JP2004309951A - Image pickup optical system for small image pickup unit and small image pickup unit - Google Patents

Image pickup optical system for small image pickup unit and small image pickup unit Download PDF

Info

Publication number
JP2004309951A
JP2004309951A JP2003106222A JP2003106222A JP2004309951A JP 2004309951 A JP2004309951 A JP 2004309951A JP 2003106222 A JP2003106222 A JP 2003106222A JP 2003106222 A JP2003106222 A JP 2003106222A JP 2004309951 A JP2004309951 A JP 2004309951A
Authority
JP
Japan
Prior art keywords
optical system
lens group
small
imaging
imaging unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003106222A
Other languages
Japanese (ja)
Inventor
Takumi Matsui
拓未 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2003106222A priority Critical patent/JP2004309951A/en
Publication of JP2004309951A publication Critical patent/JP2004309951A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image pickup optical system simple and small in configuration, low in cost and capable of being mass-produced, and to provide a small image pickup unit. <P>SOLUTION: A prism P is arranged nearest to an object side on an optical axis, thus the thickness of the small image pickup unit on which the image pickup optical system is mounted is made small. Since a 1st lens group G1 is set to have negative refractive power, the length of a zoom optical system ZOS in an optical axis direction is restrained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、反射光学系及びズーム光学系を有する小型撮像ユニット用の撮像光学系及び小型撮像ユニットに関し、特に携帯電話や情報端末用の小型撮像ユニットに好適な撮像光学系及び小型撮像ユニットに関するものである。
【0002】
【従来の技術】
近年、CCD(Charge Coupled Devices)型イメージセンサあるいはCMOS(Complementary Metal−Oxide Semiconductor)型イメージセンサ等の固体撮像素子を備えた小型撮像ユニットを搭載した携帯電話やPDA(Personal Digital Assistant)等の携帯端末が急速に普及しつつある。
【0003】
従来、この様な用途の小型撮像ユニットは、単焦点の簡易な構成の撮像レンズを用いたものが一般的であったが、最近では、固体撮像素子の高画素化、高性能化に伴い、より光学性能を重視した光学式ズーム機能を有するものが求められている。
【0004】
しかるに、携帯端末にズーム光学系を搭載する際には、如何に小型撮像ユニットの厚みを薄くするかが課題となる。小型撮像ユニットの厚みを薄く抑えるための手段としてプリズムを用いた光路折り曲げ光学系を備えた撮像光学系が知られており、このような構成の撮像光学系は、例えば、以下の特許文献1に記載されている。
【特許文献1】
特開2003−43354号公報
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載の撮像光学系は、プリズムは両凹負レンズと等価となっており、すなわち物体側の光学面及び像側の光学面を凹面としているので、プリズム自体の加工が難しく量産性が低い。またプリズムとズーム光学系の光軸合わせの精度が要求されるなど、組み立て時に手間がかかるという問題もある。すなわち、市場に対し安価に大量に供給されるべき携帯端末用の撮像光学系としては適していないこととなる。更に、特許文献1に記載の撮像光学系は、第1レンズ群が負の屈折力を有していないため、構成をコンパクトにしにくいという問題がある。
【0006】
本発明は、このような問題点に鑑みてなされたものであり、簡易且つコンパクトな構成であり、更に低コストで大量生産を可能とする撮像光学系及び小型撮像ユニットを提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1に記載の小型撮像ユニット用の撮像光学系は、光軸に沿って物体側より順に、光路を折り曲げるための反射光学系と、前記反射光学系の像側に配置されたズーム光学系と、を有する小型撮像ユニット用の撮像光学系であって、前記ズーム光学系は、変倍の際に光軸上を移動する負の屈折力を有する第1レンズ群を有することを特徴とする。
【0008】
薄型の小型撮像ユニットを得るための、本発明の撮像光学系の基本構成は、光軸上の最も物体側に配置された前記反射光学系と、負の屈折力の第1レンズ群を有する前記ズーム光学系からなる。光軸上の最も物体側に前記反射光学系を配置することで、かかる撮像光学系を搭載する小型撮像ユニットの厚みを薄くすることができる。又、前記第1レンズ群を負の屈折力を有するようにしたので、ズーム光学系の光軸方向長さを抑えることができる。
【0009】
尚、前記反射光学系よりも物体側にレンズを配置することで反射光学系のサイズをさらに小さくすることはできるが、前記反射光学系より物体側にレンズを設けると小型撮像ユニットの厚みがあまり薄くならず、又、前記反射光学系の偏芯誤差等に対する光学性能の劣化が大きくなる恐れもある。従って、前記反射光学系と前記ズーム光学系は別個の光学系として構成する方が、小型撮像ユニットの構成や組立が簡易になり、製造コストを抑えた大量生産に向いているといえる。
【0010】
請求項2に記載の小型撮像ユニット用の撮像光学系は、請求項1に記載の撮像光学系において、前記反射光学系は、内部反射面を有する1つのプリズムからなり、前記プリズムの入射面及び射出面及び内部反射面は平面により構成されることを特徴とする。
【0011】
前記反射光学系は、物体に対して傾斜したミラーでもよいし、内部反射面を有するプリズムでもよいが、反射光学系内部の屈折率が高いほど厚みを薄くできることから、小型撮像ユニットの薄型化という点においてはプリズムであることが望ましい。
【0012】
プリズムを用いることで、前記反射光学系の厚みを薄くできる理由について説明する。図3はプリズムの断面を示す図であり、ここで、反射光学系を1つのプリズムで構成した際の、反射光学系の厚み方向の長さをD、反射光学系の射出面の有効半径をh、ズーム光学系の広角端での半画角をθとする。例えば光軸を90度折り曲げる反射光学系の厚みサイズは、(3)式により表される。(3)式によると、ズーム光学系の最も物体側のレンズの有効径を小さくすること、及び反射光学系内部の屈折率を高く設定することで反射光学系の厚みを薄くすることができる。従って、前記ズーム光学系は、変倍比2〜3倍クラスの小型な撮影レンズとして多く用いられている、第1レンズ群が負の屈折力を有する、所謂、負群先行タイプとすることで、最も物体側のレンズの有効径を小さくでき、それにより反射光学系の厚みも薄く抑えることができる。
【数1】

Figure 2004309951
ただし、
D:反射光学系の厚み方向の長さ
h:反射光学系の射出面の有効半径
n:反射光学系の内部屈折率
θ:ズーム光学系の広角端での半画角
【0013】
尚、前記プリズムの入射面、射出面、及び内部反射面を曲面として構成することにより前記反射光学系のサイズを小さく抑えたり、収差補正の効果を得ることもできるが、前記プリズムの偏芯誤差等に対する光学性能の劣化が大きくなると共に、前記ズーム光学系のレンズ群との光軸調整が困難となることが多い。従って、プリズムの光学面は平面により構成する方が、製造コストを抑えた大量生産に向いているといえる。
【0014】
請求項3に記載の小型撮像ユニット用の撮像光学系は、請求項2に記載の撮像光学系において、以下の条件式を満たすことを特徴とする。
nd≧1.7 (1)
ただし、
nd:プリズムのd線の屈折率
【0015】
(1)式は、プリズムの屈折率を適切に設定する条件を規定する。(1)式を満たすことにより、前記反射光学系を小さくすることができ、機構部を含めた小型撮像ユニットの厚みを効果的に薄くすることができる。
【0016】
請求項4に記載の小型撮像ユニット用の撮像光学系は、請求項1乃至3のいずれかに記載の撮像光学系において、前記ズーム光学系は、光軸に沿って物体側より順に負の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群、正の屈折力を有する第3レンズ群の3つのレンズ群を有し、広角端から望遠端への変倍に際し、前記第1レンズ群と前記第2レンズ群の間隔が減少し、前記第2レンズ群と前記第3レンズ群の間隔が増大するように、少なくとも前記第1レンズ群及び前記第2レンズ群が光軸上を移動して変倍を行うことを特徴とする。
【0017】
前記ズーム光学系は、変倍比2〜3倍クラスの小型な撮影レンズとして多く用いられている、物体側から順に負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、正の屈折力の第3レンズ群により構成される、所謂、負群先行3群ズームタイプとすることで、全長を短く抑えながらも高い光学性能を得ることができる。
【0018】
尚、変倍は少なくとも第1レンズ群及び第2レンズ群を移動させることにより行うが、この際に第3レンズ群を移動させることで光学性能の向上及び、光軸方向の全長を小型化することもできる。しかしながら、機械的な駆動部が増えることから、小型撮像ユニット全体としてはあまり小さくならないことが多い。従って、第3レンズ群を固定にした方が小型撮像ユニットを簡易な構成とするのに有利であり、低コスト化、軽量化及び量産性の面において適しているといえる。
【0019】
請求項5に記載の小型撮像ユニット用の撮像光学系は、請求項1乃至4のいずれかに記載の撮像光学系において、以下の条件式を満たすことを特徴とする請求項1乃至4のいずれかに記載の小型撮像ユニット用の撮像光学系。
≧L (2)
ただし、
:ズーム光学系の広角端における第1レンズ群の光軸上物体側面から像側焦点までの光軸上の距離
:ズーム光学系の望遠端における第1レンズ群の光軸上物体側面から像側焦点までの光軸上の距離
【0020】
(2)式は、前記ズーム光学系の広角端と望遠端の全長を適切に設定する条件を規定する。この条件を満たすことにより、画角の大きい広角端で前記反射光学系と前記ズーム光学系の間隔を最も小さくすることができ、前記反射光学系の厚みを薄く抑えることができる。
【0021】
請求項6に記載の小型撮像ユニット用の撮像光学系は、請求項4又は5に記載の撮像光学系において、前記ズーム光学系は前記第1レンズ群を光軸上の物体側に移動させることにより、近距離物体撮影時の合焦を行うことを特徴とする。
【0022】
負群先行3群ズーム光学系では、近距離物体撮影時の合焦は、第1レンズ群又は、第3レンズ群の移動のいずれかにより行うことができるが、第3レンズ群による合焦では、第3レンズ群の移動による収差の変動が大きく、光学性能の劣化に繋がる他、可動群が増えることにより、機械的な駆動部が多くなり、小型撮像ユニットの大型化を招くということもある。これに対し、第3レンズ群を合焦の際に固定とし、移動による収差変動が少ない第1レンズ群により合焦を行う方が、近距離撮影時の光学性能の劣化を抑えることができるだけでなく、小型撮像ユニットを簡易な構成とすることができ、低コスト化、軽量化及び量産性の面において適しているといえる。
【0023】
請求項7に記載の小型撮像ユニットは、請求項1乃至6のいずれかに記載の撮像光学系と、前記ズーム光学系の像側に配置された固体撮像素子と、を有することを特徴とする。
【0024】
なお、本発明でいう厚みとは、物体から反射光学系までの光軸方向と同一方向の(小型撮像ユニットの)厚みのことである。
【0025】
【発明の実施の形態】
図1は、本発明の実施の形態にかかる小型撮像ユニットの概略構成図である。小型撮像ユニットは、光軸に沿って物体側より順に、光路を折り曲げるための反射光学系であるプリズムPと、プリズムPの像側に配置されたズーム光学系ZOSと、CCDなどの固体撮像素子IEとからなる。プリズムPとズーム光学系ZOSとで、撮像光学系を構成する。プリズムPは、入射面、反射面、出射面はいずれも平面である。
【0026】
ズーム光学系ZOSは、光軸に沿って物体側より順に負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、正の屈折力を有する第3レンズ群の3つのレンズ群G3を有し、広角端から望遠端への変倍に際し、第1レンズ群G1と第2レンズ群G2の間隔が減少し、第2レンズ群G2と第3レンズ群G3の間隔が増大するように、少なくとも第1レンズ群G1及び第2レンズ群G2が光軸上を移動して変倍を行うようになっている。尚、第1レンズ群G1及び第2レンズ群G2を駆動する機構については省略する。
【0027】
以下に、本発明の撮像光学系の実施例を示すが、これに限定されるものではない。
(仕様))
焦点距離:f=5.02mm〜11.95mm
Fナンバー:F2.88〜4.73
画角:2ω==63.4°〜27.6°
【0028】
各実施例において、非球面の形状は、面の頂点を原点とし光軸方向をX軸とした直交座標系において、頂点曲率をC、円錐定数をK、非球面係数をA4、A6、A8、A10、A12として、以下の式で表す。
【数2】
Figure 2004309951
【0029】
(実施例)
実施例にかかる撮像光学系のレンズデータを表1に示す。また、図2に実施例にかかる球面収差、非点収差、及び歪曲収差の収差図を示す。(A)は焦点距離5.02mの収差図である。(B)は焦点距離7.60mの収差図である。(C)は焦点距離11.95mの収差図である。
【表1】
Figure 2004309951
【0030】
なお、本実施例においては、プリズムにより撮像素子の長辺方向と同一方向に光軸を90度折り曲げているが、撮像素子の短辺方向と同一方向に光軸を折り曲げてもよい。短辺方向の光軸折り曲げの場合には、プリズムの大きさを小さく出来るため、小型撮像ユニットの小型化に有利である。また、短辺方向の光軸折り曲げでは、像面上で画像の左右のみが反転し、長辺方向の光軸折り曲げでは、像面上で画像の上下のみが反転する。一般的に固体撮像素子にCCDを用いた場合、短辺方向の光軸折り曲げでは垂直ラインでの折り曲げになるため、フレームメモリ、またはフレーム蓄積が必要となるのに対し、長辺方向の折り曲げではライン蓄積、またはラインメモリによる反転読み出しが可能となり、従って、長辺折り曲げの方が正転させるためのハードウェアの要求内容が小さくなるというメリットがある。
【0031】
以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態に限定して解釈されるべきではなく、適宜変更・改良が可能であることはもちろんである。本発明の小型撮像ユニットは、携帯電話、PDA等の携帯端末に搭載されると好ましいが、パソコンカメラなど他の用途にも用いることができる。
【0032】
【発明の効果】
本発明によれば、簡易且つコンパクトな構成であり、更に低コストで大量生産を可能とする撮像光学系及び小型撮像ユニットを提供する。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかる小型撮像ユニットの概略構成図である。
【図2】本実施例にかかる球面収差、非点収差、及び歪曲収差の収差図である。
【図3】プリズムの断面図である。
【符号の説明】
P プリズム
ZOS ズーム光学系
IE 固体撮像素子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an imaging optical system and a small imaging unit for a small imaging unit having a reflection optical system and a zoom optical system, and more particularly to an imaging optical system and a small imaging unit suitable for a small imaging unit for a mobile phone or an information terminal. It is.
[0002]
[Prior art]
2. Description of the Related Art In recent years, a mobile phone or a personal digital assistant (PDA) such as a mobile phone or a PDA (Personal Digital Assistant) equipped with a small imaging unit having a solid-state imaging device such as a CCD (Charge Coupled Devices) image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor. Is rapidly spreading.
[0003]
Conventionally, a small-sized imaging unit for such an application has generally used an imaging lens having a simple configuration of a single focus, but recently, with the increase in the number of pixels and the performance of solid-state imaging devices, There is a need for an optical zoom function that emphasizes optical performance.
[0004]
However, when a zoom optical system is mounted on a portable terminal, how to reduce the thickness of the small imaging unit becomes a problem. An imaging optical system having an optical path bending optical system using a prism as a means for suppressing the thickness of a small imaging unit is known. Has been described.
[Patent Document 1]
JP 2003-43354 A [0005]
[Problems to be solved by the invention]
However, in the imaging optical system described in Patent Document 1, the prism is equivalent to a biconcave negative lens, that is, since the object-side optical surface and the image-side optical surface are concave, it is difficult to process the prism itself. Low mass productivity. In addition, there is a problem that it takes time and labor to assemble, for example, the accuracy of optical axis alignment between the prism and the zoom optical system is required. In other words, it is not suitable as an imaging optical system for a portable terminal that needs to be supplied in large quantities at low cost to the market. Furthermore, the imaging optical system described in Patent Literature 1 has a problem in that the first lens group does not have a negative refractive power, so that it is difficult to make the configuration compact.
[0006]
The present invention has been made in view of such a problem, and has as its object to provide an imaging optical system and a small-sized imaging unit that have a simple and compact configuration and that can be mass-produced at low cost. I do.
[0007]
[Means for Solving the Problems]
The imaging optical system for a small imaging unit according to claim 1, wherein the reflecting optical system for bending an optical path is arranged in order from an object side along an optical axis, and a zoom optical system arranged on an image side of the reflecting optical system. Wherein the zoom optical system has a first lens group having a negative refractive power that moves on the optical axis during zooming. .
[0008]
The basic configuration of the imaging optical system of the present invention for obtaining a thin and small imaging unit includes the reflection optical system disposed closest to the object side on the optical axis, and the first lens group having a negative refractive power. It consists of a zoom optical system. By arranging the reflection optical system closest to the object side on the optical axis, the thickness of the small-sized imaging unit equipped with the imaging optical system can be reduced. Further, since the first lens group has a negative refractive power, the length of the zoom optical system in the optical axis direction can be suppressed.
[0009]
Note that the size of the reflective optical system can be further reduced by disposing a lens on the object side of the reflective optical system.However, if a lens is provided on the object side of the reflective optical system, the thickness of the small imaging unit becomes too small. There is also a possibility that the optical performance is not greatly reduced due to the eccentricity error of the reflection optical system or the like. Therefore, it can be said that configuring the reflection optical system and the zoom optical system as separate optical systems simplifies the configuration and assembly of the small imaging unit, and is suitable for mass production with reduced manufacturing costs.
[0010]
An imaging optical system for a small-sized imaging unit according to claim 2 is the imaging optical system according to claim 1, wherein the reflection optical system includes a single prism having an internal reflection surface. The emission surface and the internal reflection surface are constituted by flat surfaces.
[0011]
The reflection optical system may be a mirror inclined with respect to an object or a prism having an internal reflection surface. However, since the thickness can be reduced as the refractive index inside the reflection optical system increases, the thickness of the small imaging unit is reduced. In terms of points, it is desirable to be a prism.
[0012]
The reason why the thickness of the reflection optical system can be reduced by using a prism will be described. FIG. 3 is a diagram showing a cross section of the prism. Here, when the reflecting optical system is composed of one prism, the length in the thickness direction of the reflecting optical system is D, and the effective radius of the exit surface of the reflecting optical system is D. h, the half angle of view at the wide angle end of the zoom optical system is θ. For example, the thickness size of the reflection optical system that bends the optical axis by 90 degrees is represented by Expression (3). According to equation (3), the thickness of the reflective optical system can be reduced by reducing the effective diameter of the lens closest to the object in the zoom optical system and setting the refractive index inside the reflective optical system to be high. Accordingly, the zoom optical system is a so-called negative group preceding type, which is often used as a small photographing lens having a zoom ratio of 2 to 3 times, and in which the first lens group has a negative refractive power. The effective diameter of the lens closest to the object can be reduced, and the thickness of the reflecting optical system can be reduced.
(Equation 1)
Figure 2004309951
However,
D: length in the thickness direction of the reflection optical system h: effective radius of the exit surface of the reflection optical system n: internal refractive index θ of the reflection optical system: half angle of view at the wide angle end of the zoom optical system
By configuring the entrance surface, the exit surface, and the internal reflection surface of the prism as curved surfaces, the size of the reflection optical system can be reduced or the effect of aberration correction can be obtained. Deterioration of the optical performance with respect to the zoom lens becomes large, and it is often difficult to adjust the optical axis with the lens group of the zoom optical system. Therefore, it can be said that forming the optical surface of the prism by a flat surface is suitable for mass production with reduced manufacturing cost.
[0014]
According to a third aspect of the present invention, there is provided an imaging optical system for a small-sized imaging unit, wherein the following conditional expression is satisfied.
nd ≧ 1.7 (1)
However,
nd: refractive index of d-line of prism
Equation (1) defines conditions for appropriately setting the refractive index of the prism. By satisfying the expression (1), the size of the reflecting optical system can be reduced, and the thickness of the small imaging unit including the mechanism can be effectively reduced.
[0016]
An imaging optical system for a small-sized imaging unit according to claim 4 is the imaging optical system according to any one of claims 1 to 3, wherein the zoom optical system has negative refraction in order from an object side along an optical axis. It has three lens groups, a first lens group having a power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power. When zooming from a wide-angle end to a telephoto end, At least the first lens group and the second lens group have an optical axis such that the distance between the first lens group and the second lens group decreases and the distance between the second lens group and the third lens group increases. It is characterized in that zooming is performed by moving up.
[0017]
The zoom optical system is often used as a small photographing lens having a zoom ratio of 2 to 3 times, and includes a first lens group having a negative refractive power, a second lens group having a positive refractive power in order from the object side, By using a so-called negative group preceding three group zoom type constituted by a third lens group having a positive refractive power, high optical performance can be obtained while keeping the overall length short.
[0018]
The zooming is performed by moving at least the first lens group and the second lens group. At this time, moving the third lens group improves the optical performance and reduces the overall length in the optical axis direction. You can also. However, since the number of mechanical driving units increases, the size of the small imaging unit as a whole often does not become very small. Therefore, fixing the third lens group is advantageous for simplifying the configuration of the small-sized imaging unit, and it can be said that it is suitable in terms of cost reduction, weight reduction, and mass productivity.
[0019]
An imaging optical system for a small imaging unit according to claim 5 satisfies the following conditional expression in the imaging optical system according to any one of claims 1 to 4. 12. An imaging optical system for a small imaging unit according to any one of the above.
L w ≧ L T (2)
However,
L w: distance on the optical axis from the optical axis on the object side surface of the first lens group in a wide angle end of the zoom optical system to the image side focal point L T: optical on-axis object in the first lens group at the telephoto end of the zoom optical system Distance on the optical axis from the side to the image side focal point
Equation (2) defines conditions for appropriately setting the overall length of the zoom optical system at the wide-angle end and the telephoto end. By satisfying this condition, the distance between the reflection optical system and the zoom optical system can be minimized at the wide-angle end where the angle of view is large, and the thickness of the reflection optical system can be reduced.
[0021]
The imaging optical system for a small imaging unit according to claim 6 is the imaging optical system according to claim 4 or 5, wherein the zoom optical system moves the first lens group to an object side on an optical axis. In this way, focusing at the time of shooting a close-range object is performed.
[0022]
In the negative-group preceding three-group zoom optical system, focusing at the time of shooting a close-range object can be performed by moving either the first lens group or the third lens group. In addition, the fluctuation of aberration due to the movement of the third lens group is large, which leads to deterioration of optical performance. In addition, the number of movable groups increases, so that the number of mechanical driving units increases, which may lead to an increase in the size of a small imaging unit. . In contrast, when the third lens group is fixed at the time of focusing and focusing is performed by the first lens group having small fluctuation in aberration due to movement, deterioration of optical performance at the time of short-distance shooting can be suppressed. In other words, the compact imaging unit can have a simple configuration, which is suitable in terms of cost reduction, weight reduction, and mass productivity.
[0023]
A small imaging unit according to a seventh aspect includes the imaging optical system according to any one of the first to sixth aspects, and a solid-state imaging device disposed on an image side of the zoom optical system. .
[0024]
The thickness in the present invention refers to the thickness (of the small imaging unit) in the same direction as the optical axis direction from the object to the reflection optical system.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic configuration diagram of a small-sized imaging unit according to an embodiment of the present invention. The small imaging unit includes a prism P which is a reflection optical system for bending an optical path in order from the object side along the optical axis, a zoom optical system ZOS arranged on the image side of the prism P, and a solid-state imaging device such as a CCD. IE. The prism P and the zoom optical system ZOS constitute an imaging optical system. The prism P has a plane of incidence, reflection, and emission.
[0026]
The zoom optical system ZOS includes, in order from the object side along the optical axis, a first lens group G1 having negative refractive power, an aperture stop S, a second lens group G2 having positive refractive power, and a second lens group G2 having positive refractive power. It has three lens groups G3 of three lens groups, and when zooming from the wide-angle end to the telephoto end, the distance between the first lens group G1 and the second lens group G2 decreases, and the second lens group G2 and the third lens group At least the first lens group G1 and the second lens group G2 move on the optical axis to perform magnification so that the distance between the groups G3 increases. A mechanism for driving the first lens group G1 and the second lens group G2 is omitted.
[0027]
Hereinafter, embodiments of the image pickup optical system according to the present invention will be described, but the present invention is not limited thereto.
(specification))
Focal length: f = 5.02 mm to 11.95 mm
F number: F2.88 to 4.73
Angle of view: 2ω == 63.4 ° -27.6 °
[0028]
In each embodiment, the shape of the aspherical surface is such that the vertex curvature is C, the conic constant is K, and the aspherical coefficients are A4, A6, A8, in an orthogonal coordinate system with the vertex of the surface as the origin and the optical axis direction as the X axis. A10 and A12 are represented by the following equations.
(Equation 2)
Figure 2004309951
[0029]
(Example)
Table 1 shows lens data of the imaging optical system according to the example. FIG. 2 shows aberration diagrams of spherical aberration, astigmatism, and distortion according to the example. (A) is an aberrational diagram of a focal length of 5.02 m. (B) is an aberration diagram for a focal length of 7.60 m. (C) is an aberration diagram of a focal length of 11.95 m.
[Table 1]
Figure 2004309951
[0030]
In the present embodiment, the optical axis is bent 90 degrees in the same direction as the long side direction of the image sensor by the prism, but the optical axis may be bent in the same direction as the short side direction of the image sensor. In the case of bending the optical axis in the short side direction, the size of the prism can be reduced, which is advantageous in reducing the size of the small imaging unit. Also, in the optical axis bending in the short side direction, only the left and right sides of the image are inverted on the image plane, and in the optical axis bending in the long side direction, only the upper and lower sides of the image are inverted on the image plane. In general, when a CCD is used as a solid-state imaging device, bending the optical axis in the short side direction requires bending along a vertical line, so frame memory or frame accumulation is required. Line accumulation or inversion reading by a line memory becomes possible, and therefore, there is a merit that the long side bending reduces the required contents of hardware for normal rotation.
[0031]
As described above, the present invention has been described with reference to the embodiments. However, the present invention should not be construed as being limited to the above embodiments, and it is needless to say that modifications and improvements can be made as appropriate. The compact imaging unit of the present invention is preferably mounted on a portable terminal such as a mobile phone or a PDA, but can be used for other purposes such as a personal computer camera.
[0032]
【The invention's effect】
According to the present invention, there is provided an imaging optical system and a small-sized imaging unit which have a simple and compact configuration and are capable of mass production at a low cost.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a small-sized imaging unit according to an embodiment of the present invention.
FIG. 2 is an aberration diagram of spherical aberration, astigmatism, and distortion according to the present embodiment.
FIG. 3 is a sectional view of a prism.
[Explanation of symbols]
P prism ZOS Zoom optical system IE Solid-state image sensor

Claims (7)

光軸に沿って物体側より順に、光路を折り曲げるための反射光学系と、前記反射光学系の像側に配置されたズーム光学系と、を有する小型撮像ユニット用の撮像光学系であって、
前記ズーム光学系は、変倍の際に光軸上を移動する負の屈折力を有する第1レンズ群を有することを特徴とする小型撮像ユニット用の撮像光学系。
In order from the object side along the optical axis, a reflective optical system for bending the optical path, and a zoom optical system disposed on the image side of the reflective optical system, an imaging optical system for a small imaging unit,
An imaging optical system for a small imaging unit, wherein the zoom optical system has a first lens group having a negative refractive power that moves on the optical axis during zooming.
前記反射光学系は、内部反射面を有する1つのプリズムからなり、前記プリズムの入射面及び射出面及び内部反射面は平面により構成されることを特徴とする請求項1に記載の小型撮像ユニット用の撮像光学系。2. The small imaging unit according to claim 1, wherein the reflection optical system includes a single prism having an internal reflection surface, and the entrance surface, the exit surface, and the internal reflection surface of the prism are formed by flat surfaces. 3. Imaging optical system. 以下の条件式を満たすことを特徴とする請求項2に記載の小型撮像ユニット用の撮像光学系。
nd≧1.7 (1)
ただし、
nd:プリズムのd線の屈折率
The imaging optical system for a small imaging unit according to claim 2, wherein the following conditional expression is satisfied.
nd ≧ 1.7 (1)
However,
nd: refractive index of d-line of prism
前記ズーム光学系は、光軸に沿って物体側より順に負の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群、正の屈折力を有する第3レンズ群の3つのレンズ群を有し、広角端から望遠端への変倍に際し、前記第1レンズ群と前記第2レンズ群の間隔が減少し、前記第2レンズ群と前記第3レンズ群の間隔が増大するように、少なくとも前記第1レンズ群及び前記第2レンズ群が光軸上を移動して変倍を行うことを特徴とする請求項1乃至3のいずれかに記載の小型撮像ユニット用の撮像光学系。The zoom optical system includes, in order from the object side along the optical axis, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power. A lens group, and at the time of zooming from the wide-angle end to the telephoto end, the distance between the first lens group and the second lens group decreases, and the distance between the second lens group and the third lens group increases. The imaging optical system according to any one of claims 1 to 3, wherein at least the first lens group and the second lens group move on the optical axis to perform zooming. system. 以下の条件式を満たすことを特徴とする請求項1乃至4のいずれかに記載の小型撮像ユニット用の撮像光学系。
≧L (2)
ただし、
:ズーム光学系の広角端における第1レンズ群の光軸上物体側面から像側焦点までの光軸上の距離
:ズーム光学系の望遠端における第1レンズ群の光軸上物体側面から像側焦点までの光軸上の距離
The imaging optical system for a small imaging unit according to claim 1, wherein the following conditional expression is satisfied.
L w ≧ L T (2)
However,
L w: distance on the optical axis from the optical axis on the object side surface of the first lens group in a wide angle end of the zoom optical system to the image side focal point L T: optical on-axis object in the first lens group at the telephoto end of the zoom optical system Distance on the optical axis from the side to the image side focal point
前記ズーム光学系は前記第1レンズ群を光軸上の物体側に移動させることにより、近距離物体撮影時の合焦を行うことを特徴とする請求項4又は5に記載の小型撮像ユニット用の撮像光学系。6. The small imaging unit according to claim 4, wherein the zoom optical system moves the first lens group to an object side on an optical axis to perform focusing at the time of shooting an object at a short distance. Imaging optical system. 請求項1乃至6のいずれかに記載の撮像光学系と、
前記ズーム光学系の像側に配置された固体撮像素子と、を有することを特徴とする小型撮像ユニット。
An imaging optical system according to claim 1,
A solid-state imaging device disposed on the image side of the zoom optical system.
JP2003106222A 2003-04-10 2003-04-10 Image pickup optical system for small image pickup unit and small image pickup unit Pending JP2004309951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003106222A JP2004309951A (en) 2003-04-10 2003-04-10 Image pickup optical system for small image pickup unit and small image pickup unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003106222A JP2004309951A (en) 2003-04-10 2003-04-10 Image pickup optical system for small image pickup unit and small image pickup unit

Publications (1)

Publication Number Publication Date
JP2004309951A true JP2004309951A (en) 2004-11-04

Family

ID=33468474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003106222A Pending JP2004309951A (en) 2003-04-10 2003-04-10 Image pickup optical system for small image pickup unit and small image pickup unit

Country Status (1)

Country Link
JP (1) JP2004309951A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257465A (en) * 2010-06-07 2011-12-22 Olympus Imaging Corp Variable magnification optical system and image pickup apparatus using the same
WO2013175722A1 (en) * 2012-05-25 2013-11-28 富士フイルム株式会社 Zoom lens and imaging device
CN108693630A (en) * 2017-04-03 2018-10-23 康达智株式会社 The pick-up lens that 5 optical elements are constituted

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257465A (en) * 2010-06-07 2011-12-22 Olympus Imaging Corp Variable magnification optical system and image pickup apparatus using the same
WO2013175722A1 (en) * 2012-05-25 2013-11-28 富士フイルム株式会社 Zoom lens and imaging device
CN104350409A (en) * 2012-05-25 2015-02-11 富士胶片株式会社 Zoom lens and imaging device
JP5698869B2 (en) * 2012-05-25 2015-04-08 富士フイルム株式会社 Zoom lens and imaging device
US9297989B2 (en) 2012-05-25 2016-03-29 Fujifilm Corporation Zoom lens and imaging apparatus
CN108693630A (en) * 2017-04-03 2018-10-23 康达智株式会社 The pick-up lens that 5 optical elements are constituted
JP2018180024A (en) * 2017-04-03 2018-11-15 カンタツ株式会社 Image capturing lens having five-optical-element configuration
CN108693630B (en) * 2017-04-03 2021-07-30 康达智株式会社 Image pickup lens comprising 5 optical elements

Similar Documents

Publication Publication Date Title
JP3656089B2 (en) Imaging lens device
JP4867383B2 (en) Variable magnification optical system
JP4862433B2 (en) Magnification optical system and imaging device
JP4844012B2 (en) Variable magnification optical system and imaging apparatus
JP3822268B2 (en) Zoom lens
US7286299B2 (en) Zoom lens and image sensing apparatus
JP2004334070A (en) Imaging lens device
JP4744969B2 (en) Variable magnification optical system
JP2009139770A (en) Zoom lens, imaging apparatus and personal digital assistant
WO2012077338A1 (en) Zoom lens and imaging device
JP2011059498A (en) Zoom lens and imaging device
JP4366063B2 (en) Zoom lens and camera having the same
JP4827454B2 (en) Zoom lens and imaging apparatus having the same
JP2004347712A (en) Imaging lens device
JP4450600B2 (en) Zoom lens
JP5529475B2 (en) Zoom lens and imaging device
JP4847091B2 (en) Zoom lens and imaging apparatus having the same
TWI292049B (en)
JP2004037967A (en) Image pickup lens device
JP2004070235A (en) Image pickup lens device
JP4689321B2 (en) Zoom lens and optical apparatus having the same
JP4411010B2 (en) Zoom lens and imaging device using the same
US7050241B2 (en) Image-taking lens apparatus
JP5415295B2 (en) Zoom lens and imaging device
JP2020101719A (en) Wide-angle zoom lens and imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091124