JP2004309206A - 材料の評価方法 - Google Patents

材料の評価方法 Download PDF

Info

Publication number
JP2004309206A
JP2004309206A JP2003100096A JP2003100096A JP2004309206A JP 2004309206 A JP2004309206 A JP 2004309206A JP 2003100096 A JP2003100096 A JP 2003100096A JP 2003100096 A JP2003100096 A JP 2003100096A JP 2004309206 A JP2004309206 A JP 2004309206A
Authority
JP
Japan
Prior art keywords
hydrophilic polymer
polyvinylpyrrolidone
weight
polymer
evaluating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003100096A
Other languages
English (en)
Inventor
Yoshihiro Aga
善広 英加
Yoshiyuki Ueno
良之 上野
Hiroyuki Sugaya
博之 菅谷
Mari Takasaki
万里 高崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003100096A priority Critical patent/JP2004309206A/ja
Publication of JP2004309206A publication Critical patent/JP2004309206A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】血液浄化器などの評価に用いられ、親水性に優れた材料の開発に好適に用いられる評価方法を提供する。
【解決手段】高分解能MAS溶液プローブ(ナノプローブ)を利用して、核磁気共鳴測定法により、ポリビニルピロリドンなどの親水性高分子を含む材料中の親水性高分子の可動性を評価する。
【選択図】 なし

Description

【0001】
【発明の属する技術分野】
本発明は、親水性高分子を含む材料の評価方法に関するものであり、特にポリビニルピロリドンを含む材料の含水状態や血液適合性の評価に好適に用いられる。
【0002】
【従来の技術】
核磁気共鳴測定法(以下、NMRという)は、磁場の中においた試料に電磁場を照射し、試料中の原子核がその特性に基づいて吸収する周波数をその吸収ピーク強度の関数として記録する測定法である。主に未知試料の構造決定に有効的な手法であり、赤外線および紫外線吸収法や元素分析法、質量分析法と併用させる場合が一般的である。
【0003】
これまでNMRでは濃度が均一な溶液系での測定が主に行われてきたが、溶媒に溶けない物質や溶媒に溶かすことで構造が変化してしまう物質についての構造に関する情報を得ることができなかった。
【0004】
近年、CP−MAS(交差分極−マジック角度回転)法を用いることにより固体でのNMRによる測定が可能になった。しかし、感度が良いとはいえず、構造に関する情報の詳細を得るのが困難であり、主に固体状態で測定するため、湿潤状態における材料の情報を得ることが難しかった。
【0005】
高分解能MAS(マジック角度回転)溶液プローブ(以下、ナノプローブという)は、溶液から固体表面に結合している親水性高分子のような不均一な系まで使えるプローブで微量(40マイクロl)のサンプルに対し良好な分解能を得ることができる。測定原理はMAS(マジック角度回転)を利用している。
【0006】
一方、現在、様々な高分子材料が医療分野で使用されているが、人工血管、カテーテル、血液バッグ、人工腎臓などの直接血液の接触する用具においては血漿蛋白や血小板などの血液成分の付着、およびこれに起因する血栓の形成は大きな問題である。特に血液浄化に使用される分離膜では、血小板の活性化は残血を引き起こす可能性がある。したがって、これらの問題を改善するために、血小板付着の少ない血液適合性材料が望まれている。
【0007】
従来、血液浄化用材料の素材としては、セルロース、セルロースアセテート、セルローストリアセテート、ポリオレフィン、ポリイミド、ポリカーボネート、ポリアリレート、ポリエステル、ポリアクリロニトリル、ポリメタクリル酸メチル、ポリアミド、ポリスルホン系ポリマーなどの高分子化合物が用いられてきた。その中でもポリスルホン系ポリマーは耐熱性に優れており、透析膜をはじめとして種々の分離膜やフィルムなどに用いられている。特に血液浄化用材料として使用されるときは、血液適合性を付与するためにポリビニルピロリドンなどの親水性高分子をブレンドして用いられている。
【0008】
分離膜にブレンドされているポリビニルピロリドンは、膜からの溶出を防ぐために、放射線照射などにより、不溶化処理されことがある。しかし、不溶化処理すると、血液が膜表面に接触した際に血小板が活性化し、残血が増えることが知られている(特許文献1など参照)。血小板の付着を抑えるためには不溶化しているポリビニルピロリドンなどの親水性高分子が自由に動ける状態が好ましいと考えられるが、水中での状態を高感度で測定することは困難であった。また、その他タンパク質の付着を抑制する親水性材料についても同様であり、材料中の親水性高分子の状態を測定する方法が望まれていた。
【0009】
【特許文献1】特開平9−323031号公報
【0010】
【発明が解決しようとする課題】
本発明の目的は、材料を溶媒に溶解することなく、不均一系のままで、材料の血液適合性を感度よく評価するための材料の評価方法を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するため、本発明は以下の構成を有する。
【0012】
すなわち本発明は、高分解能MAS溶液プローブ(ナノプローブ)を利用して、核磁気共鳴測定法により、ポリビニルピロリドンなどの親水性高分子を含む材料中の親水性高分子の可動性を評価することを特徴とする材料の評価方法である。
【0013】
【発明の実施の形態】
本発明で用いられるナノプローブとは、MAS(マジック角度回転)を有する溶液プローブであり、NMRにより、分子の組成、状態を解析するものである。通常は測定物質を溶媒に溶解して測定を行い、物質の構造などを測定するが、溶媒に不溶な物質をサンプルを入れるセルに詰めて測定することにより、シグナルがベースのノイズに埋もれることなく高感度で得られることがわかった。ここで得られるシグナルの面積もしくはピーク高さを可動性と定義する。これは溶媒に溶解状態にある高分子部分の測定結果と考えられる。溶媒が水の場合には生物的な環境に近く、生体物質と接触させて用いる親水性高分子材料の測定に好適に用いることが出来る。
【0014】
この可動性を定量的に値として求める方法は特に限定せず、例えば親水性高分子に特有のピークの面積もしくは高さを測定し、試料全体の重量に対する比率として求めても良いし、親水性成分の含有量が元素分析などで特定できる場合には親水性成分重量あたりのピーク面積もしくは高さとして求めても良い。また、ポリビニルピロリドンやポリエチレングリコールなど単独で親水性高分子を得ることが出来る場合は、それらの単独の高分子の重量あたりのピーク面積もしくはピーク高さを求めそれを基準に、材料中の親水性成分の重量あたりのピーク面積もしくは高さを求めれば、材料中の親水性高分子が可動状態である割合を定量的に考察することが出来るので好ましい測定形態である。また、同様に抗体や脂質、細胞が変性してある特定のピークが変性により消失する場合は正常な状態のピーク面積もしくは高さと変性後のピーク面積もしくは高さの比を採ることにより変性度を定量的に測定することが出来る。
【0015】
以下本発明を用いた場合に好適に測定できる例を示すが、本測定法は親水性高分子を含む測定法として幅広く用いることが出来る。
【0016】
親水性高分子とは、水に可溶な高分子物質、高分子官能基のことであり、例としてポリビニルピロリドン、ポリエチレングリコール、ポリエチレンイミンなどの水溶性高分子、タンパク質、ペプチドなどのポリアミノ酸、その他の水溶性の生体物質などが挙げられる。この中で、ポリビニルピロリドンは近年人工腎臓をはじめとする医療用材料に幅広く用いられており、その状態は性能を決める要因であるためにその測定は重要である。本発明で用いられるポリビニルピロリドンとしては、その重量平均分子量は特に限定されるものではないが、2000〜2000000が好ましく、10000〜1500000がより好ましい。入手の容易さの点からは、市販されている重量平均分子量110万、4.5万、2.9万、9000、2900のものが好適に用いられる。なお、ここで記したポリビニルピロリドンの重量平均分子量は、材料に使用する原料段階での分子量である。作製された材料において、放射線架橋などの手段を用いた場合にはポリビニルピロリドンの分子量は、原料段階での分子量より大きなものとなっている。
【0017】
ポリビニルピロリドンの商品例としては、“コリドン”12 PF、同17 PF、同25,同30、同90(BASF社製)、“ルビスコール”K 17、同K 30、同K 80、同K 90(BASF社製)、“プラスドン”K−29/32、同K−25、同K−90、同K−90D、同K90−M(ISP社製)等のポリビニルピロリドンが挙げられる。
【0018】
本発明で用いられるポリビニルピロリドンは、ホモポリマーが好適であるが、本発明の効果を妨げない範囲で他のモノマーと共重合されたものであってもかまわない。ここで、他の共重合モノマーの量は特に限定するものではないが、80重量%以下であることが好ましい。
【0019】
ポリビニルピロリドン共重合体の商品例としては、“コリドン”VA 64、(BASF社製)、“ルビスコール”VA 64(BASF社製)、“ルビテック”VPI55 K18P、同VPI55 K72W、同Quat 73W、同VPMA 91W、同VPC 55 K65W(BASF社製)、“プラスドン”S−630(ISP社製)等のポリビニルピロリドン共重合体が挙げられる。
【0020】
本発明の材料は、ポリビニルピロリドンなどの親水性高分子を含むものであるが、親水性高分子を材料形態として安定に保持し、大量に溶出したり、変形したり、崩壊したりするのを防ぐために、親水性高分子の支持体となる素材を複合させて用いることが通常の好ましい実施形態である。親水性高分子と前記支持体となる素材との構成・複合方法は特に限定されるものではなく、支持体となる素材と親水性高分子が積層されていても良いが、混合または相溶されている方が好ましい。また、親水性高分子が表面反応により固定されている状態でも良い。
【0021】
ここでいう親水性高分子とはポリビニルピロリドンのほか、ポリエチレングリコール、ポリエチレンイミン、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸、デキストラン、デキストラン硫酸、ヘパリン、アルブミンなど水に容易に溶ける高分子のことをいう。
【0022】
また、支持体となる素材としては特に限定されるものではないが、水不溶性材料であることが好ましく、さらには、有機高分子であることが好ましい。有機高分子にはポリスルホン系ポリマー、セルロース、ポリアクリロニトリル、ポリメチルメタクリレート、ポリスチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリアミド、架橋ポリビニルアルコール、架橋ゼラチンなどがあげられ、有機高分子以外の水不溶性材料としては、チタン、ヒドロキシアパタイトなどがある。かかる有機高分子としてはポリスルホン系ポリマーが好ましく用いられる。
【0023】
材料に含まれる親水性高分子の量は特に限定しないが多くの場合、支持体にある程度の強度が必要であるため、好ましくは0.1重量%以上50重量%以下、さらに好ましくは1重量%以上10重量%以下であることが好ましい。この含有量は元素分析などの公知の方法により確認することができる。
【0024】
本発明で測定材料の素材として好ましく用いられるポリスルホン系ポリマーは、主鎖に芳香環、スルホニル基およびエーテル基をもつもので、例えば、次の式1、式2で示されるポリスルホンが好適に使用されるが、本発明ではこれらに限定されない。ここで、式中のnは重合度を示す整数であり、好ましくは50〜80の範囲の整数である。
【0025】
【化1】
Figure 2004309206
【0026】
ポリスルホンの商品例としては、“ユーデル”P−1700、同P−3500(テイジンアモコ社製)、“ウルトラゾーン”S3010、同S6010(BASF社製)、“ビクトレックス”(住友化学)、“レーデル”A−200A、同A−300、“レーデル”R−5000、同R−5800(テイジンアモコ社製)、“ウルトラゾーン”E(BASF社製)、“スミカエクセル”(住友化学工業社製)等のポリスルホンが挙げられる。
【0027】
本発明で用いられるポリスルホンは、上記した化学式1及び/又は化学式2で表される繰り返し単位のみからなるポリマーが好適であるが、本発明の効果を妨げない範囲で他のモノマーと共重合したものであっても良い。他の共重合モノマーの添加量は特に限定するものではないが、10重量%以下であることが好ましい。
【0028】
本発明の材料には、前記ポリビニルピロリドンおよび支持体となる素材以外のポリマーや添加剤などが、本発明の効果を妨げない範囲で混合されていても良い。ポリビニルピロリドンおよび支持体となる素材以外の添加量は特に限定されるわけではないが、10重量%以下であることが好ましい。
【0029】
本発明の材料の形態は特に限定されるものではなく、たとえば、チューブ状、ビーズ、編み地、不織布、カットファイバー、平膜、中空糸膜などの形態で用いられる。また、材料を溶媒に溶解してある特定の形に成型したもの、コーティングしたものでもよい。血液処理用途に用いる場合等は、処理効率の点から、血液と接触する表面積の確保などを考慮すると、中空糸膜であることが好ましい。
【0030】
また、本発明の材料は、分離膜として用いられることが好ましい。その場合の膜厚は10〜80μmが好ましく、20〜50μmがより好ましい。又、膜の平均孔径については、1nm以上1μm以下がより好ましい。なお、非対称膜のような場合、ここでいう平均孔径とは分離機能を担う緻密層部分における平均孔径のことをいう。
【0031】
中空糸膜の場合は中空糸の内径は100〜300μmであることが好ましく、150〜200μmがより好ましい。
【0032】
中空糸膜の形態とする場合、その中空糸膜の製造方法としては、従来知られている方法を使用することができる。ポリビニルピロリドンとともに、ポリスルホンを用いる場合の好ましい方法としてつぎのような方法がある。
【0033】
すなわち、ポリスルホン系ポリマーと、ポリビニルピロリドンとを溶媒で混和溶解した溶液に、該ポリスルホン系ポリマーを不溶または膨潤させる添加剤を加えた系を製膜原液として用いることを特徴とする分離膜の製造方法である。
【0034】
ここで、ポリスルホン系ポリマーとポリビニルピロリドンの重量比率は、20:1〜1:5が好ましく、5:1〜1:1がより好ましい。
【0035】
また、ポリスルホン系ポリマーとポリビニルピロリドンを混和溶解するための良溶媒としては、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド、N−メチルピロリドン、ジオキサンなどが好ましく用いられる。ポリスルホン系ポリマーの濃度は、10〜30重量%が好ましく、15〜25重量%がより好ましい。
【0036】
ポリスルホン系ポリマーを不溶または膨潤させる添加剤としては、たとえば水、メタノール、エタノール、イソプロパノール、ヘキサノール、1,4−ブタンジオールなどがあるが、生産コストを考えると、水が特に好ましく使用される。ここで、水を使用した場合、ポリスルホン系ポリマーの凝固性が高いため、水の添加量は7重量%以下、特に1〜5重量%が好ましい。凝固性が小さな添加剤を用いるときは添加量が多くなってもよく、適宜好適な量を選択できる。
【0037】
前記製膜原液を用いて製膜する方法は特に限定されず、公知の方法を用いることができる。たとえば、二重環状口金から製膜原液を吐出する際に内側に注入液を流し、乾式部を走行させた後、凝固浴へ導く方法を用いることができる。この際、乾式部の湿度が影響を与えるために、乾式部走行中に膜外表面からの水分補給によって、外表面近傍での相分離挙動を速め、孔径を拡大し、結果として透析の際の透過・拡散抵抗を減らすことも可能である。ただし、相対湿度が高すぎると外表面での原液凝固が支配的になり、かえって孔径が小さくなり、結果として分離膜の透過・拡散抵抗を増大する傾向がある。
そのため、乾式部の相対湿度としては60〜90%が好適である。また、注入液の組成としては、プロセス適性から、製膜原液に用いた溶媒を基本とする組成からなるものを用いることが好ましい。ここで、注入液の濃度としては、例えばジメチルアセトアミドを用いたときは、45〜80重量%が好ましく、より好ましくは60〜75重量%の水溶液が好適に用いられる。
【0038】
また、本発明においては、材料中の親水性高分子を不溶化する場合の不溶化する方法として、放射線を用いて材料中に含まれる親水性高分子を架橋処理することが好ましい。
【0039】
放射線処理としては、材料を湿潤状態でγ線・電子線などを照射することが好ましい。ここでいう湿潤状態とは、材料を乾燥させない状態のことを言う。その程度は特に限定されるものではないが、通常、材料が材料の重量に対して1重量%以上の水分を含んでいることが好ましい。また、材料が水溶液に浸漬された状態でも良い。
【0040】
放射線の吸収線量は湿潤状態で10〜50kGy程度が好ましく、20kGyを超える線量を照射した場合は、滅菌処理を同時に行うことも可能である。この際、吸収線量は線量測定ラベルをモジュールの表面に貼り付けるなどして測定することができる。
【0041】
放射線処理された材料は、血液浄化用の分離膜として好適に用いることができる。血液浄化用に用いる場合、放射線処理は同時に滅菌効果も奏することになるが、滅菌効果が不足する場合は、放射線照射して親水性高分子を不溶化した後、蒸気滅菌などを行えば、血液浄化用材料として好適に使用可能である。
【0042】
放射線の吸収線量が10kGy未満では親水性高分子が不溶化されにくい。また、50kGyより照射量が多くなると支持体であるポリスルホンやケースなどの他の素材への劣化の影響が大きくなることがある。
【0043】
放射線滅菌を施すと、材料中の親水性高分子は一部不溶化するが、蒸気滅菌やエチレンオキサイド滅菌などの放射線を利用せずに滅菌処理すれば、親水性高分子は不溶化されず、血液適合性は良好となる。
【0044】
放射線処理を施す場合に親水性高分子の不溶化を阻害する方法として親水性高分子を含む材料を架橋阻害剤を含む水溶液に湿潤させた状態で放射線処理を施す方法がある。
【0045】
該架橋阻害剤としては、架橋反応を阻害するものであれば特に限定されるものではないが、血液浄化用途に用いる際は、その安全性を考慮する必要があるため、毒性の低いものが好適に用いられる。なかでも水溶性ビタミン、グリセリン、エタノール等のアルコール類、ポリフェノール、ポリエチレンイミン、ポリエチレングリコール、トレハロースなどの糖類、ピロ亜硫酸ナトリウム、炭酸水素ナトリウムなどの無機塩、酸素、二酸化炭素などが挙げられ、好適に使用される。これらの架橋阻害剤は単独で用いてもよいし、2種類以上混合して用いてもよい。
【0046】
架橋阻害剤を含有する水溶液の濃度については、含有する架橋阻害剤により好適な範囲が異なるが、例えば、グリセリン水溶液の場合、グリセリン濃度は0.1重量%以上、10重量%以下、エタノール水溶液の場合は0.01重量%以上、5重量%以下、ポリエチレンイミン水溶液の場合は0.01重量%以上、5重量%以下であることが好適であるが、その他の架橋阻害剤の場合は、好適な濃度範囲をそれぞれ選択することができる。
【0047】
本発明でいう可動性量は中空糸膜を例とした場合は具体的に下記の通りにして求められる。
【0048】
蒸留水で洗浄した湿潤状態の分離膜を大過剰の重水に浸漬し、重水置換する。架橋阻害剤などの添加物が混入している場合は、同時にこの操作によって可能な限り除去する。次に重水で置換された試料(乾燥したときの試料重量は5mg)を容量40μlの専用セルに湿潤したまま詰め、VARIAN社製UNITY INOVA600型装置で1H−NMR測定を行う(十分長い繰り返し時間を設定する。内標としてTSP:3−トリメチルシリルプロピオン酸ナトリウム−2,2,3,3−d4 の重水溶液約10μg添加、HDOピークをプレサチュレーションによって消去、MAS回転数1600〜1800Hzとする)。得られたスペクトルにおいて、TSPのピーク(−0.2〜0.2ppm)の積分値を1000.00とした時、親水性高分子由来のピーク面積を求める。その付近に架橋抑制剤(例えばポリエチレンイミン)に由来するピークで妨害される場合は、妨害されない化学シフトに位置する親水性高分子由来のピーク面積を求め、種々の可動性をもつ試料を用いてあらかじめそれらのピ−ク面積から作成された検量線から妨害されている部分の親水性高分子由来のピークの実面積を求めることができる。本ピーク面積は材料に含まれる親水性高分子の量に対応する。そこで親水性高分子の可動性量とは、上記のようにして求められるピーク面積を材料中の全親水性高分子の割合(%)で割ったものをいう。
【0049】
なお、親水性高分子がポリビニルピロリドンのような窒素原子を含む親水性高分子の場合、材料中の全ポリビニルピロリドン量は、元素分析により求めることができる。すなわち、乾燥した材料0.2〜0.5mgを横型反応炉(800〜950℃)で気化・酸化させ生成した一酸化窒素を化学発光法で測定する(装置は三菱化学製TN−10を使用)。定量は予め、含窒素ポリマーの標準物で作成した検量線により自動的に濃度計算できる。材料中の親水性高分子の量は、元素分析のほかに、親水性高分子を含んだ状態の水不溶性材料の乾燥重量から水不溶性材料の重量(例えば、計算により得られる重量)の計算値を差し引いた量とすることもできる。
【0050】
本発明における材料の評価方法は、透明樹脂、コンタクトレンズ、眼内レンズその他の医療用ハイドロゲル材料、血液透析膜、人工腎臓などの血液浄化用材料の評価方法、生物医薬品の開発における変性状態の確認方法として好適に使用することができる。
【0051】
【実施例】
実施例におけるNMR測定においては、分離膜は膜の1000倍重量の重水に12時間冷蔵浸漬した。測定は45°パルスで繰り返し時間10秒にて行った。
【0052】
(実施例1)
ポリスルホン(テイジンアモコ社製“ユーデル”P−3500)18部、ポリビニルピロリドン(BASF社製”コリドン”30)9部をN,N−ジメチルアセトアミド72部、水1部に加え、90℃14時間加熱溶解した。この製膜原液を外径0.3mm、内径0.2mmのオリフィス型二重円筒型口金より吐出し芯液としてジメチルアセトアミド58部、水42部からなる溶液を吐出させ、乾式長350mmを通過した後、水100%の凝固浴に導き中空糸膜を得た。得られた中空糸の径は内径200μm、膜厚40μmであった。得られた中空糸膜をグリセリン1重量%を含む水溶液中でγ線照射した。γ線吸収線量は28kGyであった。
【0053】
蒸留水で洗浄した湿潤状態の分離膜を大過剰の重水に浸漬し、重水置換した。次に重水で置換された試料(乾燥したときの試料重量は5mg)を容量40μlの専用セルに湿潤したまま詰め、VARIAN社製UNITY INOVA600型装置で1H−NMR測定を行う(十分長い繰り返し時間を設定する。内標としてTSP:3−トリメチルシリルプロピオン酸ナトリウム−2,2,3,3−d4 の重水溶液約10μg添加、HDOピークをプレサチュレーションによって消去、MAS回転数1600〜1800Hzとする)。得られたスペクトルにおいて、TSPのピーク(−0.2〜0.2ppm)の積分値を1000.00とした時、2.9〜4.2ppmに位置するポリビニルピロリドン由来のピーク面積を求める。ポリビニルピロリドンの可動性量は、上記のようにして求められるピーク面積を元素分析から求められる材料中の全ポリビニルピロリドンの割合(%)で割ったものとした。
【0054】
なお、材料中の全ポリビニルピロリドン量は、元素分析により求めた。すなわち、乾燥した材料0.2〜0.5mgを横型反応炉(800〜950℃)で気化・酸化させ生成した一酸化窒素を化学発光法で測定した(装置は三菱化学製TN−10を使用)。定量は予め、含窒素ポリマーの標準物で作成した検量線により自動的に濃度計算できる。
【0055】
この中空糸膜中のポリビニルピロリドンの可動性量および血小板付着数を表1に示した。
【0056】
なお、血小板付着数については、以下の方法により測定した。
【0057】
中空糸分離膜を30本束ね、中空糸中空部を閉塞しないようにエポキシ系ポッティング剤で両末端をガラス管モジュールケースに固定し、ミニモジュールを作成する。該ミニモジュールの直径は約7mm、長さは約10cmである。該ミニモジュールの血液入口と透析液出口をシリコーンチューブで繋ぎ、血液出口から蒸留水100mlを10ml/分の流速で流し、中空糸およびモジュール内部を洗浄した後、生理食塩水を充填し、透析液入口、出口をキャップする。次に、中空糸側を0.59ml/分の流速で、2時間生理食塩水プライミングした後、3.2%クエン酸三ナトリウム2水和物水溶液と家兎新鮮血を1:9(容積比)で混合した血液7mlを0.59ml/分の流速で1時間灌流する。その後、生理食塩水で10mlシリンジにて洗浄し、3%グルタルアルデヒド水溶液を中空糸側、透析液側に充填し、一晩以上置き、グルタルアルデヒド固定を行う。その後、蒸留水にて、グルタルアルデヒドを洗浄し、ミニモジュールから中空糸膜を切り出して乾燥した。この中空糸膜の内表面を走査型電子顕微鏡にて観察し、1.12×10μmの面積中の付着血小板数を数えた。付着血小板数は、少ない方が優れた分離膜である。
【0058】
なお、中空糸膜の形態でない材料の場合は血液に材料を浸漬して、付着状態を観察したり、平板の形態の場合は円筒管の底に平板を設置し、血液を入れるなどして、適宜行うことができる。
【0059】
(実施例2)
実施例1と同様にして得られた中空糸膜を、グリセリン0.5重量%を含む水溶液中でγ線照射した。γ線吸収線量は29kGyであった。この中空糸膜中のポリビニルピロリドンの可動性量および血小板付着数を表1に示した。
【0060】
(実施例3)
実施例1と同様にして得られた中空糸膜を、グリセリン0.1重量%を含む水溶液中でγ線照射した。γ線吸収線量は29kGyであった。この中空糸膜中のポリビニルピロリドンの可動性量および血小板付着数を表1に示した。
【0061】
(実施例4)
実施例1と同様にして得られた中空糸膜を、ポリエチレンイミン(和光純薬、分子量7万)1重量%を含む水溶液中でγ線照射した。γ線吸収線量は29kGyであった。この中空糸膜中のポリビニルピロリドンの可動性量および血小板付着数を表1に示した。なお、可動性量については、2.9〜4.2ppmに位置するポリビニルピロリドン由来のピークはポリエチレンイミンに由来するピークで妨害されたため、1.4〜2.6ppmに位置するポリビニルピロリドン由来のピーク面積を求め、1.4〜2.6ppmと2.9〜4.2ppmのピ−ク面積から作成された検量線から2.9〜4.2ppmに位置するポリビニルピロリドン由来のピークの面積を求めた。
【0062】
(実施例5)
実施例1と同様にして得られた中空糸膜を、水中でγ線照射した。γ線吸収線量は29kGyであった。この中空糸膜中のポリビニルピロリドンの可動性量および血小板付着数を表1に示した。
【0063】
(実施例6)
実施例1と同様にして、グリセリン0.05重量%を含む水溶液中でγ線照射した。γ線吸収線量は27kGyであった。この中空糸膜中のポリビニルピロリドンの可動性量および血小板付着数を表1に示した。
【0064】
【表1】
Figure 2004309206
【0065】
表1および図1にナノプローブNMR法により求められる材料中のポリビニルピロリドンの可動性量と血小板付着数との関係を示す。ポリビニルピロリドンと材料の血液適合性とは相関関係にあることがわかる。
【0066】
【発明の効果】
本発明の材料の評価方法は、血液浄化器などの評価方法に用いられ、本評価系を用いることにより特に抗血小板付着性に優れた材料の開発を進めることができるという有用な方法である。
【図面の簡単な説明】
【図1】ナノプローブNMR法により求められる材料中のポリビニルピロリドンの可動性量と血小板付着数との関係を示す。

Claims (9)

  1. 高分解能MAS溶液プローブを利用して、核磁気共鳴測定法により、親水性高分子を含む材料中の親水性高分子の可動性を評価することを特徴とする材料の評価方法。
  2. 該親水性高分子がポリビニルピロリドンであることを特徴とする請求項1記載の材料の評価方法。
  3. 該材料が親水性高分子とその支持体を含み、該支持体が水不溶性であることを特徴とする請求項1または2に記載の材料の評価方法。
  4. 該支持体が有機高分子であることを特徴とする請求項1〜3のいずれかに記載の材料の評価方法。
  5. 該有機高分子がポリスルホン系ポリマーであることを特徴とする請求項1〜4のいずれかに記載の材料の評価方法。
  6. 該材料の形態が分離膜であることを特徴とする請求項1〜5のいずれかに記載の材料の評価方法。
  7. 該材料の形態が中空糸膜であることを特徴とする請求項1〜6のいずれかに記載の材料の評価方法。
  8. 該分離膜が血液浄化用であることを特徴とする請求項6または7に記載の材料の評価方法。
  9. 測定すべき親水性高分子を含む材料の可動性と比較対照となる物質のシグナルの比を測定する事を特徴とする請求項1〜8のいずれかに記載の材料の評価方法。
JP2003100096A 2003-04-03 2003-04-03 材料の評価方法 Pending JP2004309206A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003100096A JP2004309206A (ja) 2003-04-03 2003-04-03 材料の評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003100096A JP2004309206A (ja) 2003-04-03 2003-04-03 材料の評価方法

Publications (1)

Publication Number Publication Date
JP2004309206A true JP2004309206A (ja) 2004-11-04

Family

ID=33464328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003100096A Pending JP2004309206A (ja) 2003-04-03 2003-04-03 材料の評価方法

Country Status (1)

Country Link
JP (1) JP2004309206A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241423A (ja) * 2007-03-27 2008-10-09 Kanmonkai:Kk フグ毒の検出方法
CN103529068A (zh) * 2013-10-11 2014-01-22 西北工业大学 低场核磁技术对环境响应性高分子亲疏水转变的动态监测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241423A (ja) * 2007-03-27 2008-10-09 Kanmonkai:Kk フグ毒の検出方法
CN103529068A (zh) * 2013-10-11 2014-01-22 西北工业大学 低场核磁技术对环境响应性高分子亲疏水转变的动态监测方法
CN103529068B (zh) * 2013-10-11 2016-08-17 西北工业大学 低场核磁技术对环境响应性高分子亲疏水转变的动态监测方法

Similar Documents

Publication Publication Date Title
KR101135840B1 (ko) 개질 기재, 분리막 및 분리막 시스템
JP4888559B2 (ja) 血液浄化用分離膜および血液浄化用分離膜モジュールならびに血液浄化用中空糸膜および血液浄化用中空糸膜モジュール
JP6036882B2 (ja) 分離膜および分離膜モジュール並びに分離膜の製造方法および分離膜モジュールの製造方法
JP4534486B2 (ja) 親水性材料及びその製造方法
JP5407713B2 (ja) ポリスルホン系中空糸膜モジュールおよび製造方法
KR102496897B1 (ko) 공중합체 및 그것을 사용한 의료 디바이스, 의료용 분리막 모듈, 및 혈액 정화기
KR102320469B1 (ko) 공중합체 및 그것을 이용한 분리막, 의료 디바이스 및 혈액 정화기
JP2006198611A (ja) 分離膜の製造方法およびその分離膜を用いた分離膜モジュールの製造方法
RU2747972C2 (ru) Модуль разделительной мембраны
JP2004309206A (ja) 材料の評価方法
JP4214750B2 (ja) 材料およびそれを用いた血液浄化用モジュール
JP2021023928A (ja) 分離膜およびその製造方法
JP4802537B2 (ja) 改質基材
JP5673306B2 (ja) 吸着材料および吸着材料の製造方法
JP4882518B2 (ja) 医療用分離膜および医療用分離膜モジュールの製造方法
JP2016047240A (ja) 中空糸膜モジュール及びその製造方法
JP2005231286A (ja) 改質基材