JP2004308877A - Roller bearing - Google Patents
Roller bearing Download PDFInfo
- Publication number
- JP2004308877A JP2004308877A JP2003106546A JP2003106546A JP2004308877A JP 2004308877 A JP2004308877 A JP 2004308877A JP 2003106546 A JP2003106546 A JP 2003106546A JP 2003106546 A JP2003106546 A JP 2003106546A JP 2004308877 A JP2004308877 A JP 2004308877A
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- resin
- rolling
- synthetic resin
- resin composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/32—Balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/10—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for axial load mainly
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/38—Ball cages
- F16C33/3837—Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages
- F16C33/3843—Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
- F16C33/3856—Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/38—Ball cages
- F16C33/44—Selection of substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/62—Selection of substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2208/00—Plastics; Synthetic resins, e.g. rubbers
- F16C2208/20—Thermoplastic resins
- F16C2208/36—Polyarylene ether ketones [PAEK], e.g. PEK, PEEK
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/40—Linear dimensions, e.g. length, radius, thickness, gap
- F16C2240/60—Thickness, e.g. thickness of coatings
- F16C2240/64—Thickness, e.g. thickness of coatings in the nanometer range
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2300/00—Application independent of particular apparatuses
- F16C2300/40—Application independent of particular apparatuses related to environment, i.e. operating conditions
- F16C2300/42—Application independent of particular apparatuses related to environment, i.e. operating conditions corrosive, i.e. with aggressive media or harsh conditions
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は転がり軸受に関し、例えば水中などの液中や多湿環境のような金属が腐食しやすい環境で使用可能な耐腐食性転がり軸受に関する。
【0002】
【従来の技術】
一般に、軸受鋼やステンレス鋼で形成されている転がり軸受は、水や薬液などの液中またはこのような液体の蒸気を多量に含む雰囲気中で使用された場合に、腐食して実用性が無くなったり、頻繁に部品を交換する必要が生じるので、軸受全体を覆うように合成樹脂製のカバーを取り付け、腐食性環境から隔離して使用するようにしている。
【0003】
また、転がり軸受を密閉して腐食性環境から完全に隔離することが困難である場合には、軌道輪などの部品を耐腐食性(耐薬品性)の合成樹脂で形成することが好ましい。しかし、この合成樹脂製の軸受用部品は、金属製のものに比べて耐荷重変形性や耐摩耗性が劣るので、完成した転がり軸受の用途は、低荷重・低速回転用のものに限定されることになる。
このため、粒径5〜5000nmの無機充填剤を分散させてなる合成樹脂成形体を合成樹脂製の軸受用部品に用いて、例えば腐食性の環境で使用した場合であっても機械的強度の低下が起こり難い耐腐食性転がり軸受が知られている(特許文献1参照)。
【0004】
【特許文献1】
特開2000−283168(段落[0013])
【0005】
【発明が解決しようとする課題】
しかしながら、従来の充填剤を配合した合成樹脂製部品を用いた転がり軸受は、転がり摩擦による応力を繰り返し受けた部分が起点となってクラックを発生させやすく、クラックが進行すると表層剥離や局所的な摩耗も起こりやすくなる。このような転がり軸受部品は、充填剤を配合せずに成形した合成樹脂製の軸受部品に比べて、転がり疲労特性も劣っている。
【0006】
軸受部品に転がり摩擦による応力が発生する作用機構については、恐らく一般的に金属製部品に比べて弾性率が低くて剛性も低い合成樹脂が、弾性変形するからであると考えられる。すなわち、合成樹脂製の軌道輪の転走面に転動体が転がって摩擦接触した際、転動体と接触した軌道輪が弾性変形して転走面やその周辺に波状の起伏が形成され、この起伏によって転動体の円滑な転動が妨げられて、軸受全体としての機能を低下させていると考えられる。
【0007】
また、第2の原因としては、軸受部品の表面の一部に比較的大きな粒子や繊維状の無機質充填剤が露出していると、無機質充填剤が水や薬液などに接して腐食し、無機質充填剤に沿って軸受部品の内部まで強度が低下してクラックを広がらせたり、終には表層が剥離したり局所的な摩耗が起こりやすくなるとも考えられる。また、このように露出した充填剤上を転動した場合、局部的に面圧が高まり、より損傷を受けやすいという問題があり、また、転動の際に音響を悪化させたりするという問題がある。
【0008】
本発明はこのような問題に対処するためになされたものであり、腐食性の環境で使用した場合に、強度の低下が起こり難い合成樹脂製の転がり軸受の提供である。より具体的に説明すると、転がり軸受の繰り返して転がり摩擦による応力を受ける部分に、クラック、表層剥離、局所的な摩耗を発生させ難い耐腐食性の転がり軸受の提供である。特に、水中や薬液中などの腐食しやすい液中や、液体の蒸気を多量に含む腐食性の多湿雰囲気で使用される用途の転がり軸受において、耐荷重性を高め、かつクラックや表層剥離または局所的な摩耗を発生させないようにすることである。
【0009】
【課題を解決するための手段】
本発明は、一対の軌道輪の間に、転動体およびその保持器を介在させた転がり軸受において、上記軌道輪、転動体および保持器から選ばれる一種以上の軸受部品が、合成樹脂を主成分とし、カーボンナノチューブを配合した樹脂組成物からなる成形体であることを特徴とする。
また、合成樹脂に配合されるカーボンナノチューブの配合割合が、樹脂組成物全体に対して、1〜50重量%であることを特徴とする。
【0010】
本発明は、繰り返し転がり摩擦力を受けて応力を発生させる軸受部品の少なくとも一つが、カーボンナノチューブを配合した樹脂組成物で形成されている。この組成物は、微細なカーボンナノチューブと合成樹脂とが分子レベル(ナノメータ単位)で絡み合っているので、樹脂とカーボンナノチューブとの密着強度が高められていて、機械的強度が高くしかも部品の弾性率が高く、すなわち外力を受けた場合の弾性変形量が小さくなる。
したがって、このような樹脂組成物で形成された部品からなる転がり軸受は、耐荷重性が高くなり、腐食性の高い環境で繰り返して転がり摩擦による応力を受けた場合にも、クラックを発生させ難くなり、表層剥離または局所的な摩耗を発生させ難い転がり軸受になる。
また、カーボンナノチューブは、1重量%という比較的少量であっても、または50重量%の配合量であっても、その樹脂組成物で成形した部品を用いた転がり軸受は、転がりによる繰り返し応力を受けた部品にクラックが発生せず、耐荷重性の高い合成樹脂製の転がり軸受が得られた。これはカーボンナノチューブと合成樹脂との界面での密着強度が高められたためと考えられる。
さらに、カーボンナノチューブは、そのサイズが極めて小さいため表面平滑性に優れ、音響特性に優れた転がり軸受が得られる。また、カーボンナノチューブを配合させた樹脂組成物は導電性をも有することから、通電軸受として使用することも可能である。
【0011】
【発明の実施の形態】
本発明に係る転がり軸受の一例を図1に示す。図1は単式スラスト玉軸受の断面図である。
転がり軸受1は、軸軌道盤3とハウジング軌道盤2との間に保持器5に保持された複数個の転動体4を備えている。
本発明においては、軸軌道盤3とハウジング軌道盤2とで構成される軌道輪、転動体4および保持器5の少なくとも一つがカーボンナノチューブを配合した樹脂組成物からなる成形体で構成される。
【0012】
本発明で使用できるカーボンナノチューブは、単層カーボンナノチューブ(SWNT)または多層カーボンナノチューブ(MWNT)を単独であるいは混合して使用できる。単層カーボンナノチューブ(SWNT)としては、直径が1〜200nm、多層カーボンナノチューブ(MWNT)としては、直径が1〜50nmが好ましい。またチューブの長さについては限定されない。
カーボンナノチューブの直径が1〜200nmの範囲以外となると、合成樹脂に対するミクロ的な補強効果がなく、得られた軸受部品の転がり疲労特性は、従来品とあまり変わらないものになる。このような傾向から、カーボンナノチューブの好ましい直径は100nm以下である。また、単層または多層のカーボンナノチューブは、その表面を化学修飾し、後述する合成樹脂との親和性を向上させてもよい。
単層および多層のカーボンナノチューブは、黒鉛などのアーク放電による方法、触媒を用いた熱分解法、レーザー蒸発法、CVD法、SiCから珪素原子を除去する方法等、公知の方法で得ることができる。
【0013】
本発明に用いる軸受部品を構成する主成分の合成樹脂は、熱硬化性樹脂または熱可塑性樹脂のいずれであってもよく、具体例を列挙すれば以下の通りである。すなわち、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂、ポリテトラフルオロエチレン樹脂、クロロトリフルオロエチレン樹脂、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン樹脂、エチレン・テトラフルオロエチレン共重合体、ポリエチレン樹脂(低密度、高密度または超分子量のいずれの特性のものであってもよい)、水架橋ポリオレフィン樹脂、ポリアミド樹脂、芳香族ポリアミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリフェニレンオキサイド樹脂、ポリアリルスルホン樹脂、ポリシアノアリールエーテル樹脂、ポリアリールエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、芳香族ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、脂肪族ポリケトン樹脂、ポリビニルピロリドン樹脂、ポリオキサゾリン樹脂、各種熱可塑性エラストマー、または上記合成樹脂から選ばれた2種以上の樹脂材料が混合された重合体(ポリマーブレンドやポリマーアロイと称されるもの)が挙げられる。
【0014】
上述の合成樹脂のうち、好ましいものとしては、ポリアリールエーテルケトン樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリイミド樹脂などが挙げられる。
【0015】
上述の合成樹脂にカーボンナノチューブは樹脂組成物全体に対して1〜50重量%配合される。1重量%未満の配合量では、樹脂組成物の補強効果がなく、これでは耐荷重性の向上がない。また、50重量%をこえる量を配合すると、却って樹脂組成物は脆くなる場合がある。好ましくは30重量%以下である。
【0016】
本発明において、樹脂組成物を軌道輪、転動体または保持器に成形するには、所定のカーボンナノチューブが分散配合された樹脂組成物を押出成形、射出成形、圧縮成形、真空成形、吹き込み成形、発泡成形、注型成形など周知の成形方法を採用できる。射出成形は、効率がよい成形方法であるから、軸受部品の低価格化の要求に適している。これらの成形後は、旋削や研磨などの機械加工により、所定の形状に調整することもできる。
【0017】
また、本発明における合成樹脂組成物には、一般にプラスチック材料に適用される各種の添加剤を、この発明の効果を阻害しない量であれば添加することもできる。そのような添加剤としては、離型剤、難燃剤、帯電防止剤、耐候性改良剤、酸化防止剤、着色剤、工業用潤滑剤などが挙げられる。
【0018】
なお、本発明における合成樹脂組成物は、ペレットやブロック等に仮成形した後、ジェットミル、冷凍粉砕機などで粉砕し、得られた粉末を必要に応じて分級整粒し、これを別途設けた軸受部品に塗装してもよい。塗装方法としては、粉末を塗装材料とする流動浸漬塗装や静電粉体塗装、粉末を溶剤に分散または溶解したものもしくは液状の樹脂組成物をそのままスプレー塗装または浸漬塗装する方法を採用することもできる。
【0019】
【実施例】
実施例1
カーボンナノチューブ(多層)を7重量%配合したポリエーテルエーテルケトン樹脂(大塚化学社製KHP−07)を用いて、この材料を380℃、80MPa で1時間加熱加圧する条件でリング型に成形した。
次いで、この素形材のリング型の成形体をスラスト玉軸受51201用の軌道輪(外径28mm、内径14mm、厚さ3mm)に切削加工した。なお、この軌道輪は2個一組で使用するが、一方の軌道輪はレース付き、他方の軌道輪は転走面が平滑面になるように形成した。
そして、このようにして作製した軌道輪と、直径5.56mm(7/32インチ)の窒化ケイ素(Si3N4)製の転動体(ボール)と、ガラス繊維10重量%を添加して補強したナイロン66で成形した保持器を使用してスラスト玉軸受(グリース等の潤滑剤を使用しないもの)を組み立てた。
【0020】
実施例2
カーボンナノチューブ(多層)を15重量%配合したポリエーテルエーテルケトン樹脂(ハイペリオン社製RMB9015−00)を使用する以外は実施例1と同様にして、実施例と同一のスラスト玉軸受を組み立てた。
得られた実施例1および実施例2の玉軸受に対して、以下の水中スラスト試験を行ない、その結果を表1に示した。
【0021】
<水中スラスト試験>
水中スラスト試験機を図2に示す。図2に示す水中スラスト試験機は、カップ形のハウジング内に水を溜め、スラスト軸受を水に浸けて回転試験を行なうものであり、スラスト玉軸受1は、転走面が平滑面の軌道輪2を上側に配置し、レース付きの軌道輪3を下側に配置してハウジング6で保持した。ハウジング6の内底部には、軌道輪3をホルダで固定し、軌道輪2は回転力が入力される回転軸7の先端に設けた円盤状のホルダ8に取り付けて回転軸7と一体に回転させるようにした。なお、図中番号4は、ボール(転動体)、図中番号9は、水の飛散を防止する蓋であり、ハウジング6には熱電対10を装着して試験温度を測定すると共に、ロードセル11で軸受に係るスラスト荷重を測定した。
【0022】
試験条件は、軸受のスラスト荷重をPmax 10kg/mm2または20kg/mm2とし、回転数2038rpm(128m/min)、水中での試験時間を20時間とした。
試験後の評価は、転走面が平滑面の軌道輪 の転走面を目視で観察することにより行ない、表中に○印(損傷なし)、△印(僅かに損傷が認められるか、または損傷は認められないが回転に支障があった。)、×印(剥離や摩耗などの損傷が明らかに認められるか、または変形量が100μm以上である。)、−印(未試験)で示した。
【0023】
比較例1〜比較例6
各比較例に用いた材料を以下に示す。
(1)炭素繊維30重量%含有ポリエーテルエーテルケトン樹脂(PEEK)
ビクトレックス社製:PEEK450CA30
(2)ポリオキシメチレン樹脂(POM)
ポリプラスチックス社製:ジュラコンM90−25
(3)ポリアミド6樹脂(PA6)
東レ社製:アミランCM1001
(4)ポリアミド66樹脂(PA66)
東レ社製:アミランCM3001
(5)ポリフェニレンサルファイド樹脂(PPS)
トープレン社製:T4AG
(6)合成マイカ
ナカコー社製:FM−20
(7)ガラス繊維
旭ガラスファイバー社製:CSO3MA497(φ13μm、3mm)
【0024】
上記材料を用いて、表1に示す配合割合で混合し、比較例1は380℃、80MPaで1時間加熱加圧する条件で、比較例2および比較例3は190℃、50MPaで0.2時間加熱加圧する条件で、比較例4は220℃、50MPaで0.2時間加熱加圧する条件で、比較例5は280℃、50MPaで0.2時間加熱加圧する条件で、比較例6は320℃、50MPaで0.5時間加熱加圧する条件で、それぞれリング型に射出成形した。
このリング型の成形体を一方の軌道輪がレース付き、他方の軌道輪は転走面が平滑であるスラスト玉軸受51201用の軌道輪(外径28mm、内径14mm、厚さ3mm)を作製した。
得られた軌道輪を使用したこと以外は、実施例1と全く同様の部品を用いて、スラスト玉軸受を組み立てた。このスラスト玉軸受に対して、実施例1と同一の水中スラスト試験を同じ条件で行ない、その結果を表1中に併記した。
【0025】
【表1】
【0026】
表1の結果からも明らかなように、充填剤を含まない比較例2は、スラスト荷重がPmax 20kg/mm2の条件で軌道輪に損傷が発生し、または運転に支障が生じた。
また、炭素繊維やマイカ、ガラス繊維で補強した合成樹脂からなる軌道輪を使用した比較例1または比較例3〜6は、スラスト荷重がPmax 10kg/mm2の条件で軌道輪に剥離や摩耗などの損傷が発生した。
これに対して、カーボンナノチューブを所定量だけ均一分散させた合成樹脂を使用した実施例1および2は、スラスト荷重がPmax 20kg/mm2の条件でも軌道面の剥離、変形、摩耗などの損傷がなく、腐食性の高い環境で繰り返して転がり摩擦による応力を受けた場合でもクラックを発生させ難く、耐荷重性の高い軸受であることが確認できた。
【0027】
【発明の効果】
本発明は、以上説明したように、軸受部品が、合成樹脂を主成分としてカーボンナノチューブを分散させた樹脂組成物からなる成形体からなる転がり軸受としたので、樹脂組成物は微細なカーボンナノチューブと合成樹脂とが分子レベルで絡み合って機械的強度の高い軸受部品となり、外力を受けた場合の弾性変形量が小さく、耐荷重性が高くなり、また腐食性の高い環境で繰り返して転がり摩擦による応力を受けた場合に、各部品はクラックを発生させ難く、表層剥離または局所的な摩耗を起こさない転がり軸受になる。
【0028】
また、転がり軸受は、カーボンナノチューブの配合割合が1〜50重量%である場合に、上記した利点をより確実にかつ充分に奏するものになる。
【図面の簡単な説明】
【図1】単式スラスト玉軸受の断面図である。
【図2】水中スラスト試験機を示す図である。
【符号の説明】
1 転がり軸受
2 ハウジング軌道盤
3 軸軌道盤
4 転動体
5 保持器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rolling bearing, and for example, relates to a corrosion-resistant rolling bearing that can be used in an environment where metal is easily corroded, such as in a liquid such as water or in a humid environment.
[0002]
[Prior art]
In general, rolling bearings made of bearing steel or stainless steel corrode and become impractical when used in a liquid such as water or chemicals or in an atmosphere containing a large amount of such liquid vapor. In addition, since it is necessary to frequently replace parts, a cover made of synthetic resin is attached so as to cover the entire bearing, and is used isolated from a corrosive environment.
[0003]
In addition, when it is difficult to seal the rolling bearing and completely isolate it from the corrosive environment, it is preferable to form a component such as a bearing ring with a synthetic resin having corrosion resistance (chemical resistance). However, the bearing parts made of synthetic resin are inferior in load deformation resistance and wear resistance compared to metal parts, so the use of the finished rolling bearing is limited to those for low load and low speed rotation. Will be.
For this reason, a synthetic resin molded body in which an inorganic filler having a particle diameter of 5 to 5000 nm is dispersed is used for a bearing component made of synthetic resin, for example, even when used in a corrosive environment. Corrosion-resistant rolling bearings that are unlikely to decrease are known (see Patent Document 1).
[0004]
[Patent Document 1]
JP 2000-283168 (paragraph [0013])
[0005]
[Problems to be solved by the invention]
However, a rolling bearing using a synthetic resin component blended with a conventional filler is likely to generate cracks starting from a portion subjected to repeated stress due to rolling friction. Wear is also likely to occur. Such a rolling bearing part is inferior in rolling fatigue characteristics as compared with a synthetic resin bearing part formed without blending a filler.
[0006]
The action mechanism in which stress due to rolling friction is generated in the bearing part is probably because a synthetic resin having a lower elastic modulus and lower rigidity than a metal part is generally elastically deformed. In other words, when the rolling element rolls on the rolling surface of the synthetic resin raceway and comes into frictional contact, the raceway ring in contact with the rolling element is elastically deformed to form a wavy undulation on the rolling surface and its periphery. It is considered that smooth rolling of the rolling elements is hindered by the undulations, and the function of the entire bearing is reduced.
[0007]
As a second cause, when relatively large particles or fibrous inorganic fillers are exposed on a part of the surface of the bearing component, the inorganic fillers corrode in contact with water, chemicals, etc. It is considered that the strength decreases to the inside of the bearing component along the filler to spread cracks, and eventually the surface layer peels off or local wear is likely to occur. In addition, when rolling on the filler thus exposed, there is a problem that the surface pressure is locally increased and more easily damaged, and there is a problem that sound is deteriorated during rolling. is there.
[0008]
The present invention has been made in order to cope with such problems, and provides a rolling bearing made of a synthetic resin which is less likely to cause a decrease in strength when used in a corrosive environment. More specifically, the present invention provides a corrosion-resistant rolling bearing that hardly causes cracks, surface layer peeling, and local wear in a portion of the rolling bearing that is repeatedly subjected to stress due to rolling friction. In particular, in rolling bearings used in corrosive liquids such as water and chemicals, and in corrosive and humid atmospheres containing a large amount of liquid vapor, the load resistance is increased and cracks, surface delamination or local It is to prevent the occurrence of typical wear.
[0009]
[Means for Solving the Problems]
The present invention relates to a rolling bearing in which a rolling element and its cage are interposed between a pair of race rings, wherein one or more bearing parts selected from the above-described race ring, rolling element and cage are composed mainly of a synthetic resin. And a molded article made of a resin composition containing carbon nanotubes.
Moreover, the compounding ratio of the carbon nanotubes compounded in the synthetic resin is 1 to 50% by weight with respect to the entire resin composition.
[0010]
In the present invention, at least one of bearing components that generate stress by receiving repeated rolling frictional force is formed of a resin composition containing carbon nanotubes. In this composition, fine carbon nanotubes and synthetic resin are entangled at the molecular level (nanometer unit), so the adhesion strength between the resin and carbon nanotubes is increased, the mechanical strength is high, and the elastic modulus of the parts Is high, that is, the amount of elastic deformation when an external force is applied is small.
Therefore, a rolling bearing made of a part formed of such a resin composition has a high load resistance and is less likely to generate a crack even when subjected to repeated rolling friction in a highly corrosive environment. Thus, it becomes a rolling bearing that hardly causes surface peeling or local wear.
In addition, even if the carbon nanotube is a relatively small amount of 1% by weight or a blending amount of 50% by weight, a rolling bearing using a part molded from the resin composition is subject to repeated stress due to rolling. The parts received were free from cracks, and a synthetic resin rolling bearing with high load resistance was obtained. This is presumably because the adhesion strength at the interface between the carbon nanotube and the synthetic resin was increased.
Furthermore, since the carbon nanotube is extremely small in size, a rolling bearing having excellent surface smoothness and excellent acoustic characteristics can be obtained. Moreover, since the resin composition which mix | blended the carbon nanotube also has electroconductivity, it can also be used as an electricity supply bearing.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
An example of a rolling bearing according to the present invention is shown in FIG. FIG. 1 is a sectional view of a single thrust ball bearing.
The rolling
In the present invention, at least one of the raceway constituted by the
[0012]
The carbon nanotubes that can be used in the present invention can be single-walled carbon nanotubes (SWNT) or multi-walled carbon nanotubes (MWNT) alone or in combination. The single-walled carbon nanotube (SWNT) preferably has a diameter of 1 to 200 nm, and the multi-walled carbon nanotube (MWNT) preferably has a diameter of 1 to 50 nm. Further, the length of the tube is not limited.
When the diameter of the carbon nanotube is outside the range of 1 to 200 nm, there is no micro-reinforcing effect on the synthetic resin, and the rolling fatigue characteristics of the obtained bearing parts are not so different from the conventional products. From such a tendency, the preferable diameter of the carbon nanotube is 100 nm or less. In addition, the surface of the single-walled or multi-walled carbon nanotube may be chemically modified to improve the affinity with a synthetic resin described later.
Single-walled and multi-walled carbon nanotubes can be obtained by a known method such as a method using arc discharge such as graphite, a thermal decomposition method using a catalyst, a laser evaporation method, a CVD method, or a method for removing silicon atoms from SiC. .
[0013]
The main component synthetic resin constituting the bearing component used in the present invention may be either a thermosetting resin or a thermoplastic resin, and specific examples are listed below. That is, phenol resin, epoxy resin, silicone resin, urethane resin, polytetrafluoroethylene resin, chlorotrifluoroethylene resin, tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, fluorine Vinylidene fluoride resin, ethylene-tetrafluoroethylene copolymer, polyethylene resin (may have any of low density, high density or ultra-molecular weight properties), water-crosslinked polyolefin resin, polyamide resin, aromatic polyamide resin, Polyacetal resin, polycarbonate resin, polystyrene resin, polyimide resin, polyetherimide resin, polyamideimide resin, polyphenylene oxide resin, polyallylsulfone resin, polycyanoaryl Ether resin, polyaryl ether ketone resin, polyphenylene sulfide resin, aromatic polyester resin, polyethylene terephthalate resin, polybutylene terephthalate resin, aliphatic polyketone resin, polyvinyl pyrrolidone resin, polyoxazoline resin, various thermoplastic elastomers, or the above synthetic resins Examples include polymers in which two or more selected resin materials are mixed (what is called a polymer blend or a polymer alloy).
[0014]
Among the above-mentioned synthetic resins, preferred are polyaryl ether ketone resins, polyamide resins, polyacetal resins, polyimide resins and the like.
[0015]
Carbon nanotubes are blended in the above-described synthetic resin in an amount of 1 to 50% by weight based on the entire resin composition. If the blending amount is less than 1% by weight, there is no reinforcing effect of the resin composition, and this does not improve the load resistance. On the other hand, if the amount exceeds 50% by weight, the resin composition may become brittle. Preferably it is 30 weight% or less.
[0016]
In the present invention, in order to mold the resin composition into a race, a rolling element or a cage, a resin composition in which predetermined carbon nanotubes are dispersed and blended is extruded, injection molded, compression molded, vacuum molded, blow molded, Known molding methods such as foam molding and cast molding can be employed. Since injection molding is an efficient molding method, it is suitable for the demand for lower cost bearing parts. After these moldings, it can be adjusted to a predetermined shape by machining such as turning or polishing.
[0017]
In addition, various additives that are generally applied to plastic materials can be added to the synthetic resin composition of the present invention in amounts that do not impair the effects of the present invention. Examples of such additives include mold release agents, flame retardants, antistatic agents, weather resistance improvers, antioxidants, colorants, and industrial lubricants.
[0018]
The synthetic resin composition in the present invention is temporarily formed into pellets, blocks, etc., then pulverized with a jet mill, a freeze pulverizer, etc., and the resulting powder is classified and sized as necessary, and this is separately provided. The bearing parts may be painted. As the coating method, fluid dip coating or electrostatic powder coating using powder as a coating material, or a method in which powder is dispersed or dissolved in a solvent or a liquid resin composition is spray-coated or dip-coated as it is may be adopted. it can.
[0019]
【Example】
Example 1
Using a polyether ether ketone resin (KHP-07 manufactured by Otsuka Chemical Co., Ltd.) containing 7% by weight of carbon nanotubes (multilayer), this material was molded into a ring shape under the conditions of heating and pressing at 380 ° C. and 80 MPa for 1 hour.
Next, this ring-shaped molded body of the base material was cut into a raceway ring (outer diameter 28 mm, inner diameter 14 mm,
Further, the raceway thus produced, a rolling element (ball) made of silicon nitride (Si 3 N 4 ) having a diameter of 5.56 mm (7/32 inch), and 10% by weight of glass fiber are added to reinforce. A thrust ball bearing (which does not use a lubricant such as grease) was assembled using a cage molded with nylon 66.
[0020]
Example 2
A thrust ball bearing identical to that of the example was assembled in the same manner as in Example 1 except that a polyether ether ketone resin (RMB9015-00 manufactured by Hyperion Co., Ltd.) containing 15% by weight of carbon nanotubes (multilayer) was used.
The following underwater thrust tests were performed on the obtained ball bearings of Example 1 and Example 2, and the results are shown in Table 1.
[0021]
<Underwater thrust test>
An underwater thrust tester is shown in FIG. The underwater thrust tester shown in FIG. 2 stores water in a cup-shaped housing and immerses the thrust bearing in water to perform a rotation test. The
[0022]
The test conditions were a bearing thrust load of
The evaluation after the test is performed by visually observing the rolling surface of the raceway with a smooth rolling surface. The table shows a circle (no damage), a triangle mark (slightly damaged, or No damage was observed but rotation was hindered.), X mark (defects such as peeling or wear were clearly recognized, or deformation was 100 μm or more),-mark (not tested) It was.
[0023]
Comparative Examples 1 to 6
The material used for each comparative example is shown below.
(1) Polyetheretherketone resin (PEEK) containing 30% by weight of carbon fiber
Victrex made: PEEK450CA30
(2) Polyoxymethylene resin (POM)
Polyplastics: Duracon M90-25
(3) Polyamide 6 resin (PA6)
Toray Industries, Inc .: Amilan CM1001
(4) Polyamide 66 resin (PA66)
Toray Industries, Inc .: Amilan CM3001
(5) Polyphenylene sulfide resin (PPS)
Topren made: T4AG
(6) Synthetic Mykana Kako Co., Ltd .: FM-20
(7) Glass fiber manufactured by Asahi Glass Fiber Co., Ltd .: CSO3MA497 (φ13 μm, 3 mm)
[0024]
Using the above materials, mixing was performed at the blending ratio shown in Table 1, Comparative Example 1 was heated and pressurized at 380 ° C. and 80 MPa for 1 hour, and Comparative Example 2 and Comparative Example 3 were 190 ° C. and 50 MPa for 0.2 hour. Comparative Example 4 is a condition of heating and pressurizing at 220 ° C. and 50 MPa for 0.2 hours, Comparative Example 5 is a condition of heating and pressurizing at 280 ° C. and 50 MPa for 0.2 hours, and Comparative Example 6 is 320 ° C. Each was injection-molded into a ring mold under the conditions of heating and pressing at 50 MPa for 0.5 hours.
This ring-shaped molded body was produced with a raceway (outer diameter 28 mm, inner diameter 14 mm,
A thrust ball bearing was assembled using the same parts as in Example 1 except that the obtained race was used. For this thrust ball bearing, the same underwater thrust test as in Example 1 was performed under the same conditions, and the results are also shown in Table 1.
[0025]
[Table 1]
[0026]
As is clear from the results in Table 1, in Comparative Example 2 containing no filler, the bearing ring was damaged under the condition that the thrust load was P max 20 kg / mm 2 , or the operation was hindered.
Further, in Comparative Example 1 or Comparative Examples 3 to 6 using a raceway ring made of a synthetic resin reinforced with carbon fiber, mica, or glass fiber, the raceway ring was peeled or worn under the condition that the thrust load was
On the other hand, in Examples 1 and 2 using a synthetic resin in which carbon nanotubes are uniformly dispersed by a predetermined amount, damages such as separation, deformation, and abrasion of the raceway surface even under a condition where the thrust load is P max 20 kg / mm 2 It was confirmed that the bearing is highly resistant to load even when repeatedly subjected to stress due to rolling friction in a highly corrosive environment, and has high load resistance.
[0027]
【The invention's effect】
In the present invention, as described above, since the bearing component is a rolling bearing made of a molded body made of a resin composition in which a synthetic resin is a main component and carbon nanotubes are dispersed, the resin composition is made of fine carbon nanotubes. The synthetic resin is entangled at the molecular level to become a bearing component with high mechanical strength. When subjected to external force, the amount of elastic deformation is small, the load resistance is high, and the stress caused by rolling friction repeatedly in a highly corrosive environment. When subjected to the above, each part is not easily cracked and becomes a rolling bearing which does not cause surface peeling or local wear.
[0028]
In addition, the rolling bearing exhibits the above-described advantages more reliably and sufficiently when the mixing ratio of the carbon nanotubes is 1 to 50% by weight.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a single thrust ball bearing.
FIG. 2 is a diagram showing an underwater thrust tester.
[Explanation of symbols]
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003106546A JP2004308877A (en) | 2003-04-10 | 2003-04-10 | Roller bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003106546A JP2004308877A (en) | 2003-04-10 | 2003-04-10 | Roller bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004308877A true JP2004308877A (en) | 2004-11-04 |
Family
ID=33468708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003106546A Pending JP2004308877A (en) | 2003-04-10 | 2003-04-10 | Roller bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004308877A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008022311A1 (en) | 2008-05-06 | 2009-11-12 | Schaeffler Kg | Cage for rolling elements of a bearing |
CN109139684A (en) * | 2017-06-15 | 2019-01-04 | Ntn株式会社 | Resin controlling push-force rolling bearing |
-
2003
- 2003-04-10 JP JP2003106546A patent/JP2004308877A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008022311A1 (en) | 2008-05-06 | 2009-11-12 | Schaeffler Kg | Cage for rolling elements of a bearing |
US8967879B2 (en) | 2008-05-06 | 2015-03-03 | Schaeffler Technologies AG & Co. KG | Cage for rolling bodies of a bearing |
CN109139684A (en) * | 2017-06-15 | 2019-01-04 | Ntn株式会社 | Resin controlling push-force rolling bearing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7670055B2 (en) | Sliding bearing | |
US7942581B2 (en) | Anti-friction layer for a bearing element | |
KR101835911B1 (en) | Composite slide bearing | |
JP5759239B2 (en) | Non-lubricated plain bearing with self-lubricating liner | |
JP5060838B2 (en) | Underwater rolling bearing | |
KR20110136709A (en) | Slide bearing component, slide bearing and method for manufacturing a slide bearing component | |
JP5358871B2 (en) | Cylinder roller bearing cage, cylindrical roller bearing | |
JP2003065341A (en) | Rolling bearing | |
JP4489512B2 (en) | Conductive high precision plain bearing | |
JP2004308877A (en) | Roller bearing | |
US20050175266A1 (en) | Electrically conductive self-lubricating bearing system and a method for implementing same | |
JP2000240666A (en) | Rolling bearing | |
JP4633381B2 (en) | Composition for sliding member and rolling bearing | |
JP2002021863A (en) | Rolling bearing | |
JP2006046373A (en) | Rolling bearing | |
JP6855974B2 (en) | Rolling bearings and their manufacturing methods | |
JP2006200733A (en) | Rolling bearing | |
Yoshida et al. | Effects of particulate and fibrous carbon filler combinations on the tribological behavior of a polyacetal composite under water lubrication | |
JP2002081448A (en) | Rolling bearing | |
JP2006009834A (en) | Sliding bearing | |
JP3761718B2 (en) | Rolling bearing | |
JP2006250262A (en) | Sliding bearing for precision sliding-component | |
JP2005201327A (en) | Rolling device | |
JP2000283168A (en) | Corrosion resistant rolling bearing | |
JP2003049847A (en) | Rolling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060331 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080624 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080822 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090406 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090415 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20090508 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100208 |