JP2004311819A - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
JP2004311819A
JP2004311819A JP2003105220A JP2003105220A JP2004311819A JP 2004311819 A JP2004311819 A JP 2004311819A JP 2003105220 A JP2003105220 A JP 2003105220A JP 2003105220 A JP2003105220 A JP 2003105220A JP 2004311819 A JP2004311819 A JP 2004311819A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
heat transfer
conversion module
transfer plates
conversion material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003105220A
Other languages
Japanese (ja)
Inventor
Makoto Mizutani
眞 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2003105220A priority Critical patent/JP2004311819A/en
Publication of JP2004311819A publication Critical patent/JP2004311819A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion module capable of preventing the generation of distortion in a thermoelectric conversion material even when a temperature gradient is formed and having high durability. <P>SOLUTION: The thermoelectric module 1 for converting a temperature gradient generated between a pair of heat transfer plates 11, 12 opposed to each other into electric energy is provided with a plurality of thermoelectric conversion materials 13 arranged between these heat transfer plates 11, 12, so that respective thermoelectric conversion materials 13 are extended from one heat transfer plate 11 to the other heat transfer plate 12. Both the end faces 131, 132 of two adjacent thermoelectric conversion materials 13 which are respectively turned to the different heat transfer plates 11, 12 are mutually connected through an electrode 17 consisting of a metal or alloy which is different from the thermoelectric conversion materials 13. Since the thermoelectric conversion module 1 can be constituted of one sort of thermoelectric conversion materials 13, the thermoelectric conversion module capable of reducing the generation of distortion or the like due to a thermal expansion difference which may be generated by the mixture of different sorts of materials and having high durability can be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、対向配置される一対の伝熱板間に生じた温度勾配を電気エネルギーに変換する熱電変換モジュールに関する。
【0002】
【背景技術】
従来、ゼーベック効果を利用した熱電変換素子として、p型熱電変換材料及びn型熱電変換材料を組み合わせたものが知られている(例えば、特許文献1参照)。
この熱電変換素子は、図2に示されるように、円柱形又は角柱形状のp型熱電変換材料101及びn型熱電変換材料102を配置し、これら熱電変換材料101、102の一方の端面間を金属セグメント103で連結し、他方の端面のそれぞれに金属セグメント104、105を接続したいわゆるπ字型構造の熱電変換素子として構成される。
【0003】
そして、金属セグメント103及び金属セグメント104、105の間に温度勾配を設けると、p型熱電変換材料101及びn型熱電変換材料102の接合に基づくゼーベック効果により、金属セグメント104及び金属セグメント105間に電流が生じ、これらの間にモータ106を接続すると、生じた電流による熱起電力によって、モータ106が駆動する。尚、このような熱電変換素子を利用してより大きな熱起電力を発生させる場合、金属セグメント104、105間を電気的に接続して、複数の熱電変換素子をp型熱電変換材料101及びn型熱電変換材料102が交互に配列されるように接続した熱電変換モジュールを作製すればよい。
【0004】
【特許文献1】
特開平11−220184号公報(〔0022〕段落、図1参照)
【0005】
【発明が解決しようとする課題】
しかしながら、前記特許文献1に開示される従来構造の熱電変換素子では、異種の熱電変換材料を交互に配列した構成であるため、金属セグメント103及び金属セグメント104、105間に温度勾配を設けると、各々の熱電変換材料の熱膨張差により、熱電変換素子の歪みが生じ、場合によっては、熱電変換素子の破壊を招くおそれがあるという問題がある。
また、p型熱電変換材料及びn型熱電変換材料の熱的特性を合わせるような材料調整を行うことも考えられるが、現実的には難しく、特に、近年開発の盛んな酸化物系熱電変換材料では、同じ素材からp型、n型を制御して造るのは非常に困難である。
【0006】
本発明の目的は、温度勾配を設けても熱電変換材料に歪みが生じることがなく、耐久性の良好な熱電変換モジュールを提供することにある。
【0007】
【課題を解決するための手段】
前記目的を達成するために、本発明の熱電変換モジュールは、対向配置される一対の伝熱板間に生じた温度勾配を電気エネルギーに変換する熱電変換モジュールであって、前記一対の伝熱板の間に介在配置され、それぞれが一方の伝熱板から他方の伝熱板に向かって延出する2以上の複数の熱電変換材料を備え、互いに隣接する2つの熱電変換材料の異なる伝熱板に臨む端面同士を、前記熱電変換材料とは異なる金属又は合金からなる電極で接続したことを特徴とする。
ここで、前述した熱電変換材料としては、酸化物系熱電変換材料であるのが好ましい。
【0008】
熱電変換材料は、p型熱電変換材料又はn型熱電変換材料いずれも採用することができる。p型の酸化物系熱電変換材料としては、例えば、NaCo、BiSrCo系、CaBiO系、La1−xSrCoO系材料が好適である。n型の酸化物系熱電変換材料としては、Zn1−xO(x=0〜0.3:MはZn以外の元素)系酸化物、In−Zn−O系酸化物(In(ZnO)(x=1〜9)及びこれとInの混合焼結体)などが挙げられる。
【0009】
一方、電極材料としては、Cu、Al、Ni等の金属やステンレス等の合金を用いることができるが、n型熱電変換材料に対しては熱起電力が正になるステンレス合金などが好ましく、p型熱電変換材料に対しては熱起電力が逆に負になるNiやCuなどが好ましく、電極材料は、線状又は薄膜形状とするのが好ましい。すなわち、電極材料には、熱電変換材料とは逆向きの熱起電力を生じさせる材料を選択するのが好ましい。
【0010】
この発明によれば、p型熱電変換材料及びn型熱電変換材料を交互に配列して熱電変換モジュールを構成する必要がなく、1種類の熱電変換材料により熱電変換モジュールを構成することができるため、対向配置される伝熱板間に温度勾配を設けても、異種材料が混在することによる熱膨張差に伴う歪み等が発生することが少なく、耐久性の良好な熱電変換モジュールとすることができる。
【0011】
本発明では、一対の伝熱板に、各伝熱板を貫通し、これらの伝熱板を締め付けることで電極及び熱電変換材料を挟持する挟持部材が設けられている場合、この挟持部材は、いずれか一方の伝熱板と断熱性材料を介して当接しているのが好ましい。
断熱性材料としては、耐熱性が良好でかつ伝熱板及び挟持部材間の熱の流れを遮断できるような材料を採用するのが好ましく、例えば、セラミック等の材料を採用することができる。
この発明によれば、一方の伝熱板が高温とされ、他方の伝熱板が低温とされて一対の伝熱板間に温度勾配が設けられた際、断熱性材料によって挟持部材及び伝熱板間の熱の流れを遮断することができるため、伝熱板間の温度差を維持してより効率的に熱電変換を行うことができる。
【0012】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
図1には、本発明の実施形態に係る熱電変換モジュール1が示されている。この熱電変換モジュール1は、対向配置される一対の伝熱板11、12間に、2以上の複数の熱電変換材料13を介在配置することにより構成される。
伝熱板11、12は、矩形状のアルミナプレートから構成され、矩形の四隅近傍部分には、孔111、121が形成されている。互いに対向する孔111、121には、各伝熱板11、12を貫通するように、ボルト14が挿通され、ボルト14の端部でナット15が螺合する。そして、このボルト14及びナット15を締め付けることにより、複数の熱電変換材料13は、一対の伝熱板11、12に挟持されることとなり、ボルト14及びナット15が挟持部材を構成する。
また、ナット15の内側には、セラミック製のリング状部材16が介装され、一方の伝熱板11に接触するボルト14は、螺合するナット15の部分でリング状部材16を介して伝熱板12を締め付ける。つまり、リング状部材16は、伝熱板11が加熱されることによる熱をボルト・ナット14、15を介して伝熱板12に伝達させないための断熱性材料として機能する。
【0013】
このような一対の伝熱板11、12間に介在配置される熱電変換材料13は、n型熱電変換材料として構成され、一方の伝熱板11から他方の伝熱板12に向かって延出する円柱又は角柱状に構成される。各熱電変換材料13は、矩形状の伝熱板11、12内にマトリックス状に配列される。
このn型の熱電変換材料13は、例えば、次のようにして製造することができる。
【0014】
すなわち、まず、酸化亜鉛粉(純度99.9%、平均粒径2μm)110.64g、及び酸化セリウム(純度99.9%、平均粒径0.4μm)9.36g秤量し、遊星ボールミル内で20時間混合粉砕する。
次に、この混合物をビーカーに採り、1重量%のPVA水溶液を120g添加し、良く混合する。
そして、これを乾燥機にて90℃下で24時間乾燥させた後、乳鉢にとり、さらに粉砕しながら、100メッシュの篩にかけ、粒度を揃える。
【0015】
得られた粉末を、金型に入れて、略5mm×5mmの端面で長さ略20mmの柱状体に加圧成形する。
これにより得られた加圧成形品を室温から8時間かけて1450℃まで昇温し、10時間保持した後、8時間かけて冷却した後、さらに、得られた焼結体の長さ方向の端面131、132の表面を約2mmずつ削り落として導電性面を出することにより、n型熱電変換材料13を得ることができる。
【0016】
このように製造される熱電変換材料13は一対の伝熱板11、12間に柱状体の長さ方向を縦方向として配列され、隣接する2つの熱電変換材料13は、電極17によって電気的に接続される。
電極17は、SUS430製で厚さ略100μmのシートを鍵型に折り曲げて構成され、熱電変換材料13の一方の伝熱板11に臨む端面131と、これに隣接する熱電変換材料13の他方の伝熱板12に臨む端面132とをたすきがけ状に接続している。熱電変換材料13及び電極17の接続に際しては、熱電変換材料13の導電性面に金属ペーストを塗っておき、酸化物の導電性面と電極材料を、例えば溶接やロウ付け等で熱電変換材料13及び電極17を接着固定する。また、酸化物の導電性面に金属ペースト、溶射、ロウ付け等で電気接触を良くしておき、これに電極17を機械的に押し付けても熱電変換材料13と電極17を電気的接触良く固定することができる。
そして、これを図1中左右方向及び奥行き方向に順次連結していき、伝熱板11、12の端部でリード線18を接続し、このリード線18にモータ等の電気設備Mを接続して閉回路を構成する。
【0017】
このような熱電変換モジュール1は、伝熱板11及び伝熱板12のいずれか一方を加熱し、いずれか他方を冷却すると、熱電変換材料13の端面131及びこれに接続される電極17と、端面132及びこれに接続される電極17との間で温度差が生じ、ゼーベック効果により、熱電変換材料13、電極17、及びリード線18から構成される閉回路中に電流が流れるようになり、モータ等の電気設備Mが駆動する。
【0018】
前述のような本実施形態によれば、次のような効果がある。
(1)1種類の熱電変換材料13のみを複数配列し、隣接する熱電変換材料13間を電極17によってたすきがけ状に接続して熱電変換モジュール1を構成しているため、従来のようなp型及びn型熱電変換材料を交互に配列することによる歪み等が発生することが少なく、耐久性の良好な熱電変換モジュール1とすることができる。
【0019】
(2)挟持部材としてのボルト14及びナット15がリング状部材16を介して伝熱板12と接続されているため、伝熱板11が加熱され、伝熱板12が冷却された場合であっても、伝熱板11の熱がボルト14及びナット15を介して伝熱板12側に流れても、リング上部材16によってその熱が遮断され、伝熱板12が加熱されることがない。したがって、伝熱板11、12間の温度勾配を十分に確保でき、熱電変換効率を一層向上させることのできる熱電変換モジュール1とすることができる。
【0020】
尚、本発明は、前述の実施形態に限定されるものではなく、以下に示すような変形をも含むものである。
前述の実施形態では、熱電変換材料13をすべてn型のもので構成していたが、本発明はこれに限られない。すなわち、NaCo、BiSrCo系、CaBiO系、La1−xSrCoO系材料等のp型の熱電変換材料で熱電変換モジュールを構成してもよい。この場合、電極材料としては、NiやCu等を採用するのが好ましく、要するに、電極材料は、温度勾配が生じたときに、熱電変換材料とは逆向きの熱起電力を生じさせる材料を採用するのが好ましい。
【0021】
また、前記実施形態では、酸化亜鉛粉、酸化セリウムを混合粉砕し、これをPVA水溶液で撹拌混合した後、粒度調整を行って、加圧成形、焼結を行っていたが、本発明はこれに限られず、n型熱電変換材料を製造する種々の方法を採用することができる。
その他、本発明の実施の際の具体的な構造、材料選択、及び製造手順は、本発明の目的を達成できる範囲で種々の構造等を採用することができる。
【0022】
【実施例】
以下、本発明をより具体的に説明するために、実施例を挙げて説明するが、もちろん本発明はこれに限られるものではない。
(実施例)
(1)熱電変換材料の調製
酸化亜鉛粉(純度99.9%、平均粒径約2μm)110.64g及び酸化セリウム(純度99.9%、平均粒径約0.4μm)9.36gを秤量し、遊星ボールミルで20時間混合粉砕した。
次に、この混合物をビーカーにとり、1重量%のPVA水溶液を120g添加し、良く混合した。これを乾燥機にて90℃、24時間乾燥させた後、乳鉢にとり、さらに粉砕しながら100メッシュの篩にかけ、粒度を揃えた。
得られた粉末を金型に入れて幅約5mm、厚さ約5mm、長さ約20mmの棒状に加圧成形して5本の加圧成形体を得た。
このようにして得られた5本の加圧成形体を室温から8時間かけて1450℃まで昇温し、10時間保持した後、8時間かけて室温まで冷却して5本の焼結体を得た。
【0023】
(2)熱電変換モジュールの製作
前述の方法により得られた各焼結体の長軸方向の端面を約2mmずつ削り落として導電性面を出し、図1におけるn型熱電変換材料13とした。導電性面にNiを無電解メッキした後、SUS430の厚さ100μmのシートをおよそ幅7mm、長さ45mmの短冊状に切断した。
このシートを両端から15mmの部分で折り曲げてクランク状のシートを形成し、端部15mmの部分をn型熱電変換材料13の導電性面に銀ロウによりロウ付けし、電極17として各熱電変換材料13を連結し、伝熱板11としてのアルミナ基板上に載せ、熱電変換モジュール1を作製した。
【0024】
(比較例)
(1)熱電変換材料の調製
実施例と同様に酸化亜鉛及び酸化セリウム混合焼結体を作製し、n型熱電変換材料102とし、p型酸化物熱電変換材料101としてNaCo酸化物の焼結体を用いた。
(2)熱電変換モジュールの製作
上記2種類のn型熱電変換材料102及びp型酸化物熱電変換材料101を用いて図2に示されるπ型の熱電変換素子が連続する熱電変換モジュールを製作した。具体的には、n型熱電変換材料102を3本、p型酸化物熱電変換材料101を2本準備し、これらを交互に配列した後、n型熱電変換材料102及びp型熱電変換材料101の端面同士を電極となる金属セグメント103で連結し、アルミナ基板上に載せて熱電変換モジュールとする。尚、電極との接合は、酸化亜鉛系材料はNiを無電解メッキしておき導電性面とし、NaCo酸化物はそのままで実施例の場合と同様にSUS430の100μmのシートを用い、これを銀ロウによりロウ付けすることでシートを導電性面に電気的に接続し、アルミナ基板上に載せて熱電変換モジュールを作製した。
【0025】
(評価方法)
実施例及び比較例で得られた熱電変換モジュールをホットプレート上に置き、ホットプレート温度を5分かけて450℃に昇温し、その状態で20分間保持した後、室温に戻すのを1サイクルとして、10回のヒートサイクル試験を行い、ヒートサイクル試験後、各熱電変換モジュールの外観変化、熱起電力、及び抵抗値を測定した。
(結果)
実施例に係る熱電変換モジュールは外観上の変化は認められず、熱起電力及び抵抗値にも変化は認められなかった。
一方、比較例に係る熱電変換モジュールはn型熱電変換材料のロウ付け付近に亀裂が入っており、熱電変換モジュールの抵抗値を測定したところ、抵抗値は無限大となった。
以上のことから、実施例に係る熱電変換モジュールは、熱電変換材料に歪みが生じることもなく、耐久性の良好な熱電変換モジュールであることが確認された。
【0026】
【発明の効果】
前述のような本発明によれば、1種類の熱電変換材料により熱電変換モジュールを構成することができるため、対向配置される伝熱板間に温度勾配を設けても熱電変換材料に歪みが生じることがなく、耐久性の良好な熱電変換モジュールとすることができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る熱電変換モジュールの構造を表す模式断面図である。
【図2】従来のπ型構造の熱電変換モジュールの構造を表す模式断面図である。
【符号の説明】
11、12 伝熱板
1 熱電変換モジュール
13 熱電変換材料
17 電極
14、15 ボルト・ナット(挟持部材)
16 リング状部材(断熱性材料)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermoelectric conversion module that converts a temperature gradient generated between a pair of heat transfer plates disposed opposite to each other into electric energy.
[0002]
[Background Art]
BACKGROUND ART Conventionally, as a thermoelectric conversion element utilizing the Seebeck effect, a combination of a p-type thermoelectric conversion material and an n-type thermoelectric conversion material is known (for example, see Patent Document 1).
In this thermoelectric conversion element, as shown in FIG. 2, a columnar or prismatic p-type thermoelectric conversion material 101 and an n-type thermoelectric conversion material 102 are arranged, and one end face of the thermoelectric conversion materials 101 and 102 is disposed between them. It is configured as a so-called π-shaped thermoelectric conversion element in which the metal segments 103 are connected to each other and the metal segments 104 and 105 are connected to the other end faces, respectively.
[0003]
When a temperature gradient is provided between the metal segment 103 and the metal segments 104 and 105, the Seebeck effect based on the joining of the p-type thermoelectric conversion material 101 and the n-type thermoelectric conversion material 102 causes the metal segment 104 and the metal segment 105 to have a temperature gradient. When a current is generated and the motor 106 is connected between them, the motor 106 is driven by the thermoelectromotive force generated by the generated current. When a larger thermoelectromotive force is generated by using such a thermoelectric conversion element, the plurality of thermoelectric conversion elements are electrically connected between the metal segments 104 and 105 so that the p-type thermoelectric conversion materials 101 and n A thermoelectric conversion module in which the thermoelectric conversion materials 102 are connected alternately may be manufactured.
[0004]
[Patent Document 1]
JP-A-11-220184 (see paragraph [0022], FIG. 1)
[0005]
[Problems to be solved by the invention]
However, the thermoelectric conversion element having the conventional structure disclosed in Patent Document 1 has a configuration in which different types of thermoelectric conversion materials are alternately arranged. Therefore, if a temperature gradient is provided between the metal segment 103 and the metal segments 104 and 105, There is a problem that the thermoelectric conversion element may be distorted due to a difference in thermal expansion of each thermoelectric conversion material, and in some cases, the thermoelectric conversion element may be broken.
It is also conceivable to adjust the materials so that the thermal characteristics of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material are matched. However, it is practically difficult, and in particular, oxide-based thermoelectric conversion materials which have been actively developed in recent years are particularly difficult. Then, it is very difficult to control and form p-type and n-type from the same material.
[0006]
An object of the present invention is to provide a thermoelectric conversion module that does not cause distortion in a thermoelectric conversion material even when a temperature gradient is provided and has good durability.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a thermoelectric conversion module of the present invention is a thermoelectric conversion module that converts a temperature gradient generated between a pair of opposed heat transfer plates into electric energy, wherein the thermoelectric conversion module is provided between the pair of heat transfer plates. And two or more thermoelectric conversion materials each extending from one heat transfer plate toward the other heat transfer plate, and facing two different heat transfer plates of two thermoelectric conversion materials adjacent to each other. The end faces are connected by an electrode made of a metal or an alloy different from the thermoelectric conversion material.
Here, the above-mentioned thermoelectric conversion material is preferably an oxide-based thermoelectric conversion material.
[0008]
As the thermoelectric conversion material, either a p-type thermoelectric conversion material or an n-type thermoelectric conversion material can be adopted. As the p-type oxide-based thermoelectric conversion material, for example, NaCo 2 O 4 , Bi 2 Sr 2 Co 2 O x , Ca 3 BiO x , or La 1-x Sr x CoO y -based material is preferable. As an n-type oxide-based thermoelectric conversion material, a Zn 1-x M x O (x = 0 to 0.3: M is an element other than Zn) -based oxide, an In—Zn—O-based oxide (In 2 O 3 (ZnO) x (x = 1 to 9) and a mixed sintered body of In 2 O 3 and the like.
[0009]
On the other hand, as the electrode material, metals such as Cu, Al, and Ni, and alloys such as stainless steel can be used. For an n-type thermoelectric conversion material, a stainless alloy having a positive thermoelectromotive force is preferable. For the thermoelectric conversion material, Ni or Cu or the like, whose thermoelectromotive force is negative, is preferable, and the electrode material is preferably linear or thin film. That is, it is preferable to select a material that generates a thermoelectromotive force in the opposite direction to the thermoelectric conversion material as the electrode material.
[0010]
According to the present invention, it is not necessary to configure the thermoelectric conversion module by alternately arranging the p-type thermoelectric conversion materials and the n-type thermoelectric conversion materials, and the thermoelectric conversion module can be configured by one type of thermoelectric conversion material. Even if a temperature gradient is provided between the heat transfer plates disposed opposite to each other, distortion or the like due to a difference in thermal expansion due to the mixture of different materials is less likely to occur, and a thermoelectric conversion module having good durability can be obtained. it can.
[0011]
In the present invention, when a pair of heat transfer plates penetrate each heat transfer plate, and a clamping member that clamps the electrode and the thermoelectric conversion material by tightening these heat transfer plates is provided, the clamping member is It is preferable that one of the heat transfer plates is in contact with the other via a heat insulating material.
As the heat insulating material, it is preferable to use a material having good heat resistance and capable of blocking the flow of heat between the heat transfer plate and the sandwiching member. For example, a material such as ceramic can be used.
According to the present invention, when one of the heat transfer plates is set to a high temperature and the other heat transfer plate is set to a low temperature to provide a temperature gradient between the pair of heat transfer plates, the holding member and the heat transfer member are insulated by the heat insulating material. Since the heat flow between the plates can be shut off, the thermoelectric conversion can be performed more efficiently while maintaining the temperature difference between the heat transfer plates.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a thermoelectric conversion module 1 according to an embodiment of the present invention. The thermoelectric conversion module 1 is configured by interposing two or more thermoelectric conversion materials 13 between a pair of heat transfer plates 11 and 12 opposed to each other.
The heat transfer plates 11 and 12 are each formed of a rectangular alumina plate, and holes 111 and 121 are formed near four corners of the rectangle. Bolts 14 are inserted into the holes 111 and 121 facing each other so as to penetrate the heat transfer plates 11 and 12, and nuts 15 are screwed at ends of the bolts 14. Then, by tightening the bolts 14 and the nuts 15, the plurality of thermoelectric conversion materials 13 are sandwiched between the pair of heat transfer plates 11 and 12, and the bolts 14 and the nuts 15 constitute a sandwiching member.
Further, a ring-shaped member 16 made of ceramic is interposed inside the nut 15, and the bolt 14 that contacts one of the heat transfer plates 11 is transmitted through the ring-shaped member 16 at the portion of the nut 15 to be screwed. The hot plate 12 is tightened. That is, the ring-shaped member 16 functions as a heat insulating material for preventing the heat generated by the heating of the heat transfer plate 11 from being transmitted to the heat transfer plate 12 via the bolts and nuts 14 and 15.
[0013]
The thermoelectric conversion material 13 interposed between such a pair of heat transfer plates 11 and 12 is configured as an n-type thermoelectric conversion material, and extends from one heat transfer plate 11 to the other heat transfer plate 12. It has a cylindrical or prismatic shape. The thermoelectric conversion materials 13 are arranged in a matrix in the rectangular heat transfer plates 11 and 12.
The n-type thermoelectric conversion material 13 can be manufactured, for example, as follows.
[0014]
That is, first, 110.64 g of zinc oxide powder (purity 99.9%, average particle diameter 2 μm) and 9.36 g of cerium oxide (purity 99.9%, average particle diameter 0.4 μm) were weighed and placed in a planetary ball mill. Mix and grind for 20 hours.
Next, this mixture is placed in a beaker, and 120 g of a 1% by weight aqueous PVA solution is added and mixed well.
Then, this is dried in a drier at 90 ° C. for 24 hours, placed in a mortar, and sieved with a 100-mesh sieve while further pulverizing to make the particle size uniform.
[0015]
The obtained powder is placed in a mold and pressed into a columnar body having a length of about 20 mm with an end face of about 5 mm × 5 mm.
The resulting press-formed product was heated from room temperature to 1450 ° C. in 8 hours, held for 10 hours, cooled in 8 hours, and further cooled in the longitudinal direction of the obtained sintered body. The n-type thermoelectric conversion material 13 can be obtained by shaving the surfaces of the end surfaces 131 and 132 by about 2 mm to expose a conductive surface.
[0016]
The thermoelectric conversion material 13 manufactured in this manner is arranged between the pair of heat transfer plates 11 and 12 with the longitudinal direction of the columnar body being the vertical direction. The two adjacent thermoelectric conversion materials 13 are electrically connected by the electrode 17. Connected.
The electrode 17 is formed by bending a sheet made of SUS430 and having a thickness of about 100 μm into a key shape, and has an end face 131 facing one heat transfer plate 11 of the thermoelectric conversion material 13 and the other end face of the thermoelectric conversion material 13 adjacent thereto. The end face 132 facing the heat transfer plate 12 is connected in a crossing manner. When connecting the thermoelectric conversion material 13 and the electrode 17, a metal paste is applied to the conductive surface of the thermoelectric conversion material 13, and the conductive surface of the oxide and the electrode material are bonded by, for example, welding or brazing. Then, the electrode 17 is bonded and fixed. Also, the electrical contact is improved by applying a metal paste, thermal spraying, brazing, or the like to the conductive surface of the oxide, and the thermoelectric conversion material 13 and the electrode 17 are fixed with good electrical contact even when the electrode 17 is mechanically pressed. can do.
Then, these are sequentially connected in the left-right direction and the depth direction in FIG. 1, and a lead wire 18 is connected at an end of the heat transfer plates 11 and 12, and an electric equipment M such as a motor is connected to the lead wire 18. To form a closed circuit.
[0017]
When such a thermoelectric conversion module 1 heats one of the heat transfer plate 11 and the heat transfer plate 12 and cools the other, the end face 131 of the thermoelectric conversion material 13 and the electrode 17 connected to the end face 131, A temperature difference occurs between the end face 132 and the electrode 17 connected to the end face 132, and a current flows through a closed circuit including the thermoelectric conversion material 13, the electrode 17, and the lead wire 18 due to the Seebeck effect, The electric equipment M such as a motor is driven.
[0018]
According to the above-described embodiment, the following effects can be obtained.
(1) The thermoelectric conversion module 1 is configured by arranging a plurality of only one type of thermoelectric conversion material 13 and connecting the adjacent thermoelectric conversion materials 13 in a cross-like manner with the electrodes 17 to form the thermoelectric conversion module 1. The thermoelectric conversion module 1 having less durability and less durability due to the alternate arrangement of the mold and n-type thermoelectric conversion materials can be provided.
[0019]
(2) Since the bolt 14 and the nut 15 as the sandwiching members are connected to the heat transfer plate 12 via the ring-shaped member 16, the heat transfer plate 11 is heated and the heat transfer plate 12 is cooled. Even if the heat of the heat transfer plate 11 flows toward the heat transfer plate 12 via the bolts 14 and the nuts 15, the heat is blocked by the ring upper member 16 and the heat transfer plate 12 is not heated. . Therefore, the thermoelectric conversion module 1 can sufficiently secure the temperature gradient between the heat transfer plates 11 and 12 and can further improve the thermoelectric conversion efficiency.
[0020]
Note that the present invention is not limited to the above-described embodiment, but includes the following modifications.
In the above-described embodiment, the thermoelectric conversion materials 13 are all made of n-type, but the present invention is not limited to this. That is, even if a thermoelectric conversion module is made of a p-type thermoelectric conversion material such as NaCo 2 O 4 , Bi 2 Sr 2 Co 2 O x , Ca 3 BiO x , La 1-x Sr x CoO y, etc. Good. In this case, it is preferable to use Ni, Cu, or the like as the electrode material. In short, the electrode material employs a material that generates a thermoelectromotive force in a direction opposite to that of the thermoelectric conversion material when a temperature gradient occurs. Is preferred.
[0021]
Further, in the above-described embodiment, zinc oxide powder and cerium oxide are mixed and pulverized, and after stirring and mixing with a PVA aqueous solution, the particle size is adjusted, pressure molding, and sintering are performed. The present invention is not limited to this, and various methods for producing an n-type thermoelectric conversion material can be employed.
In addition, various structures and the like can be adopted as specific structures, material selections, and manufacturing procedures for implementing the present invention as long as the object of the present invention can be achieved.
[0022]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but it should be understood that the present invention is not limited thereto.
(Example)
(1) Preparation of thermoelectric conversion material 110.64 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm) and 9.36 g of cerium oxide (purity 99.9%, average particle size of about 0.4 μm) were weighed. Then, the mixture was pulverized for 20 hours by a planetary ball mill.
Next, this mixture was placed in a beaker, and 120 g of a 1% by weight aqueous solution of PVA was added and mixed well. This was dried in a drier at 90 ° C. for 24 hours, placed in a mortar, and sieved with a 100-mesh sieve while pulverizing to uniform the particle size.
The resulting powder was placed in a mold and pressed into a rod having a width of about 5 mm, a thickness of about 5 mm, and a length of about 20 mm to obtain five pressed bodies.
The five pressure-molded bodies thus obtained were heated from room temperature to 1450 ° C. in 8 hours, held for 10 hours, and then cooled to room temperature in 8 hours to obtain 5 sintered bodies. Obtained.
[0023]
(2) Manufacture of thermoelectric conversion module The end face in the long axis direction of each sintered body obtained by the above-mentioned method was shaved off by about 2 mm, and a conductive surface was obtained, thereby obtaining n-type thermoelectric conversion material 13 in FIG. After electroless plating of Ni on the conductive surface, a SUS430 sheet having a thickness of 100 μm was cut into a strip having a width of about 7 mm and a length of 45 mm.
This sheet is bent at 15 mm from both ends to form a crank-shaped sheet, and the 15 mm end portion is brazed to the conductive surface of the n-type thermoelectric conversion material 13 with silver brazing. 13 were connected and mounted on an alumina substrate as the heat transfer plate 11 to produce the thermoelectric conversion module 1.
[0024]
(Comparative example)
(1) Preparation of thermoelectric conversion material A mixed sintered body of zinc oxide and cerium oxide was prepared in the same manner as in the example, and was used as an n-type thermoelectric conversion material 102 and a p-type oxide thermoelectric conversion material 101 of NaCo 2 O 4 oxide. A sintered body was used.
(2) Manufacture of thermoelectric conversion module A thermoelectric conversion module in which the π-type thermoelectric conversion element shown in FIG. 2 is continuous was manufactured using the above two types of n-type thermoelectric conversion materials 102 and p-type oxide thermoelectric conversion materials 101. . Specifically, three n-type thermoelectric conversion materials 102 and two p-type oxide thermoelectric conversion materials 101 are prepared, and after these are alternately arranged, the n-type thermoelectric conversion material 102 and the p-type thermoelectric conversion material 101 are prepared. Are connected by a metal segment 103 serving as an electrode, and mounted on an alumina substrate to form a thermoelectric conversion module. In addition, as for the bonding with the electrode, a zinc oxide-based material is electrolessly plated with Ni to form a conductive surface, and a NaCo 2 O 4 oxide is used as it is, using a SUS430 100 μm sheet in the same manner as in the embodiment. The sheet was electrically connected to the conductive surface by brazing it with a silver braze, and was placed on an alumina substrate to produce a thermoelectric conversion module.
[0025]
(Evaluation method)
The thermoelectric conversion modules obtained in Examples and Comparative Examples were placed on a hot plate, the temperature of the hot plate was raised to 450 ° C. over 5 minutes, and then held for 20 minutes, and then returned to room temperature for one cycle. A heat cycle test was performed 10 times, and after the heat cycle test, the appearance change, thermoelectromotive force, and resistance value of each thermoelectric conversion module were measured.
(result)
In the thermoelectric conversion module according to the example, no change in appearance was observed, and no change was observed in the thermoelectromotive force and the resistance value.
On the other hand, the thermoelectric conversion module according to the comparative example had a crack near the brazing of the n-type thermoelectric conversion material, and when the resistance of the thermoelectric conversion module was measured, the resistance was infinite.
From the above, it was confirmed that the thermoelectric conversion module according to the example was a thermoelectric conversion module having good durability without any distortion of the thermoelectric conversion material.
[0026]
【The invention's effect】
According to the present invention as described above, since a thermoelectric conversion module can be constituted by one type of thermoelectric conversion material, distortion occurs in the thermoelectric conversion material even when a temperature gradient is provided between the heat transfer plates disposed to face each other. Thus, a thermoelectric conversion module having good durability can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view illustrating a structure of a thermoelectric conversion module according to an embodiment of the present invention.
FIG. 2 is a schematic sectional view showing the structure of a conventional π-type thermoelectric conversion module.
[Explanation of symbols]
11, 12 Heat transfer plate 1 Thermoelectric conversion module 13 Thermoelectric conversion material 17 Electrode 14, 15 Bolt / nut (clamping member)
16 Ring-shaped member (heat insulating material)

Claims (4)

対向配置される一対の伝熱板間に生じた温度勾配を電気エネルギーに変換する熱電変換モジュールであって、
前記一対の伝熱板の間に介在配置され、それぞれが一方の伝熱板から他方の伝熱板に向かって延出する複数の熱電変換材料を備え、
互いに隣接する2つの熱電変換材料の異なる伝熱板に臨む端面同士を、前記熱電変換材料とは異なる金属又は合金からなる電極で接続したことを特徴とする熱電変換モジュール。
A thermoelectric conversion module that converts a temperature gradient generated between a pair of heat transfer plates disposed to face each other into electric energy,
It comprises a plurality of thermoelectric conversion materials interposed between the pair of heat transfer plates, each extending from one heat transfer plate toward the other heat transfer plate,
A thermoelectric conversion module, wherein end faces of two adjacent thermoelectric conversion materials facing different heat transfer plates are connected by electrodes made of a metal or an alloy different from the thermoelectric conversion material.
請求項1に記載の熱電変換モジュールにおいて、
前記熱電変換材料は、酸化物系熱電変換材料であることを特徴とする熱電変換モジュール。
The thermoelectric conversion module according to claim 1,
The thermoelectric conversion module, wherein the thermoelectric conversion material is an oxide-based thermoelectric conversion material.
請求項1又は請求項2に記載の熱電変換モジュールにおいて、前記電極は、前記一対の伝熱板間に温度勾配が生じたときに、前記熱電変換材料とは逆向きの熱起電力を生じさせる材料から構成されていることを特徴とする熱電変換モジュール。3. The thermoelectric conversion module according to claim 1, wherein the electrode generates a thermoelectromotive force in a direction opposite to the thermoelectric conversion material when a temperature gradient occurs between the pair of heat transfer plates. 4. A thermoelectric conversion module comprising a material. 請求項1〜請求項3のいずれかに記載の熱電変換モジュールにおいて、
前記一対の伝熱板には、各伝熱板を貫通し、これらの伝熱板を締め付けることで前記電極及び前記熱電変換材料を挟持する挟持部材が設けられ、
この挟持部材は、いずれか一方の伝熱板と断熱性材料を介して当接していることを特徴とする熱電変換モジュール。
The thermoelectric conversion module according to any one of claims 1 to 3,
The pair of heat transfer plates, penetrating each heat transfer plate, is provided with a holding member for holding the electrode and the thermoelectric conversion material by tightening these heat transfer plates,
The holding member is in contact with one of the heat transfer plates via a heat insulating material.
JP2003105220A 2003-04-09 2003-04-09 Thermoelectric conversion module Withdrawn JP2004311819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003105220A JP2004311819A (en) 2003-04-09 2003-04-09 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003105220A JP2004311819A (en) 2003-04-09 2003-04-09 Thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2004311819A true JP2004311819A (en) 2004-11-04

Family

ID=33467798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105220A Withdrawn JP2004311819A (en) 2003-04-09 2003-04-09 Thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2004311819A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319119A (en) * 2005-05-12 2006-11-24 Daikin Ind Ltd Thermoelectric module
WO2009139295A1 (en) * 2008-05-12 2009-11-19 アルゼ株式会社 Thermoelectric generation apparatus
WO2010101049A1 (en) * 2009-03-03 2010-09-10 学校法人東京理科大学 Thermoelectric conversion element and thermoelectric conversion module
WO2011065185A1 (en) * 2009-11-27 2011-06-03 富士通株式会社 Thermoelectric conversion module and method for manufacturing same
JP2015043412A (en) * 2013-07-22 2015-03-05 国立大学法人山梨大学 Thermoelectric element and method of manufacturing the same
EP2787545A4 (en) * 2011-11-30 2015-09-30 Nippon Thermostat Kk Thermoelectric conversion module
EP3041056A1 (en) * 2015-01-05 2016-07-06 The Boeing Company Thermoelectric generator
KR20190094724A (en) * 2018-02-05 2019-08-14 엘지이노텍 주식회사 Thermoelectric device module
JP2021512488A (en) * 2018-01-23 2021-05-13 エルジー イノテック カンパニー リミテッド Thermoelectric module

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319119A (en) * 2005-05-12 2006-11-24 Daikin Ind Ltd Thermoelectric module
WO2009139295A1 (en) * 2008-05-12 2009-11-19 アルゼ株式会社 Thermoelectric generation apparatus
WO2010101049A1 (en) * 2009-03-03 2010-09-10 学校法人東京理科大学 Thermoelectric conversion element and thermoelectric conversion module
JP2010205883A (en) * 2009-03-03 2010-09-16 Tokyo Univ Of Science Thermoelectric conversion element and thermoelectric conversion module
WO2011065185A1 (en) * 2009-11-27 2011-06-03 富士通株式会社 Thermoelectric conversion module and method for manufacturing same
JPWO2011065185A1 (en) * 2009-11-27 2013-04-11 富士通株式会社 Thermoelectric conversion module and manufacturing method thereof
KR101815232B1 (en) 2011-11-30 2018-01-05 니뽄 서모스탯 가부시키가이샤 Thermoelectric conversion module
EP2787545A4 (en) * 2011-11-30 2015-09-30 Nippon Thermostat Kk Thermoelectric conversion module
JP2015043412A (en) * 2013-07-22 2015-03-05 国立大学法人山梨大学 Thermoelectric element and method of manufacturing the same
EP3041056A1 (en) * 2015-01-05 2016-07-06 The Boeing Company Thermoelectric generator
JP2016127278A (en) * 2015-01-05 2016-07-11 ザ・ボーイング・カンパニーThe Boeing Company Thermoelectric generator
JP2020123744A (en) * 2015-01-05 2020-08-13 ザ・ボーイング・カンパニーThe Boeing Company Thermoelectric generator
KR20220024284A (en) * 2015-01-05 2022-03-03 더 보잉 컴파니 Thermoelectric generator
KR102564703B1 (en) * 2015-01-05 2023-08-11 더 보잉 컴파니 Thermoelectric generator
JP2021512488A (en) * 2018-01-23 2021-05-13 エルジー イノテック カンパニー リミテッド Thermoelectric module
US11730056B2 (en) 2018-01-23 2023-08-15 Lg Innotek Co., Ltd. Thermoelectric module
JP7407718B2 (en) 2018-01-23 2024-01-04 エルジー イノテック カンパニー リミテッド thermoelectric module
KR20190094724A (en) * 2018-02-05 2019-08-14 엘지이노텍 주식회사 Thermoelectric device module
KR102433959B1 (en) * 2018-02-05 2022-08-19 엘지이노텍 주식회사 Thermoelectric device module

Similar Documents

Publication Publication Date Title
CN108140713B (en) Thermoelectric conversion module and thermoelectric conversion device
WO2010101049A1 (en) Thermoelectric conversion element and thermoelectric conversion module
TWI505522B (en) Method for manufacturing thermoelectric conversion module
US20080087317A1 (en) Thermoelectric Transducer
US20090133734A1 (en) Thermoelectric Conversion Module
JP2006319210A (en) Manufacturing method of thermoelectric conversion element
US20140209140A1 (en) Stacked thermoelectric conversion module
WO2011013529A1 (en) Thermoelectric conversion material, and thermoelectric conversion module using same
US20230157174A1 (en) Thermoelectric conversion module
JP4584035B2 (en) Thermoelectric module
JP3245793B2 (en) Manufacturing method of thermoelectric conversion element
JP4524382B2 (en) Thermoelectric power generation elements that are subject to temperature differences
JP2004311819A (en) Thermoelectric conversion module
JP2004273489A (en) Thermoelectric conversion module and its manufacturing method
JP4584034B2 (en) Thermoelectric module
JP5158200B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP2011198778A (en) Method for manufacturing thermoelectric device
JP2003234516A (en) Thermoelectric module
JP5218285B2 (en) Thermoelectric conversion material
JP4883846B2 (en) Thermoelectric conversion module for high temperature
JPH11298052A (en) Thermoelectric element, thermoelectric material and manufacture thereof
JP2010016132A (en) Thermoelectric conversion module and method of producing the same
JP7047244B2 (en) Manufacturing method of thermoelectric conversion module
JP4643371B2 (en) Thermoelectric module
JP6809852B2 (en) Thermoelectric conversion element and thermoelectric conversion module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070703

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070810

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080208