JP2004311760A - Coil component - Google Patents

Coil component Download PDF

Info

Publication number
JP2004311760A
JP2004311760A JP2003103957A JP2003103957A JP2004311760A JP 2004311760 A JP2004311760 A JP 2004311760A JP 2003103957 A JP2003103957 A JP 2003103957A JP 2003103957 A JP2003103957 A JP 2003103957A JP 2004311760 A JP2004311760 A JP 2004311760A
Authority
JP
Japan
Prior art keywords
coil
magnetic core
core
magnetic
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003103957A
Other languages
Japanese (ja)
Inventor
Osamu Shimomura
理 下村
Kiyoshi Takagi
潔 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003103957A priority Critical patent/JP2004311760A/en
Publication of JP2004311760A publication Critical patent/JP2004311760A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coil component capable of coping with a big current while contriving the miniaturization of the same. <P>SOLUTION: The coil component is provided with a coil unit 12 having an air core 11 in the direction of winding axis and formed by winding a winding wire 16, and a magnetic core 13 accommodating the coil unit 12. The magnetic core 13 is provided with a through hole 14 at a part corresponding to the inside of the inner diameter of the air core 11 of the coil unit 12. A distance from the inner wall surface of a through hole 14 of the magnetic core 13 to the inner wall surface of the air core 11 of the coil unit 12 is made substantially uniform, and a distance from the outer peripheral surface of the coil unit 12 to the outer peripheral surface of the magnetic core 13 is made longer than a distance from the inner wall surface of the through hole 14 of the magnetic core 13 to the inner wall surface of the air core 11 of the coil unit 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は各種電子機器等に用いるコイル部品に関するものである。
【0002】
【従来の技術】
以下、従来のコイル部品について図面を参照しながら説明する。
【0003】
図8は従来のコイル部品の斜視図である。
【0004】
図8において、従来のコイル部品は、コンピュータ等のDC/DC電源用のチョークコイルとして用いており、トロイダル状の磁芯1の外周に、巻線2を巻回してコイル部3を配置した構成である。
【0005】
なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
【0006】
【特許文献1】
特開平11−121239号公報
【0007】
【発明が解決しようとする課題】
コンピュータに用いるCPUの駆動周波数の高速化に伴い、DC/DC電源用のチョークコイルに供給する電流値は20〜25Aと大きなものになるが、上記従来の構成では、この大電流に対応させるために、コイル部3の巻線2線径を太くする必要がある。
【0008】
しかし、巻線2の線径を太くすると、トロイダル状の磁芯1に巻回できなくなったり、または、全体が大型化したりするという問題点を有していた。
【0009】
本発明は上記問題点を解決するもので、小形化を図りつつ、大電流に対応することの可能なコイル部品を提供することを目的としている。
【0010】
【課題を解決するための手段】
上記目的を達成するために本発明は、以下の構成を有する。
【0011】
本発明の請求項1記載の発明は、巻軸方向に空芯部を有するコイル部と、前記コイル部を内包した磁芯とを備え、前記コイル部の空芯部の内径よりも内側に相当する前記磁芯の一部に貫通孔を設けた構成である。
【0012】
上記構成により、コイル部を磁芯に内包するので、磁路長が短くなり、磁束効率を改善でき、大電流に対応可能な太い線径の巻線を用いず、細い線径でも同等の効果を得ることができる。
【0013】
特に、コイル部の空芯部の内径よりも内側に相当する磁芯の一部に貫通孔を設けているので、コスト削減も可能である。
【0014】
本発明の請求項2記載の発明は、請求項1記載の発明において、特に、磁芯の貫通孔の内壁面からコイル部の空芯部の内壁面までの距離は略均一とした構成である。
【0015】
上記構成により、磁束は、主に、磁芯の貫通孔の内壁面からコイル部の空芯部の内壁面までの間を通過するが、その距離が略均一なので、磁束効率が劣化することもない。
【0016】
本発明の請求項3記載の発明は、請求項2記載の発明において、特に、コイル部の外周面から磁芯の外周面までの距離は、磁芯の貫通孔の内壁面からコイル部の空芯部の内壁面までの距離以上とした構成である。
【0017】
上記構成により、磁束が、コイル部の外周面から磁芯の外周面までの間を通過する際も、磁束効率が劣化することがない。
【0018】
本発明の請求項4記載の発明は、特に、磁芯は、接着性樹脂部を有する絶縁性接着剤と、金属磁性粉末とを混合し造粒した造粒粉を、加圧成形し熱処理を施して成形した金属磁性成形体からなり、かつ、前記絶縁性接着剤は、前記金属磁性粉末の外周表面を被覆するとともに、隣接する前記金属磁性粉末を互いに接着してなる構成である。
【0019】
上記構成により、磁芯は金属磁性成形体なので、磁束を通過させやすく、また反面、金属磁性粉末間には絶縁性接着剤が接着されるので、磁気飽和しにくくなり、大電流に対応可能にできる。
【0020】
本発明の請求項5記載の発明は、請求項1記載の発明において、特に、複数のコイル部を設け、前記コイル部は、巻軸方向が互いに非同一直線状で平行になるように並列に配置し、複数の前記コイル部を一体的に磁芯で内包した構成である。
【0021】
上記構成により、複数のコイル部を一体的に形成することができる。
【0022】
本発明の請求項6記載の発明は、請求項1記載の発明において、特に、複数のコイル部を設け、前記コイル部は、巻軸方向が互いに同一直線状で直列になるように配置し、複数の前記コイル部を一体的に磁芯で内包した構成である。
【0023】
上記構成により、複数のコイル部を一体的に形成することができる。
【0024】
本発明の請求項7記載の発明は、請求項1記載の発明において、特に、コイル部は、断面が矩形状の巻線を巻回してなるものとした構成である。
【0025】
上記構成により、コイル部を磁芯に内包した際、加圧等が生じても、隣接する巻線に応力が分散されやすく、コイル部が変形せず、信頼性を向上できる。
【0026】
【発明の実施の形態】
以下、発明の実施の形態を用いて、本発明の一実施の形態におけるコイル部品について、図面を参照しながら説明する。
【0027】
図1は本発明の一実施の形態におけるコイル部品の一部透視斜視図、図2は同コイル部品の断面図、図3は同コイル部品の磁束の流れを示す説明図である。
【0028】
図1、図2において、本発明の一実施の形態におけるコイル部品は、巻軸方向に空芯部11を有し、巻線16を巻回して形成したコイル部12と、このコイル部12を内包した磁芯13とを備えている。
【0029】
磁芯13には、コイル部12の空芯部11の内径よりも内側に相当する一部に貫通孔14を設けており、磁芯13の貫通孔14の内壁面からコイル部12の空芯部11の内壁面までの距離(W1)を略均一とするとともに、コイル部12の外周面から磁芯13の外周面までの距離(W2)を、磁芯13の貫通孔14の内壁面からコイル部12の空芯部11の内壁面までの距離(W1)以上としている。
【0030】
磁芯13は、接着性樹脂部を有する絶縁性接着剤と、金属磁性粉末とを混合し造粒した造粒粉を、加圧成形し熱処理を施して成形した金属磁性成形体からなっている。これに用いる金属磁性粉末は、Fe系、Fe−Si系、Fe−Al系、Fe−Ni系、Fe−Cr系、Fe−Al−Si系から選ばれた少なくとも1種である。絶縁性接着剤は、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラニン樹脂、熱硬化型シリコーン樹脂、アルキド樹脂、フラン樹脂、熱硬化型アクリル樹脂、熱硬化型フッ素樹脂等、熱硬化性樹脂が挙げられるが、好ましくは、エポキシ樹脂、熱硬化型シリコーン樹脂である。磁芯13は、この絶縁性接着剤によって、金属磁性粉末の外周表面を被覆するとともに、隣接する金属磁性粉末を互いに接着しており、一般的に、ダストコアと呼ばれている。
【0031】
また、コイル部12は複数設けており、このコイル部12は、巻軸方向が互いに非同一直線状で平行になるように並列に配置し、複数のコイル部12を一体的に磁芯13で内包している。
【0032】
このようなコイル部12は、図3に示すように、磁束15がコイル部12を周回している。
【0033】
上記構成のコイル部12について、以下その動作を説明する。
【0034】
上記構成により、コイル部12を磁芯13に内包するので、磁路長が短くなり、磁束効率を改善でき、大電流に対応可能な太い線径の巻線16を用いず、細い線径でも同等の効果を得ることができる。
【0035】
特に、コイル部12の空芯部11の内径よりも内側に相当する磁芯13の一部に貫通孔14を設けているので、コスト削減も可能である。
【0036】
磁芯13を通過する磁束15は、主に、磁芯13の貫通孔14の内壁面からコイル部12の空芯部11の内壁面までの間を通過するが、その距離(W1)を略均一にしているとともに、コイル部12の外周面から磁芯13の外周面までの距離(W2)を、磁芯13の貫通孔14の内壁面からコイル部12の空芯部11の内壁面までの距離(W1)以上としているので、磁束効率も劣化することがない。
【0037】
また、磁芯13は金属磁性成形体なので、磁束15を通過させやすく、また反面、金属磁性粉末間には絶縁性接着剤が接着されるので、磁気飽和しにくくなり、大電流に対応可能にできる。
【0038】
さらに、複数のコイル部12を設け、このコイル部12を、巻軸方向が互いに非同一直線状で平行になるように並列に配置し、一体的に磁芯13で内包することにより、複数のコイル部12を一体的に形成することもできる。
【0039】
このように本発明の一実施の形態によれば、磁路長を短くして磁束効率を改善し、細い線径でも太い線径の効果と同等の効果を得ることができるので、小形化を図りつつ、大電流対応を可能とし、しかも、コスト削減も可能とした。
【0040】
また、磁束効率を劣化させず、磁束15を通過させやすくするとともに、磁気飽和も抑制し、大電流に対応可能にできる。
【0041】
さらに、複数のコイル部12を一体的に形成することもでき、実装面積を低減したアレイ化を図れる。
【0042】
なお、本発明の一実施の形態では、複数のコイル部12は、巻軸方向が互いに非同一直線状で平行になるように並列に配置したが、図4、図5に示すように、巻軸方向が互いに同一直線状で直列になるように配置し、複数のコイル部12を一体的に磁芯13で内包しても、同等の効果が得られ、複数のコイル部12を一体的に形成することができる。複数のコイル部12を形成しない場合は、図6、図7に示すように、単体のコイル部12を磁芯13で内包すればよい。
【0043】
また、コイル部12は、エッジワイズ巻線や平角線等、断面が矩形状の巻線16を巻回したものを用いれば、コイル部12を磁芯13に内包した際、加圧等が生じても、隣接する巻線に応力が分散されやすく、コイル部12が変形せず、信頼性を向上できる。
【0044】
【発明の効果】
以上のように本発明によれば、磁路長を短くして磁束効率を改善し、細い線径でも太い線径の効果と同等の効果を得ることができるので、小形化を図りつつ、大電流対応を可能としたコイル部品を提供することができる。
【0045】
しかも、コスト削減も可能である。
【図面の簡単な説明】
【図1】本発明の一実施の形態における複数のコイル部を有するコイル部品の斜視図
【図2】同コイル部品の断面図
【図3】同コイル部品の磁束の流れを示す説明図
【図4】他の複数のコイル部を有するコイル部品の一部斜視図
【図5】同コイル部品の断面図
【図6】他の単一のコイル部を有するコイル部品の一部透視斜視図
【図7】同コイル部品の断面図
【図8】従来のコイル部品の斜視図
【符号の説明】
11 空芯部
12 コイル部
13 磁芯
14 貫通孔
15 磁束
16 巻線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a coil component used for various electronic devices and the like.
[0002]
[Prior art]
Hereinafter, a conventional coil component will be described with reference to the drawings.
[0003]
FIG. 8 is a perspective view of a conventional coil component.
[0004]
In FIG. 8, a conventional coil component is used as a choke coil for a DC / DC power supply of a computer or the like, in which a coil 2 is wound around a toroidal magnetic core 1 and a coil portion 3 is arranged. It is.
[0005]
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
[0006]
[Patent Document 1]
JP-A-11-112239
[Problems to be solved by the invention]
As the driving frequency of the CPU used in the computer increases, the current value supplied to the choke coil for the DC / DC power supply becomes as large as 20 to 25 A. In addition, it is necessary to increase the diameter of the winding 2 of the coil section 3.
[0008]
However, when the wire diameter of the winding 2 is increased, there is a problem that the winding cannot be wound around the toroidal magnetic core 1 or the whole becomes larger.
[0009]
An object of the present invention is to solve the above problems and to provide a coil component capable of coping with a large current while reducing the size.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration.
[0011]
The invention according to claim 1 of the present invention includes a coil portion having an air core portion in a winding axis direction, and a magnetic core including the coil portion, and corresponds to an inner side of an inner diameter of the air core portion of the coil portion. And a through hole is provided in a part of the magnetic core.
[0012]
With the above configuration, the coil part is included in the magnetic core, so the magnetic path length is shortened, the magnetic flux efficiency can be improved, and the same effect can be achieved even with a thin wire diameter without using a thick wire diameter capable of handling a large current. Can be obtained.
[0013]
In particular, since the through-hole is provided in a part of the magnetic core corresponding to the inner side of the inner diameter of the air core of the coil, the cost can be reduced.
[0014]
The invention according to claim 2 of the present invention, in the invention according to claim 1, has a structure in which the distance from the inner wall surface of the through hole of the magnetic core to the inner wall surface of the air core of the coil portion is substantially uniform. .
[0015]
With the above configuration, the magnetic flux mainly passes between the inner wall surface of the through hole of the magnetic core and the inner wall surface of the air core portion of the coil portion, but since the distance is substantially uniform, the magnetic flux efficiency may be deteriorated. Absent.
[0016]
In the invention according to claim 3 of the present invention, in the invention according to claim 2, the distance from the outer peripheral surface of the coil portion to the outer peripheral surface of the magnetic core is, in particular, the distance from the inner wall surface of the through hole of the magnetic core to the clearance of the coil portion. It is configured to be longer than the distance to the inner wall surface of the core.
[0017]
With the above configuration, even when the magnetic flux passes between the outer peripheral surface of the coil portion and the outer peripheral surface of the magnetic core, the magnetic flux efficiency does not deteriorate.
[0018]
In the invention according to claim 4 of the present invention, in particular, the magnetic core is formed by mixing a granulated powder obtained by mixing an insulating adhesive having an adhesive resin portion with a metal magnetic powder, press-forming, and performing heat treatment. The insulating adhesive is configured to cover the outer peripheral surface of the metal magnetic powder and adhere the adjacent metal magnetic powder to each other.
[0019]
With the above configuration, the magnetic core is a metal magnetic molded body, so it is easy to pass magnetic flux.On the other hand, since an insulating adhesive is bonded between the metal magnetic powders, it is hard to be magnetically saturated and can handle large currents it can.
[0020]
According to a fifth aspect of the present invention, in the first aspect of the present invention, a plurality of coil portions are provided, and the coil portions are arranged in parallel so that winding directions are non-colinear and parallel to each other. This is a configuration in which a plurality of the coil units are disposed and integrally included in a magnetic core.
[0021]
According to the above configuration, a plurality of coil units can be integrally formed.
[0022]
In the invention according to claim 6 of the present invention, in the invention according to claim 1, in particular, a plurality of coil portions are provided, and the coil portions are arranged so that the winding axis directions are in the same straight line and are in series, In this configuration, the plurality of coil portions are integrally included in the magnetic core.
[0023]
According to the above configuration, a plurality of coil units can be integrally formed.
[0024]
The invention according to claim 7 of the present invention, in the invention according to claim 1, is particularly configured such that the coil portion is formed by winding a winding having a rectangular cross section.
[0025]
According to the above configuration, when the coil portion is included in the magnetic core, even if pressure or the like is generated, the stress is easily dispersed in the adjacent winding, the coil portion is not deformed, and the reliability can be improved.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a coil component according to an embodiment of the present invention will be described with reference to the drawings.
[0027]
FIG. 1 is a partially transparent perspective view of a coil component according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of the coil component, and FIG. 3 is an explanatory diagram showing a flow of magnetic flux in the coil component.
[0028]
1 and 2, a coil component according to an embodiment of the present invention has an air core portion 11 in a winding axis direction, a coil portion 12 formed by winding a winding 16, and a coil portion 12. And a magnetic core 13 contained therein.
[0029]
The magnetic core 13 is provided with a through hole 14 in a part corresponding to the inner side of the inner diameter of the air core portion 11 of the coil portion 12, and the air core of the coil portion 12 extends from the inner wall surface of the through hole 14 of the magnetic core 13. The distance (W1) to the inner wall surface of the portion 11 is made substantially uniform, and the distance (W2) from the outer peripheral surface of the coil portion 12 to the outer peripheral surface of the magnetic core 13 is determined from the inner wall surface of the through-hole 14 of the magnetic core 13. The distance (W1) to the inner wall surface of the air core portion 11 of the coil portion 12 is set to be equal to or longer than (W1).
[0030]
The magnetic core 13 is formed of a metal magnetic compact formed by mixing and molding an insulating adhesive having an adhesive resin portion and a metal magnetic powder, followed by pressure molding and heat treatment. . The metal magnetic powder used for this is at least one selected from the group consisting of Fe, Fe-Si, Fe-Al, Fe-Ni, Fe-Cr and Fe-Al-Si. Examples of the insulating adhesive include a thermosetting resin such as an epoxy resin, a phenol resin, a urea resin, a melanin resin, a thermosetting silicone resin, an alkyd resin, a furan resin, a thermosetting acrylic resin, and a thermosetting fluororesin. However, preferred are an epoxy resin and a thermosetting silicone resin. The magnetic core 13 covers the outer peripheral surface of the metal magnetic powder with this insulating adhesive, and adheres the adjacent metal magnetic powder to each other, and is generally called a dust core.
[0031]
Further, a plurality of coil portions 12 are provided, and the coil portions 12 are arranged in parallel so that the winding axes are mutually non-linear and parallel to each other, and the plurality of coil portions 12 are integrally formed by the magnetic core 13. Includes.
[0032]
In such a coil section 12, as shown in FIG. 3, a magnetic flux 15 orbits the coil section 12.
[0033]
The operation of the coil unit 12 having the above configuration will be described below.
[0034]
With the above configuration, since the coil portion 12 is included in the magnetic core 13, the magnetic path length is shortened, the magnetic flux efficiency can be improved, and the winding 16 having a large wire diameter capable of coping with a large current is not used. An equivalent effect can be obtained.
[0035]
In particular, since the through hole 14 is provided in a part of the magnetic core 13 corresponding to the inner side of the inner diameter of the air core part 11 of the coil part 12, the cost can be reduced.
[0036]
The magnetic flux 15 passing through the magnetic core 13 mainly passes between the inner wall surface of the through hole 14 of the magnetic core 13 and the inner wall surface of the air core portion 11 of the coil portion 12, and the distance (W1) is substantially reduced. The distance (W2) from the outer peripheral surface of the coil portion 12 to the outer peripheral surface of the magnetic core 13 is made uniform from the inner wall surface of the through hole 14 of the magnetic core 13 to the inner wall surface of the air core portion 11 of the coil portion 12. , The magnetic flux efficiency does not deteriorate.
[0037]
Further, since the magnetic core 13 is a metal magnetic molded body, the magnetic flux 15 can easily pass therethrough. On the other hand, since an insulating adhesive is adhered between the metal magnetic powders, magnetic saturation is less likely to occur and a large current can be handled. it can.
[0038]
Further, by providing a plurality of coil portions 12, arranging the coil portions 12 in parallel so that the winding axis directions are non-colinear and parallel to each other, and integrally including the magnetic core 13, The coil part 12 can also be formed integrally.
[0039]
As described above, according to the embodiment of the present invention, the magnetic path efficiency is improved by shortening the magnetic path length, and the same effect as the effect of the large wire diameter can be obtained even with a small wire diameter. In addition, it is possible to cope with large currents while reducing costs.
[0040]
Further, the magnetic flux efficiency is not deteriorated, the magnetic flux 15 is easily passed, and the magnetic saturation is suppressed, so that a large current can be handled.
[0041]
Further, a plurality of coil sections 12 can be formed integrally, and an array with a reduced mounting area can be achieved.
[0042]
In the embodiment of the present invention, the plurality of coil portions 12 are arranged in parallel so that the winding axis directions are non-colinear and parallel to each other, but as shown in FIGS. The same effect can be obtained by arranging the plurality of coil portions 12 integrally with the magnetic core 13 so that the axial directions are arranged in the same straight line and in series with each other. Can be formed. When a plurality of coil portions 12 are not formed, a single coil portion 12 may be included in the magnetic core 13 as shown in FIGS.
[0043]
If the coil portion 12 is formed by winding a winding 16 having a rectangular cross section, such as an edgewise winding or a flat wire, when the coil portion 12 is included in the magnetic core 13, pressure or the like is generated. However, the stress is easily dispersed to the adjacent winding, the coil portion 12 is not deformed, and the reliability can be improved.
[0044]
【The invention's effect】
As described above, according to the present invention, the magnetic flux efficiency is improved by shortening the magnetic path length, and an effect equivalent to the effect of a thick wire diameter can be obtained even with a small wire diameter. A coil component capable of handling current can be provided.
[0045]
Moreover, cost reduction is also possible.
[Brief description of the drawings]
FIG. 1 is a perspective view of a coil component having a plurality of coil portions according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the coil component. FIG. 3 is an explanatory diagram showing a flow of magnetic flux in the coil component. 4 is a partial perspective view of another coil part having a plurality of coil parts. FIG. 5 is a sectional view of the coil part. FIG. 6 is a partially transparent perspective view of another coil part having a single coil part. 7 is a cross-sectional view of the coil component. FIG. 8 is a perspective view of a conventional coil component.
11 air core part 12 coil part 13 magnetic core 14 through hole 15 magnetic flux 16 winding

Claims (7)

巻軸方向に空芯部を有するコイル部と、前記コイル部を内包した磁芯とを備え、前記コイル部の空芯部の内径よりも内側に相当する前記磁芯の一部に貫通孔を設けたコイル部品。A coil portion having an air core portion in the winding axis direction, and a magnetic core including the coil portion, and a through hole is formed in a part of the magnetic core corresponding to an inner side of an inner diameter of the air core portion of the coil portion. Provided coil parts. 磁芯の貫通孔の内壁面からコイル部の空芯部の内壁面までの距離は略均一とした請求項1記載のコイル部品。2. The coil component according to claim 1, wherein a distance from an inner wall surface of the through hole of the magnetic core to an inner wall surface of the air core of the coil is substantially uniform. コイル部の外周面から磁芯の外周面までの距離は、磁芯の貫通孔の内壁面からコイル部の空芯部の内壁面までの距離以上とした請求項2記載のコイル部品。3. The coil component according to claim 2, wherein the distance from the outer peripheral surface of the coil portion to the outer peripheral surface of the magnetic core is equal to or greater than the distance from the inner wall surface of the through hole of the magnetic core to the inner wall surface of the air core portion of the coil portion. 磁芯は、接着性樹脂部を有する絶縁性接着剤と、金属磁性粉末とを混合し造粒した造粒粉を、加圧成形し熱処理を施して成形した金属磁性成形体からなり、かつ、前記絶縁性接着剤は、前記金属磁性粉末の外周表面を被覆するとともに、隣接する前記金属磁性粉末を互いに接着してなる請求項1記載のコイル部品。The magnetic core is made of an insulating adhesive having an adhesive resin portion, and a metal magnetic compact formed by mixing and granulating a metal magnetic powder, and pressing and heat-treating the granulated powder, and The coil component according to claim 1, wherein the insulating adhesive covers an outer peripheral surface of the metal magnetic powder and bonds the adjacent metal magnetic powder to each other. 複数のコイル部を設け、前記コイル部は、巻軸方向が互いに非同一直線状で平行になるように並列に配置し、複数の前記コイル部を一体的に磁芯で内包した請求項1記載のコイル部品。2. A plurality of coil portions are provided, the coil portions are arranged in parallel so that winding directions are non-identical straight lines and parallel to each other, and the plurality of coil portions are integrally included in a magnetic core. Coil parts. 複数のコイル部を設け、前記コイル部は、巻軸方向が互いに同一直線状で直列になるように配置し、複数の前記コイル部を一体的に磁芯で内包した請求項1記載のコイル部品。The coil component according to claim 1, wherein a plurality of coil parts are provided, and the coil parts are arranged so that winding directions thereof are in the same straight line and in series, and the plurality of coil parts are integrally included in a magnetic core. . コイル部は、断面が矩形状の巻線を巻回してなるものとした請求項1記載のコイル部品。The coil component according to claim 1, wherein the coil portion is formed by winding a winding having a rectangular cross section.
JP2003103957A 2003-04-08 2003-04-08 Coil component Withdrawn JP2004311760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103957A JP2004311760A (en) 2003-04-08 2003-04-08 Coil component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103957A JP2004311760A (en) 2003-04-08 2003-04-08 Coil component

Publications (1)

Publication Number Publication Date
JP2004311760A true JP2004311760A (en) 2004-11-04

Family

ID=33466916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103957A Withdrawn JP2004311760A (en) 2003-04-08 2003-04-08 Coil component

Country Status (1)

Country Link
JP (1) JP2004311760A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015350A (en) * 2010-07-01 2012-01-19 Denso Corp Reactor
WO2023188452A1 (en) * 2022-03-29 2023-10-05 Tdk株式会社 Coil component and circuit board including same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015350A (en) * 2010-07-01 2012-01-19 Denso Corp Reactor
WO2023188452A1 (en) * 2022-03-29 2023-10-05 Tdk株式会社 Coil component and circuit board including same

Similar Documents

Publication Publication Date Title
US7057314B2 (en) Electromagnetic motor system capable of removing heat away from its magnetic gap
US20090079528A1 (en) Thermally enhanced magnetic transformer
JP2007088134A (en) Chip inductor
JP2009088470A (en) Inductor structure and method of manufacturing the same
JP2003168610A (en) Inductance element
JP2005310863A (en) Coil component
US20080129438A1 (en) Noise filter and manufacturing method thereof
JP2007201203A (en) Reactor
JP2010050334A (en) Reactor and bobbin for reactor
JP2007235054A (en) Heat sink, choke coil with heat sink, and manufacturing method
JP6635316B2 (en) Reactor
JP2009032922A (en) Reactor core and reactor
JP2004311760A (en) Coil component
JP2008078177A (en) Inductor
JP2012238659A (en) Reactor and manufacturing method of the same
JPH05283251A (en) Pot type inductor
JP2003217941A (en) Inductance element
JP2015060849A (en) Inductance component
WO2017135318A1 (en) Reactor
WO2017030084A1 (en) Composite material molding and reactor
JP2004207371A (en) Surface mounting choke coil
CN111316390B (en) Electric reactor
JP2022134783A (en) Reactor
JP4008403B2 (en) Core, bobbin and mounting board
JP6610903B2 (en) Reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060412

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080401