JP2004312226A - Manufacturing method of matching layer, ultrasonic sensor using matching layer, and fluid flow measuring device using ultrasonic sensor - Google Patents

Manufacturing method of matching layer, ultrasonic sensor using matching layer, and fluid flow measuring device using ultrasonic sensor Download PDF

Info

Publication number
JP2004312226A
JP2004312226A JP2003101246A JP2003101246A JP2004312226A JP 2004312226 A JP2004312226 A JP 2004312226A JP 2003101246 A JP2003101246 A JP 2003101246A JP 2003101246 A JP2003101246 A JP 2003101246A JP 2004312226 A JP2004312226 A JP 2004312226A
Authority
JP
Japan
Prior art keywords
hollow sphere
matching layer
matching
manufacturing
ultrasonic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003101246A
Other languages
Japanese (ja)
Other versions
JP4269751B2 (en
Inventor
Masahiko Ito
雅彦 伊藤
Akihisa Adachi
明久 足立
Yukinori Ozaki
行則 尾崎
Masato Sato
真人 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003101246A priority Critical patent/JP4269751B2/en
Publication of JP2004312226A publication Critical patent/JP2004312226A/en
Application granted granted Critical
Publication of JP4269751B2 publication Critical patent/JP4269751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the uniformity of density distribution by uniformly filling hollow spheres without uneven distribution in a matching member formed of a mixture of a hollow sphere and bonding agent. <P>SOLUTION: A matching member generation jig 5 is arranged in a stand 3. A housing storing the hollow spheres is disposed in the matching member generation jig 5. The stand 3 is dropped and made to collide with a pedestal 10 in such a state. A packing degree of the hollow sphere is improved by vibration occurring at that time. Drop and collision are performed not once but for several times. Then, bonding agent is mixed and cured. Thus, density of the matching member becomes uniform. When the member is used for an ultrasonic sensor as the matching layer, performance can be improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【本発明の属する技術分野】
本発明は整合部材の製造方法、および、それを用いた超音波センサ、並びに、この超音波センサを利用した気体や液体の流体の流れ測定装置に関するものである。
【0002】
【従来の技術】
従来、超音波センサなどに用いられる整合層の製造方法は、例えば、図8(a)に示すように、中空球体32と樹脂33の混合物からなる整合部材34と、筒状部材からなる負荷ケース35とを一体成形し、次いで、図8(b)のように圧電体の共振周波数の1/4波長に相当する厚みにカットしてた整合層36製造していた。
【0003】
整合層36は、図8(c)に示すように、圧電振動子37に載置して超音波振動子としていた(特許文献1参照)。
【0004】
また、ガラスバルーンと樹脂の混合体による整合部材については、圧電体から発生する超音波の波長よりも小さい粒径の気泡を樹脂に混入するものが開示されていた(特許文献2参照)。
【0005】
【特許文献1】
特公平6−101880号公報(第6図)
【特許文献2】
特開平11−215594号公報
【0006】
【発明が解決しようとする課題】
しかし、この従来の製造方法では、中空球体を投入時に、この中空球体の外壁面同士が接触して摩擦が発生する。
【0007】
このため、中空球体同士が凝集してしまい、整合部材内での分散が不均一になる課題があった。
【0008】
これは、中空球体がガラス組成である場合、中空球体同士の摩擦係数が高いために、整合部材内に所定量の中空球体を投入できないためである。
【0009】
そのため、図8(b)のように筒状部材を所定の厚みにカットした整合層群はそれぞれ1枚ごと中空球体と樹脂の比率が異なるために、密度が不均一な整合層が作成されてしまう課題があった。
【0010】
また、超音波の波長よりも小さい粒径の気泡を樹脂に混入することは、非常に困難であり、混入する気泡の大きさを制御することができない。
【0011】
さらに、樹脂中に気泡を混入することで作成された整合層の密度は作成数ごとに異なり、一定の音響インピーダンスを得ることができない。
【0012】
本発明は、前記従来の課題を解決するもので、密度のばらつきを低減した整合層およびその製造方法と超音波センサ並びに同超音波センサを搭載した流れ測定装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
前記従来の課題を解決するために、収納体を加振することによりその内部に中空球体を充填し、次いで、中空球体に結合材料を混合させることで、前記中空球体を結合材料で包囲するようにしたもので、収納体に中空球体が均等に充填されることとなり、整合層としての密度を均一とすることができる。
【0014】
【発明の実施の形態】
本発明の実施の形態は、収納体を加振することによりその内部に中空球体を充填し、次いで、中空球体に結合材料を混合させることで、前記中空球体を結合材料で包囲するようにしたもので、中空球体が偏在することがなく、整合部材の密度をどの部分でも均一にできる。
【0015】
具体的な加振手段としては、台座で支持された整合部材作成治具に収納体を設け、上記台座を受台に衝突させ、これにより衝撃振動が生起されることとなる。
【0016】
衝突は、自由落下により加速度を生じさせて行うのが一般的であろう。そして受台を高分子材料で形成すれば、台座に加わる振動を一回で収束させることができる。
【0017】
結合材料は、例えば、熱硬化性樹脂化合物からなり、中空球体に結合材料を混合させた後、この混合物を硬化させ、その後、所定長さに切断して整合層とするものである。
【0018】
また、整合部材作成治具に複数の収納体を配置しておけば、合理的な製造が可能となる。中空球体はガラス組成を含むものである。
【0019】
上記方法でつくられた整合部材は超音波センサの整合層として用いられる。具体的には、天部と側壁部を有する筒状ケースと、前記天部の内壁面に固定された圧電体とを備えたものであって、前記天部外壁面に接着層を介して整合層が設置される。
【0020】
上記の超音波センサは、流体の流れ方向に少なくとも一対配置され、前記超音波センサ間の超音波伝播時間にもとづき流体の速度、およびまたは流量を検知するようにした。
【0021】
【実施例】
以下、本説明の実施例について図面を用いて説明する。
【0022】
(実施例1)
図1〜3において、矩形の基盤1の四隅より立設した4本のガイド柱2は台座3を上下動自在に支持している。
【0023】
前記台座3に収納体4をもつ整合部材作成治具5が取着されており、さらにこの収納体4には円形の収納室6が形成されている。
【0024】
前記台座3はロック装置7を介してガイド柱2の所定高さ位置にロックされており、可撓性チューブ8を経由して圧縮空気を送るとロック装置7が解錠され、自重などで落下するようにしてある。
【0025】
圧縮空気の流動を制御し、ロック装置7を操作するのがスイッチ9である。台座3の落下位置には基盤1に固定され、高分子材料からなる受台10がある。
【0026】
図2も参照して整合部材の製造方法を示す。
【0027】
収納体4の収納室6にはガラス中空体からなる中空球体11が収納してある。中空球体11はそれぞれ10〜100μmの粒径を有し、平均粒径は約60μmである。
【0028】
ガラス中空体からなる中空球体11は他の充填剤と比較して比重が軽く、耐熱性、耐圧性、耐衝撃性を有し、充填材として使用したときの充填物の寸法安定性、成型性などの物性を改良できる。
【0029】
使用したガラスの組成はホウケイ酸系ガラスである。このガラス中空体は、酸化珪素、硼酸、炭酸カルシウム、炭酸ナトリウム、硫酸ナトリウム等の原料を1000℃以上の高温で溶融して硫黄分を多含するガラスを形成させた後、ガラスを粉砕後、このガラス微粉末を火炎中に分散、滞留させることにより、硫黄分を発泡剤成分として発泡させて作成している。
【0030】
前記中空球体11を収納体4の収納室6に少量づつ投入し、その都度、収納体4を取着した整合部材作成冶具5の台座3を受台10に落下させる。その結果、落下衝撃振動により中空球体11は隙間なく収納室6に充填されていく。
【0031】
この工程を数回〜数十回繰り返しながら、収納室6に中空球体11を満たしていく。
【0032】
ここで、ガラス中空体からなる中空球体11は外部壁面が表面改質材の被覆層を形成しているので、その流動性が高く、各中空球体11の壁面が接触しても滞留することなく、相互に動いて最密充填状態になる。そのため、各中空球体11間では、最小の空隙しか存在していない。
【0033】
このように中空球体11を充填した収納体4の収納室6には図4(a)に示すように上下にフィルター12を設置した後、結合材料13供給して含浸させる。
【0034】
ここで、結合材料13としては熱硬化性樹脂化合物であるエポキシ樹脂を用いた。
【0035】
エポキシ樹脂は硬化後の樹脂の形状変化が小さく、長期安定性に優れているためであり、何より、中空球体11表面との親和性が高いので、同中空球体11と結合力が安定的に向上する。
【0036】
使用したエポキシ樹脂は、2液硬化型のエポキシ樹脂である。主剤はビスフェノールA型液状エポキシ樹脂であり、硬化剤は、テトラヒドロメチル無水フタル酸である。主剤と硬化剤を最適混合比率で混合してエポキシ樹脂として用いた。
【0037】
しかし、ここでは特に2液硬化型のエポキシ樹脂にこだわるものではなく、目的が達せられれば1液硬化型のエポキシ樹脂を用いても差し支えない。
【0038】
結合材料13を含浸させるために図4の(b)に示すように、吸引口14を設けた吸引用治具15を設置する。
【0039】
すなわち、収納体4の収納室6に中空球体11を充填した整合部材作成治具5をエポキシ樹脂からなる結合材料13で満たした容器16内に設置する。
【0040】
収納室6の下側に設置するフィルター12はその中の中空球体11が漏れないようにするためであり、上側に設けるフィルター12は結合材料13を吸引したとき、中空球体11を一緒に吸引しないためである。ここでは、フィルター12にろ紙を用いた。
【0041】
なお、先に述べたフィルター12の目的を達成していれば材質にはこだわらない。
【0042】
そして、図4(b)に示すように吸引用治具15の吸引口14から容器16内の結合材料13を吸引する。このように、低圧雰囲気下にすることにより、中空球体11間に存在した空隙の気泡が抜け去り、代わって結合材料13がその間を埋めていく。
【0043】
これにより、収納室6内の中空球体11同志の密着性が向上し、同中空球体11周囲に結合材料13が塗布される。
【0044】
なお、結合材料13を吸引するときには、それが硬化しない温度で、且つ粘度が低くなる温度の雰囲気にしておくことが望ましい。
【0045】
結合材料13としてエポキシ樹脂を使用した場合、その硬化条件は80℃×2h後、150℃×2hであるので、エポキシ樹脂のゲル化温度より低い温度の60℃中で吸引した。
【0046】
このように中空球体11が充填された収納室6内に結合材料13を含浸させた後、吸引用治具16を整合部材作成治具2から取り外す。
【0047】
そして、図4(c)のごとく整合部材作成治具5から収納体4を取り出し、結合材料13を加熱硬化させる。
【0048】
この硬化した混合物を室温にまで冷却し、図4(d)のように棒状治具等を用いて収納体4より取り出し、整合部材17を得る。
【0049】
図4に示す収納体4の収納室6は1個しか存在しないが、図5に示すように多数個の収納室6を設けておけば、一度に多数個の整合部材を取り出すことができる。
【0050】
次に、図4(e)に示すように、この整合部材17をダイシング装置などにより所定厚み、すなわち圧電体の共振周波数の1/4波長に相当する厚みに切断して最終の整合層18を形成する。
【0051】
以上のように成型した整合部材17は側壁が結合材料13により被覆されているので、側壁表面に特別に高分子材料を塗布する必要がない。
【0052】
整合部材17を切断する工程では、切断後の整合層18の表面に切断時に発生する研削ゴミが付着しないようにしなければならない。
【0053】
この研削ゴミは、結合材料や中空球体の微少割れなどの単体あるいは混合物である。これらのゴミが付着している状態では、整合層表面に平滑な高分子材料の被覆層が形成できないので、ゴミが付着した場合は取り除かなくてはならない。
【0054】
しかるに、前記切断工程におけるダイシング時には切断表面に研削水を流すようにし、切断時に発生する研削ゴミが流され、整合層18の表面に付着することはない。
【0055】
この整合層21表面には高分子材料を印刷して熱硬化させ、被覆層を形成する。ここで高分子材料には、結合材料13に用いた同様の樹脂材料を用いた。
【0056】
先に述べたように、整合部材17の側面には結合材料が被覆されているため、整合層18の表面に同等の結合材料を形成しても整合層側壁面となじみやすい。
【0057】
以上のような方法でつくった整合部材から一定の厚みで切断して作成した整合層18を20枚用意してそれらの密度分布を測定した。その結果を図6に示す。Aは本発明の実施例のもの、Bは従来品を示す。
【0058】
本実施例において、受台10から70mmの高さから台座3を落下させて、中空球体を収納体の収納室に充填した。そのときの最大加速度は約20Gであった。受台10の材質はABS樹脂であった。
【0059】
仮に、この受台10を金属材料にすると、台座3が落下して接触した後、数回受台10に繰り返して衝突し、台座3の振動を直ぐにとめることができない。そのため、収納室6内で一度最密充填した中空球体11の充填状態がずれてしまうことになる。
【0060】
しかるに、一定高さから台座3を落下させて受台10に当たると同時にこの台座3の振動を吸収する高分子材料が適している。一方、中空球体11を真空ポンプなど吸引用治具15により収納室6に充填した時の圧力は、約0.097Mpaであった。
【0061】
このようにして、充填した中空球体11に結合材料13を含浸させた後、熱硬化させて整合部材17を作成した。
【0062】
熱硬化条件は、どちらとも80℃×2h後、150℃×2hに加熱する2段階焼成である。
【0063】
その整合部材17をダイシング装置により、一枚1.16±0.01(mm)の厚みに切断して、整合層を得た。
【0064】
図6のグラフのNoは整合部材上部から順番に取りだした時の順番である。図6から、本実施例の整合層Aの密度分布は平均約0.517(g/cm)で、3σは0.013である。
【0065】
一方の真空ポンプ吸引によりガラス中空体を充填して作成した従来整合層Bの平均密度は、約0.534(g/cm)で3σは0.028である。
【0066】
このことから、本実施例で作成した整合部材の整合層は均一密度を得ることができる。これは、収納室内に充填される中空球体は、その表面の摩擦抵抗以上の加速度が加わることにより、収納室内で均一に配置することができるためである。
【0067】
このように、本実施例の整合層は、中空球体同士が凝集することなく、結合材料と混合されて整合部材内で中空球体が偏在することはないため、整合部材のどの部分でも密度均一な整合層が作成できる。
【0068】
(実施例2)
図7は、上記実施例により得た整合層18を超音波センサに使用したものである。
【0069】
導電性材料製の筒状ケース20には天部21があり、その天部21の内壁面に圧電体22が、外壁面に整合層18がそれぞれ接着されている。
【0070】
筒状ケース20の下方開放部は一方の端子23を接続した端子板24で閉塞されている。
【0071】
他方の端子25は電気絶縁材料を26を介して端子板24を貫通し、圧電体22の下面に接触する導電体27に接続されている。圧電体22には複数の縦溝28が形成してある。
【0072】
端子23,25から導電体27を介して圧電体22に電圧が加わると、この圧電体22は圧電現象により振動する。
【0073】
図5の圧電体22は約500KHzで振動し、その振動はケース20から整合層18に伝わり、整合層21の振動が気体に音波として伝搬する。
【0074】
従来による製造方法で作成した整合層は、ケースの天部に接着される際、その表面に中空球体の割れ部分が露出するために、整合層表面に凹部が形成される。
【0075】
そして、ケースの天部に接着剤を用いて接着する際、整合層あるいはケース天部表面に熱硬化性接着剤を印刷等により塗布形成して、整合層とケース天部を加熱硬化接着させても整合層表面凹部に接着剤が滞留し、整合層表面とケース天部表面が均一強度で接着することができなかった。
【0076】
また、整合層表面とケース天部表面の接着界面に微少な空気層が形成されるため、圧電体からケースを介して伝搬される振動の波長の位相が整合層内部でずれるので、測定流体中での振動波の強め合いが弱まり、超音波センサとしての送受信感度が低下してしまう。
【0077】
これに対し、本実施例の整合層18は、表面に高分子材料を被覆形成しているので、ケース20の天部21表面に均一に面接着されて接着強度が均一化され、整合層表面の凹部がなくなる。
【0078】
その結果、圧電体22からの振動波が整合層18内で位相をずらせることがないので、測定流体中に振動波を安定的に発振させることができる。
【0079】
したがって、超音波センサの送受信感度を低下させることなく維持することができるものである。
【0080】
前記超音波センサは、流体の流れ測定装置に用いられる。すなわち、流路の流体流れ方向上流側と下流側に少なくとも一対の超音波センサを配置し、一方の超音波センサから送信された超音波が他方の超音波センサに受信されるまでの時間、すなわち超音波伝播時間を検知して、それから流体の流速を測定できるようにしている。
【0081】
また、前記流速にもとづき流路の断面積などの要素を絡めて演算することで流量の測定も可能である。
【0082】
そして、先述したように、超音波センサが高性能であるために、流速およびまたは流量の計測が高精度に行えるものである。
【0083】
このように、上記した実施例によれば、次のような作用効果が期待できるものである。
【0084】
(1)中空球体同士が凝集することなく、結合材料と混合されて整合部材内で中空球体が偏在することはないため、整合部材のどの部分でも密度均一な整合層が作成できる。
【0085】
(2)収納体と一体的な台座を所定高さから下方向に向かって落下移動させ、受台に衝突させるようにしているので、中空球体に衝撃振動を加え、密に、且つ均一に充填することができる。
【0086】
(3)収納体内で結合材料を吸引し中空球体と混合させ、その状態で中空球体と結合材料の混合物を硬化させるため、整合部材の成型と硬化及び取り出しが容易となる。
【0087】
(4)受台が高分子材料からなるので、落下させた台座を受台に当てて停止させた際に台座に加わる振動を一回で収束させることができる。
【0088】
(5)収納体が中空球体と結合材料の混合物を成型するための収納室を有することにより、あらかじめ整合部材の面積を決めてあれば、例えば硬化作成した整合部材を必要な厚みに切削するのみで必要面積の整合層を得ることができる。
【0089】
(6)結合材料を熱硬化性樹脂化合物とすることにより、中空球体と結合材料を混合後加熱により硬化できるので、中空球体表面に密着して硬化されて整合部材を作成することができる。
【0090】
(7) 中空球体がガラス組成を含むので、中空状態を保持したまま結合材料との混合による整合部材を形成することができ、整合層周囲温度が変化による中空球体の中空状態は保持され、整合層密度の安定化を図ることができる。
【0091】
(8)前記製造法で得た整合部材を超音波センサの整合層として用いることにより、圧電体からの振動を整合層が効率よく気体中に音波として伝搬させることができ、個々のセンサ間の特性ばらつきを抑えることができる。
【0092】
(9)またこの超音波センサを流体の流れ測定装置に搭載すれば、流速およびまたは流量を高精度に測定できるものである。
【0093】
【発明の効果】
以上説明したように本発明によれば、中空球体の充填を確実に、且つ高密度で行うことができるため、整合部材、ひいてはこの整合部材を整合層として用いた超音波センサの性能を高めることができ、さらにはこの超音波センサを搭載した流体の流れ測定装置としても著しくその精度を高め得るものである。
【図面の簡単な説明】
【図1】本発明の実施例における整合部材製造装置の非動作時の正面図
【図2】同整合部材製造装置の動作時の正面図
【図3】中空球体を充填するための収納体の上面図
【図4】製造工程図
【図5】(a)本発明の他の実施例を示す整合部材作成治具の斜視図(b)同収納体の斜視図
【図6】整合層の密度分布を示すグラフ
【図7】本発明整合層を用いた超音波センサの断面図
【図8】従来の整合部材の製造工程図
【符号の説明】
3 台座
4 収納体
5 整合部材作成冶具
6 収納室
10 受台
11 中空球体
13 結合材料
18 整合層
20 筒状ケース
21 天部
22 圧電体
[0001]
[Technical field to which the present invention pertains]
The present invention relates to a method for manufacturing a matching member, an ultrasonic sensor using the same, and an apparatus for measuring the flow of a gas or liquid fluid using the ultrasonic sensor.
[0002]
[Prior art]
Conventionally, a method of manufacturing a matching layer used for an ultrasonic sensor or the like includes, for example, as shown in FIG. 8A, a matching member 34 formed of a mixture of a hollow sphere 32 and a resin 33, and a load case formed of a cylindrical member. 35, and then, as shown in FIG. 8B, a matching layer 36 manufactured by cutting to a thickness corresponding to 1 / wavelength of the resonance frequency of the piezoelectric body was manufactured.
[0003]
As shown in FIG. 8C, the matching layer 36 is mounted on a piezoelectric vibrator 37 to form an ultrasonic vibrator (see Patent Document 1).
[0004]
Further, as a matching member made of a mixture of a glass balloon and a resin, there has been disclosed one in which bubbles having a particle size smaller than the wavelength of ultrasonic waves generated from a piezoelectric material are mixed into the resin (see Patent Document 2).
[0005]
[Patent Document 1]
Japanese Patent Publication No. 6-101880 (Fig. 6)
[Patent Document 2]
JP-A-11-215594
[Problems to be solved by the invention]
However, in this conventional manufacturing method, when a hollow sphere is inserted, the outer wall surfaces of the hollow sphere come into contact with each other, causing friction.
[0007]
For this reason, there was a problem that the hollow spheres aggregated and the dispersion in the matching member became uneven.
[0008]
This is because when the hollow spheres have a glass composition, a predetermined amount of the hollow spheres cannot be put into the matching member due to a high friction coefficient between the hollow spheres.
[0009]
Therefore, as shown in FIG. 8 (b), the matching layer group in which the cylindrical member is cut to a predetermined thickness has a different ratio between the hollow sphere and the resin for each of the matching members. There was a problem.
[0010]
Also, it is very difficult to mix bubbles having a particle size smaller than the wavelength of the ultrasonic wave into the resin, and the size of the bubbles to be mixed cannot be controlled.
[0011]
Further, the density of the matching layer formed by mixing bubbles in the resin differs depending on the number of formed layers, and a constant acoustic impedance cannot be obtained.
[0012]
An object of the present invention is to solve the above-mentioned conventional problems, and to provide a matching layer with reduced density variation, a method for manufacturing the same, an ultrasonic sensor, and a flow measuring device equipped with the ultrasonic sensor.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned conventional problems, a hollow body is filled with a housing by vibrating the housing, and then the hollow sphere is mixed with a bonding material to surround the hollow sphere with the bonding material. With this configuration, the hollow spheres are uniformly filled in the storage body, and the density as the matching layer can be made uniform.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the embodiment of the present invention, the hollow sphere is filled with the hollow sphere by filling the hollow sphere by exciting the storage body, and then the hollow sphere is mixed with the bonding material, so that the hollow sphere is surrounded by the bonding material. Therefore, the hollow spheres are not unevenly distributed, and the density of the alignment member can be made uniform at any portion.
[0015]
As a specific vibrating means, a housing is provided on an alignment member forming jig supported by a pedestal, and the pedestal collides with a pedestal, thereby generating an impact vibration.
[0016]
Collisions will generally be made by accelerating by free fall. If the pedestal is formed of a polymer material, the vibration applied to the pedestal can be converged at one time.
[0017]
The bonding material is made of, for example, a thermosetting resin compound. After mixing the bonding material with the hollow sphere, the mixture is cured, and then cut into a predetermined length to form a matching layer.
[0018]
In addition, if a plurality of storage bodies are arranged in the alignment member forming jig, rational production can be performed. The hollow sphere contains a glass composition.
[0019]
The matching member made by the above method is used as a matching layer of the ultrasonic sensor. Specifically, it comprises a cylindrical case having a top portion and a side wall portion, and a piezoelectric body fixed to the inner wall surface of the top portion, and is aligned with the outer wall surface of the top portion via an adhesive layer. Layers are installed.
[0020]
At least one pair of the ultrasonic sensors is arranged in the flow direction of the fluid, and detects the velocity and / or the flow rate of the fluid based on the ultrasonic propagation time between the ultrasonic sensors.
[0021]
【Example】
Hereinafter, embodiments of the present description will be described with reference to the drawings.
[0022]
(Example 1)
1 to 3, four guide columns 2 erected from four corners of a rectangular base 1 support a pedestal 3 so as to be vertically movable.
[0023]
An alignment member making jig 5 having a storage body 4 is attached to the pedestal 3, and a circular storage chamber 6 is formed in the storage body 4.
[0024]
The pedestal 3 is locked at a predetermined height position of the guide column 2 via a lock device 7, and when compressed air is sent through a flexible tube 8, the lock device 7 is unlocked and falls due to its own weight or the like. I have to do it.
[0025]
The switch 9 controls the flow of the compressed air and operates the lock device 7. At the falling position of the pedestal 3, there is a pedestal 10 fixed to the base 1 and made of a polymer material.
[0026]
FIG. 2 also shows a method for manufacturing the alignment member.
[0027]
A hollow sphere 11 made of a glass hollow body is stored in the storage room 6 of the storage body 4. The hollow spheres 11 each have a particle size of 10 to 100 μm, and the average particle size is about 60 μm.
[0028]
The hollow sphere 11 made of a glass hollow body has a lower specific gravity than other fillers, has heat resistance, pressure resistance, and impact resistance, and has dimensional stability and moldability of the filler when used as a filler. Properties can be improved.
[0029]
The composition of the glass used was borosilicate glass. This glass hollow body is formed by melting raw materials such as silicon oxide, boric acid, calcium carbonate, sodium carbonate, and sodium sulfate at a high temperature of 1000 ° C. or higher to form a glass containing a large amount of sulfur, and then pulverizing the glass. This glass fine powder is dispersed and retained in a flame to foam sulfur as a foaming agent component.
[0030]
The hollow sphere 11 is put into the storage chamber 6 of the storage body 4 little by little, and each time, the pedestal 3 of the alignment member forming jig 5 to which the storage body 4 is attached is dropped to the receiving stand 10. As a result, the hollow sphere 11 is filled in the storage chamber 6 without a gap by the drop impact vibration.
[0031]
The storage chamber 6 is filled with the hollow spheres 11 by repeating this step several to several tens of times.
[0032]
Here, the hollow sphere 11 made of a glass hollow body has a high fluidity because the outer wall surface forms the coating layer of the surface modifying material, and does not stay even when the wall surface of each hollow sphere 11 contacts. Move into each other to form a close-packed state. Therefore, only the smallest void exists between the hollow spheres 11.
[0033]
As shown in FIG. 4 (a), filters 12 are installed vertically in the storage chamber 6 of the storage body 4 filled with the hollow spheres 11, and then the bonding material 13 is supplied and impregnated.
[0034]
Here, as the bonding material 13, an epoxy resin which is a thermosetting resin compound was used.
[0035]
This is because the epoxy resin has a small shape change after curing and has excellent long-term stability. Above all, the affinity with the surface of the hollow sphere 11 is high, so that the bonding force with the hollow sphere 11 is stably improved. I do.
[0036]
The epoxy resin used is a two-component curing type epoxy resin. The main agent is a bisphenol A type liquid epoxy resin, and the curing agent is tetrahydromethyl phthalic anhydride. The main agent and the curing agent were mixed at an optimum mixing ratio and used as an epoxy resin.
[0037]
However, the present invention is not particularly limited to a two-component curing type epoxy resin, and a one-component curing type epoxy resin may be used as long as the purpose is achieved.
[0038]
As shown in FIG. 4B, a suction jig 15 provided with a suction port 14 is installed to impregnate the bonding material 13.
[0039]
That is, the alignment member forming jig 5 in which the hollow sphere 11 is filled in the storage chamber 6 of the storage body 4 is set in a container 16 filled with a bonding material 13 made of epoxy resin.
[0040]
The filter 12 provided on the lower side of the storage chamber 6 is for preventing the hollow spheres 11 therein from leaking, and the filter 12 provided on the upper side does not suck the hollow spheres 11 together when the binding material 13 is sucked. That's why. Here, filter paper was used for the filter 12.
[0041]
The material is not limited as long as the above-described purpose of the filter 12 is achieved.
[0042]
Then, as shown in FIG. 4B, the binding material 13 in the container 16 is sucked from the suction port 14 of the suction jig 15. By setting the atmosphere in the low-pressure atmosphere in this way, the air bubbles in the gaps existing between the hollow spheres 11 are removed, and the bonding material 13 fills the gaps instead.
[0043]
Thereby, the adhesion between the hollow spheres 11 in the storage room 6 is improved, and the bonding material 13 is applied around the hollow spheres 11.
[0044]
When the bonding material 13 is sucked, it is desirable that the atmosphere be at a temperature at which it is not cured and at a temperature at which the viscosity becomes low.
[0045]
When an epoxy resin was used as the bonding material 13, the curing conditions were 80 ° C. × 2 hours, and 150 ° C. × 2 hours. Therefore, suction was performed at 60 ° C. lower than the gelling temperature of the epoxy resin.
[0046]
After the bonding material 13 is impregnated into the storage chamber 6 filled with the hollow spheres 11 as described above, the suction jig 16 is removed from the alignment member forming jig 2.
[0047]
Then, as shown in FIG. 4C, the housing 4 is taken out from the alignment member forming jig 5, and the bonding material 13 is cured by heating.
[0048]
The hardened mixture is cooled to room temperature and taken out of the housing 4 using a rod-shaped jig or the like as shown in FIG.
[0049]
Although only one storage room 6 of the storage body 4 shown in FIG. 4 exists, if a large number of storage rooms 6 are provided as shown in FIG. 5, a large number of alignment members can be taken out at once.
[0050]
Next, as shown in FIG. 4E, the matching member 17 is cut into a predetermined thickness by a dicing device or the like, that is, a thickness corresponding to 1 / wavelength of the resonance frequency of the piezoelectric body, and the final matching layer 18 is cut. Form.
[0051]
Since the side wall of the alignment member 17 molded as described above is covered with the bonding material 13, it is not necessary to apply a special polymer material to the side wall surface.
[0052]
In the step of cutting the alignment member 17, it is necessary to prevent grinding dust generated at the time of cutting from adhering to the surface of the alignment layer 18 after cutting.
[0053]
This grinding dust is a simple substance or a mixture of a bonding material and a micro crack of a hollow sphere. In the state where these dusts adhere, a smooth coating layer of a polymer material cannot be formed on the surface of the matching layer. Therefore, if the dusts adhere, they must be removed.
[0054]
However, grinding water is caused to flow on the cutting surface during dicing in the cutting step, so that grinding dust generated during cutting is flown and does not adhere to the surface of the matching layer 18.
[0055]
A polymer material is printed and thermally cured on the surface of the matching layer 21 to form a coating layer. Here, the same resin material used for the binding material 13 was used as the polymer material.
[0056]
As described above, since the bonding material is coated on the side surface of the matching member 17, even if an equivalent bonding material is formed on the surface of the matching layer 18, the matching member 17 can easily fit into the side wall surface of the matching layer.
[0057]
Twenty matching layers 18 prepared by cutting the matching member made by the above-described method at a constant thickness were prepared, and their density distributions were measured. FIG. 6 shows the result. A shows an example of the present invention, and B shows a conventional product.
[0058]
In this example, the pedestal 3 was dropped from a height of 70 mm from the receiving table 10, and the hollow sphere was filled in the storage chamber of the storage body. The maximum acceleration at that time was about 20G. The material of the pedestal 10 was ABS resin.
[0059]
If the pedestal 10 is made of a metal material, the pedestal 3 will fall and come into contact with the pedestal 3 and then collide repeatedly with the pedestal 10 several times, so that the vibration of the pedestal 3 cannot be stopped immediately. For this reason, the filling state of the hollow spheres 11 that have been once most closely packed in the storage chamber 6 is shifted.
[0060]
However, a polymer material that drops the pedestal 3 from a certain height and hits the pedestal 10 while absorbing the vibration of the pedestal 3 is suitable. On the other hand, the pressure when the hollow sphere 11 was filled into the storage chamber 6 by the suction jig 15 such as a vacuum pump was about 0.097 Mpa.
[0061]
After the filled hollow spheres 11 were impregnated with the bonding material 13 in this manner, they were thermally cured to form the matching members 17.
[0062]
The thermosetting conditions are two-stage firing in which heating is performed at 150 ° C. × 2 hours after 80 ° C. × 2 hours.
[0063]
The matching member 17 was cut by a dicing apparatus to a thickness of 1.16 ± 0.01 (mm) to obtain a matching layer.
[0064]
No in the graph of FIG. 6 is the order when the pieces are taken out from the top of the alignment member in order. From FIG. 6, the density distribution of the matching layer A of the present embodiment is about 0.517 (g / cm 3 ) on average, and 3σ is 0.013.
[0065]
On the other hand, the average density of the conventional matching layer B formed by filling the glass hollow body with the vacuum pump suction is about 0.534 (g / cm 3 ), and 3σ is 0.028.
[0066]
From this, the matching layer of the matching member prepared in this embodiment can obtain a uniform density. This is because the hollow spheres filled in the storage room can be uniformly arranged in the storage room by applying acceleration higher than the frictional resistance of the surface.
[0067]
As described above, since the hollow spheres are not agglomerated with each other and are not unevenly distributed in the matching member in the matching member, the matching layer of the present embodiment has uniform density in any part of the matching member. A matching layer can be created.
[0068]
(Example 2)
FIG. 7 shows the use of the matching layer 18 obtained in the above embodiment in an ultrasonic sensor.
[0069]
The cylindrical case 20 made of a conductive material has a top portion 21, and the piezoelectric body 22 is bonded to the inner wall surface of the top portion 21, and the matching layer 18 is bonded to the outer wall surface.
[0070]
The lower open part of the cylindrical case 20 is closed by a terminal plate 24 to which one terminal 23 is connected.
[0071]
The other terminal 25 penetrates the terminal plate 24 through an electrically insulating material 26 and is connected to a conductor 27 that contacts the lower surface of the piezoelectric body 22. A plurality of longitudinal grooves 28 are formed in the piezoelectric body 22.
[0072]
When a voltage is applied to the piezoelectric body 22 from the terminals 23 and 25 via the conductor 27, the piezoelectric body 22 vibrates due to a piezoelectric phenomenon.
[0073]
5 vibrates at about 500 KHz, the vibration is transmitted from the case 20 to the matching layer 18, and the vibration of the matching layer 21 is transmitted to the gas as sound waves.
[0074]
When the matching layer formed by the conventional manufacturing method is bonded to the top of the case, a concave portion is formed on the surface of the matching layer because a cracked portion of the hollow sphere is exposed on the surface thereof.
[0075]
When bonding to the top of the case using an adhesive, a thermosetting adhesive is applied and formed on the matching layer or the surface of the case top by printing or the like, and the matching layer and the case top are bonded by heat curing. Also, the adhesive stayed in the concave portion of the matching layer surface, and the surface of the matching layer and the top surface of the case could not be bonded with uniform strength.
[0076]
In addition, since a minute air layer is formed at the bonding interface between the surface of the matching layer and the top surface of the case, the phase of the wavelength of the vibration propagated from the piezoelectric body through the case is shifted inside the matching layer. The strength of the vibration wave at the time is weakened, and the transmission / reception sensitivity as an ultrasonic sensor is reduced.
[0077]
On the other hand, since the surface of the matching layer 18 of the present embodiment is formed by coating a polymer material on the surface, the surface is uniformly adhered to the surface of the top portion 21 of the case 20, the adhesive strength is made uniform, and the surface of the matching layer Of the concave portion disappears.
[0078]
As a result, the phase of the vibration wave from the piezoelectric body 22 does not shift in the matching layer 18, so that the vibration wave can stably oscillate in the measurement fluid.
[0079]
Therefore, the transmission / reception sensitivity of the ultrasonic sensor can be maintained without lowering.
[0080]
The ultrasonic sensor is used in a fluid flow measuring device. That is, at least one pair of ultrasonic sensors are arranged on the fluid flow direction upstream side and downstream side of the flow path, the time until the ultrasonic wave transmitted from one ultrasonic sensor is received by the other ultrasonic sensor, that is, The ultrasonic propagation time is detected, and the flow velocity of the fluid can be measured.
[0081]
Also, the flow rate can be measured by calculating the cross-sectional area of the flow path based on the flow velocity and other factors.
[0082]
As described above, since the ultrasonic sensor has high performance, the flow velocity and / or the flow rate can be measured with high accuracy.
[0083]
As described above, according to the above-described embodiment, the following operation and effect can be expected.
[0084]
(1) Since the hollow spheres are not aggregated with each other and mixed with the binder material and the hollow spheres are not unevenly distributed in the matching member, a matching layer having a uniform density can be formed in any part of the matching member.
[0085]
(2) The pedestal integrated with the storage body is dropped from a predetermined height and moved downward to collide with the pedestal, so that impact vibration is applied to the hollow sphere, and the hollow sphere is densely and uniformly filled. can do.
[0086]
(3) Since the binding material is sucked in the housing and mixed with the hollow sphere, and the mixture of the hollow sphere and the binding material is cured in that state, the molding, curing, and removal of the alignment member are facilitated.
[0087]
(4) Since the pedestal is made of a polymer material, the vibration applied to the pedestal when the dropped pedestal is stopped against the pedestal can be converged at once.
[0088]
(5) Since the storage body has a storage chamber for molding a mixture of a hollow sphere and a binder, if the area of the matching member is determined in advance, for example, only the hardened matching member is cut to a required thickness. Thus, a matching layer having a required area can be obtained.
[0089]
(6) Since the hollow sphere and the binder can be mixed and then cured by heating by using the thermosetting resin compound as the binder, the matching member can be formed by being closely adhered to the surface of the hollow sphere and cured.
[0090]
(7) Since the hollow sphere contains the glass composition, a matching member can be formed by mixing with the bonding material while maintaining the hollow state, and the hollow state of the hollow sphere due to a change in the surrounding temperature of the matching layer is maintained, and the matching is performed. The layer density can be stabilized.
[0091]
(8) By using the matching member obtained by the above-mentioned manufacturing method as a matching layer of an ultrasonic sensor, the matching layer can efficiently propagate the vibration from the piezoelectric body as a sound wave into the gas, and the gap between the individual sensors can be improved. Variations in characteristics can be suppressed.
[0092]
(9) If this ultrasonic sensor is mounted on a fluid flow measuring device, the flow velocity and / or the flow rate can be measured with high accuracy.
[0093]
【The invention's effect】
As described above, according to the present invention, the filling of the hollow sphere can be performed reliably and at a high density, so that the performance of the matching member, and furthermore, the performance of the ultrasonic sensor using the matching member as the matching layer is improved. Further, the accuracy of the fluid flow measuring device equipped with the ultrasonic sensor can be remarkably improved.
[Brief description of the drawings]
1 is a front view of a matching member manufacturing apparatus according to an embodiment of the present invention when it is not operating; FIG. 2 is a front view of the matching member manufacturing apparatus when it is operating; FIG. 3 is a view of a storage body for filling hollow spheres; Top view FIG. 4 Manufacturing process diagram FIG. 5A Perspective view of a matching member making jig showing another embodiment of the present invention FIG. 6B Perspective view of the same housing FIG. 6 Density of matching layer FIG. 7 is a graph showing distribution. FIG. 7 is a cross-sectional view of an ultrasonic sensor using the matching layer of the present invention. FIG.
3 Pedestal 4 Housing 5 Matching member making jig 6 Storage room 10 Receiving pedestal 11 Hollow sphere 13 Bonding material 18 Matching layer 20 Tubular case 21 Top part 22 Piezoelectric body

Claims (13)

収納体を加振することによりその内部に中空球体を充填し、次いで、中空球体に結合材料を混合させることで、前記中空球体を結合材料で包囲することを特徴とする整合部材の製造方法。A method of manufacturing a matching member, wherein a hollow sphere is filled in a housing by vibrating the housing, and then the hollow sphere is mixed with a bonding material to surround the hollow sphere with the bonding material. 台座で支持された整合部材作成治具に収納体を設け、上記台座を受台に衝突させることで前記整合部材作成治具を介して収納体に振動を付与するようにした請求項1記載の整合部材の製造方法。2. The container according to claim 1, wherein a housing is provided on the alignment member forming jig supported by the pedestal, and the storage body is vibrated through the alignment member forming jig by colliding the pedestal with a receiving table. Manufacturing method of the alignment member. 衝突は、自由落下により加速度を生じさせて行う請求項2記載の整合部材の製造方法。3. The method according to claim 2, wherein the collision is performed by generating acceleration by free fall. 受台を高分子材料で形成した請求項2記載の整合部材の製造方法。3. The method according to claim 2, wherein the pedestal is formed of a polymer material. 整合部材作成治具に複数の収納体を配置した請求項2記載の整合部材の製造方法。3. The method for manufacturing an alignment member according to claim 2, wherein a plurality of storage bodies are arranged on the alignment member forming jig. 結合材料は熱硬化性樹脂化合物である請求項1記載の整合部材の製造方法。The method according to claim 1, wherein the bonding material is a thermosetting resin compound. 中空球体に結合材料を混合させた後、この混合物を硬化させるようにした請求項1、6いずれか1項記載の整合部材の製造方法。7. The method for manufacturing an alignment member according to claim 1, wherein after the bonding material is mixed with the hollow sphere, the mixture is cured. 中空球体と結合材料との混合物を硬化させた後、所定長さに切断するようにした請求項7記載の整合部材の製造方法。The method for manufacturing an alignment member according to claim 7, wherein the mixture of the hollow sphere and the bonding material is cured and then cut into a predetermined length. 中空球体はガラス組成を含む請求項1記載の整合部材の製造方法。The method according to claim 1, wherein the hollow sphere includes a glass composition. 請求項1〜9のいずれか1項記載の製造方法でつくった整合部材を整合層として備えた超音波センサ。An ultrasonic sensor comprising, as a matching layer, a matching member made by the manufacturing method according to claim 1. 天部と側壁部を有する筒状ケースと、前記天部の内壁面に固定された圧電体と、前記天部外壁面に接着層を介して設置された整合層とからなる請求項10記載の超音波センサ。The cylindrical case having a top portion and a side wall portion, a piezoelectric body fixed to an inner wall surface of the top portion, and a matching layer provided on an outer wall surface of the top portion via an adhesive layer. Ultrasonic sensor. 請求項10または11記載の超音波センサを流体の流れ方向に少なくとも一対配置し、前記超音波センサ間の超音波伝播時間にもとづき流体の速度を検知するようにした流体の流れ測定装置。12. A fluid flow measuring device comprising at least one pair of ultrasonic sensors according to claim 10 or 11 arranged in a flow direction of a fluid, wherein the velocity of the fluid is detected based on an ultrasonic propagation time between the ultrasonic sensors. 請求項10または11記載の超音波センサを流体の流れ方向に少なくとも一対配置し、前記超音波センサ間の超音波伝播時間により求めた流体の速度にもとづき流量を測定するようにした流体の流れ測定装置。A fluid flow measurement device comprising: at least one pair of the ultrasonic sensors according to claim 10 or 11 arranged in a flow direction of the fluid; and measuring a flow rate based on a velocity of the fluid obtained by an ultrasonic propagation time between the ultrasonic sensors. apparatus.
JP2003101246A 2003-04-04 2003-04-04 Manufacturing method of matching layer, ultrasonic sensor using matching layer, and fluid flow measuring apparatus using ultrasonic sensor Expired - Fee Related JP4269751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003101246A JP4269751B2 (en) 2003-04-04 2003-04-04 Manufacturing method of matching layer, ultrasonic sensor using matching layer, and fluid flow measuring apparatus using ultrasonic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003101246A JP4269751B2 (en) 2003-04-04 2003-04-04 Manufacturing method of matching layer, ultrasonic sensor using matching layer, and fluid flow measuring apparatus using ultrasonic sensor

Publications (2)

Publication Number Publication Date
JP2004312226A true JP2004312226A (en) 2004-11-04
JP4269751B2 JP4269751B2 (en) 2009-05-27

Family

ID=33465106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003101246A Expired - Fee Related JP4269751B2 (en) 2003-04-04 2003-04-04 Manufacturing method of matching layer, ultrasonic sensor using matching layer, and fluid flow measuring apparatus using ultrasonic sensor

Country Status (1)

Country Link
JP (1) JP4269751B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287405A (en) * 2005-03-31 2006-10-19 Matsushita Electric Ind Co Ltd Acoustic matching member and ultrasonic vibrator and ultrasonic flowmeter using it
CN110199530A (en) * 2017-04-18 2019-09-03 松下知识产权经营株式会社 Ultrasonic transmitter-receiver

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287405A (en) * 2005-03-31 2006-10-19 Matsushita Electric Ind Co Ltd Acoustic matching member and ultrasonic vibrator and ultrasonic flowmeter using it
JP4513632B2 (en) * 2005-03-31 2010-07-28 パナソニック株式会社 Acoustic matching member, ultrasonic transducer and ultrasonic flowmeter using the same
CN110199530A (en) * 2017-04-18 2019-09-03 松下知识产权经营株式会社 Ultrasonic transmitter-receiver
CN110199530B (en) * 2017-04-18 2021-01-08 松下知识产权经营株式会社 Ultrasonic transmitter-receiver

Also Published As

Publication number Publication date
JP4269751B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
JP3549523B2 (en) Acoustic matching layer, ultrasonic transducer and manufacturing method thereof
US7389569B2 (en) Method for manfacturing an acoustic matching member
JP4269751B2 (en) Manufacturing method of matching layer, ultrasonic sensor using matching layer, and fluid flow measuring apparatus using ultrasonic sensor
JP4702349B2 (en) Ultrasonic transducer and ultrasonic flow measuring device using it
JP4140359B2 (en) Alignment member for ultrasonic transducer and ultrasonic sensor using the same
US6545947B1 (en) Acoustic matching material, method of manufacture thereof, and ultrasonic transmitter using acoustic matching material
JP6701506B1 (en) Resin composition for acoustic matching layer
JP2008261732A (en) Ultrasonic transmitting/receiving device and ultrasonic current flow meter
JP4014940B2 (en) Acoustic matching member, ultrasonic transducer, ultrasonic flow meter, and manufacturing method thereof
JP2002058099A (en) Method for producing acoustic matching layer, acoustic matching layer produced by the method, ultrasonic sensor comprising the layer, and electronic apparatus using the layer
KR20060125686A (en) Sound matching body, process for producing the same, ultrasonic sensor and ultrasonic wave transmitting/receiving system
JP2005252772A (en) Method of manufacturing matching member, ultrasonic sensor, and flow measuring device of fluid using the same
JP2005039326A (en) Manufacturing method and manufacturing apparatus for matching member and ultrasonic sensor employing the matching member
JP2005252771A (en) Method of manufacturing matching member, ultrasonic sensor, and flow measuring device of fluid using the ultrasonic sensor
JP4449291B2 (en) Alignment member manufacturing method
JP4082165B2 (en) Manufacturing method of matching member and ultrasonic sensor using the same
JP4729848B2 (en) Manufacturing method of matching member, ultrasonic sensor using matching layer, and fluid flow measuring apparatus using ultrasonic sensor
JP2005260409A (en) Ultrasonic oscillator, its fabrication process, and ultrasonic fluid measuring apparatus
JP4341541B2 (en) Ultrasonic sensor and fluid flow measuring device using the same
JP4439710B2 (en) Acoustic matching member and manufacturing method thereof
JP2005260807A (en) Method of manufacturing acoustic matching member, ultrasonic sensor using the acoustic matching member as acoustic matching layer, and fluid flow measuring apparatus using ultrasonic sensor
Wei et al. Xiaoji Zhang
JP3610945B2 (en) Alignment member manufacturing method
CN115138547A (en) Piezoelectric micromechanical ultrasonic transducer back lining material, preparation method and filling method
JP4120214B2 (en) Manufacturing method of matching layer for ultrasonic transducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4269751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees