP2004312547A true JP2004312547A (en) 2004-11-04

Family

ID=33468043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105565A Withdrawn JP2004312547A (en) 2003-04-09 2003-04-09 Patch antenna apparatus

Country Status (1)

Country Link
JP (1) JP2004312547A (en)

Similar Documents

Publication Publication Date Title
US6646618B2 (en) Low-profile slot antenna for vehicular communications and methods of making and designing same
Michel et al. Printed wideband antenna for LTE-band automotive applications
JP4143844B2 (en) Antenna device
JP2009225429A (en) Antenna apparatus and composite antenna apparatus
US20050270238A1 (en) Tri-band antenna for digital multimedia broadcast (DMB) applications
JP2004228692A (en) Dual band antenna
US7079078B2 (en) Patch antenna apparatus preferable for receiving ground wave and signal wave from low elevation angle satellite
US8089410B2 (en) Dual-band antenna
JP2010161436A (en) Composite antenna element
CN110637394B (en) Vehicle-mounted antenna device
JP6411593B1 (en) In-vehicle antenna device
CN110574233A (en) Antenna device
JP4558287B2 (en) Dual-frequency planar patch antenna and multi-frequency planar patch antenna
JP2004312533A (en) Patch antenna apparatus
JP2004088198A (en) Monopole antenna system and communication system employing the same
US7042399B2 (en) Patch antenna having a non-feeding element formed on a side surface of a dielectric
JP3960255B2 (en) In-vehicle integrated antenna device
JP2004312546A (en) Patch antenna apparatus
JP2004304621A (en) Antenna system
JP2006222540A (en) Onboard antenna system
JP2004312547A (en) Patch antenna apparatus
JP4473113B2 (en) Trapezoidal element antenna
JP2004312532A (en) Patch antenna apparatus
JP2003078343A (en) Reception antenna
JP2007116739A (en) Antenna system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704