JP2004308825A - Vibration isolation device - Google Patents

Vibration isolation device Download PDF

Info

Publication number
JP2004308825A
JP2004308825A JP2003104805A JP2003104805A JP2004308825A JP 2004308825 A JP2004308825 A JP 2004308825A JP 2003104805 A JP2003104805 A JP 2003104805A JP 2003104805 A JP2003104805 A JP 2003104805A JP 2004308825 A JP2004308825 A JP 2004308825A
Authority
JP
Japan
Prior art keywords
vibration
rubber
load
vibration isolating
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003104805A
Other languages
Japanese (ja)
Other versions
JP4188126B2 (en
Inventor
Yukihiro Orimoto
幸弘 織本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003104805A priority Critical patent/JP4188126B2/en
Publication of JP2004308825A publication Critical patent/JP2004308825A/en
Application granted granted Critical
Publication of JP4188126B2 publication Critical patent/JP4188126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration isolation device capable of exercising high damping performance though it has a simple structure and lightweight. <P>SOLUTION: A compliance bush B mounted between a front edge of a trailing arm A of a suspension device and a car body is formed by connecting an outer collar 12 and an inner collar 13 to which the load is transmitted, by a rubber cushion, and a metallic ball 15 is press-fit inside a through hole 14d formed on the rubber cushion 14. When the rubber cushion 14 is deformed by the relative displacement of the outer collar 12 and the inner collar 13 by the load from a trailing arm A, the slipping is generated between the rubber cushion1 4 and the ball 15, and high damping performance can be exercised by the frictional force in accompany with the slipping. As this compliance bush B has a simple structure, it can be manufactured at a low cost, and further as it is compact and lightweight, a degree of freedom in its layout can be increased. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、荷重が伝達される第1部材および第2部材を防振ゴムで接続した防振装置に関する。
【0002】
【従来の技術】
エンジンマウント、ボディマウント、デフマウント、サスペンション用のブッシュ等に用いられる液封型の防振装置において、外筒金具および内筒金具をゴム弾性体で接続し、ゴム弾性体の内部に形成した受圧室および平衡室をオリフィス通路を介して連通させ、振動入力に伴うゴム弾性体の変形に応じて受圧室および平衡室に封入した非圧縮性流体がオリフィス通路を通過する際の共振作用で、前記振動入力に対する防振機能を発揮させるものが、下記特許文献により公知である。
【0003】
【特許文献】
特開2000−120761号公報
【0004】
【発明が解決しようとする課題】
ところで上記従来の防振装置は、ゴム弾性体の内部に受圧室、平衡室、オリフィス通路等を形成する必要があるため、その構造が複雑化して製造コストが増加するだけでなく、寸法や重量が増加してレイアウトの自由度が損なわれる問題があった。
【0005】
本発明は前述の事情に鑑みてなされたもので、構造が簡単で小型軽量でありながら、高い減衰性能を発揮し得る防振装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載された発明によれば、荷重が伝達される第1部材および第2部材を防振ゴムで接続した防振装置において、防振ゴムの内部にゴム以外の材質の摩擦部材を非接着の状態で埋め込み、荷重による防振ゴムの変形により、摩擦力に抗して防振ゴムおよび摩擦部材間に滑りを発生させることを特徴とする防振装置が提案される。
【0007】
上記構成によれば、第1部材および第2部材を接続する防振ゴムの内部にゴム以外の材質の摩擦部材を非接着の状態で埋め込んだので、荷重による第1部材および第2部材の相対変位で防振ゴムが変形すると、防振ゴムおよび摩擦部材間に滑りが発生し、その滑りに伴う摩擦力で高い減衰性能を発揮させることができる。しかも防振ゴムの内部に摩擦部材を埋め込むだけの簡単な構造であるために低コストで製造可能であり、しかも小型軽量であるためにレイアウトの自由度が高められる。
【0008】
また請求項2に記載された発明によれば、荷重が伝達される第1部材および第2部材を防振ゴムで接続した防振装置において、防振ゴムに切れ目を設けることで相対向する摩擦面を形成し、荷重による防振ゴムの変形により、摩擦力に抗して前記摩擦面間に滑りを発生させることを特徴とする防振装置が提案される。
【0009】
上記構成によれば、第1部材および第2部材を接続する防振ゴムに切れ目を設けることで相対向する摩擦面を形成したので、荷重による第1部材および第2部材の相対変位で防振ゴムが変形すると、相対向する摩擦面間に滑りが発生し、その滑りに伴う摩擦力で高い減衰性能を発揮させることができる。しかも防振ゴムに切れ目を設けるだけの簡単な構造であるために、特別の部材が不要になって更に低コストで製造可能であり、しかも小型軽量であるためにレイアウトの自由度が高められる。
【0010】
尚、実施例のアウターカラー12は本発明の第1部材に対応し、実施例のインナーカラー13は本発明の第2部材に対応し、実施例のボール15,17および波板16は本発明の摩擦部材に対応する。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面に示した本発明の実施例に基づいて説明する。
【0012】
図1〜図3は本発明の第1実施例を示すもので、図1はコンプライアンスブッシュの側面図、図2は図1の2−2線断面図、図3は図1の3−3線断面図である。
【0013】
サスペンション装置のトレーリングアームAの先端部を車体に弾性支持するとともに、トレーリングアームAの車体前後方向の移動を許容するコンプライアンスブッシュBは、トレーリングアームAの先端部に形成された円形の取付孔11に圧入により固定されるアウターカラー12と、ボルトが貫通するボルト孔13aを有して車体側の取付ブラケットに固定されるインナーカラー13と、アウターカラー12の内周面およびインナーカラー13の外周面間に焼き付けにより固定された防振ゴム14とを備える。矢印a−bで示す前後方向の荷重が加わってアウターカラー12およびインナーカラー13が相対変位したとき、防振ゴム14は弾性変形して衝撃を吸収する。
【0014】
防振ゴム14は、その両側面に貫通する第1空間部14a、第2空間部14bおよび2個の第3空間部14c,14cを備えており、第2空間部14bは荷重が入力される前後方向に対して直交する当接面14dで二つに分離される。コンプライアンスブッシュBの軸線Lの上下二つの位置にそれぞれ貫通孔14e,14eが形成されており、貫通孔14e,14eの中央部に形成した大径部14f,14fに金属製のボール15,15が圧入される。ボール15,15は防振ゴム14の弾性により大径部14f,14fに保持され、貫通孔14e,14eから脱落することはない。
【0015】
しかして、車両の走行に伴ってトレーリングアームAからコンプライアンスブッシュBのアウターカラー11に前後方向の荷重が加わると、防振ゴム14は第1空間部14a、第2空間部14bおよび第3空間部14c,14cの作用で容易に弾性変形してアウターカラー12およびインナーカラー13の前後方向の相対変位を可能にし、車輪からトレーリングアームAを経て車体に伝達される衝撃を緩衝することができる。車輪が障害物に乗り上げたような場合に、トレーリングアームAからコンプライアンスブッシュBに大きな入力されると、防振ゴム14の第2空間部14bを二つに分離する当接面14dが密着し、防振ゴム14の過剰な変形を抑制する。
【0016】
このようにトレーリングアームAからの荷重の入力によって防振ゴム14が変形すると、防振ゴム14に埋め込まれた2個のボール15,15と貫通孔14e,14eとの接触部が滑って摩擦力が作用するため、その摩擦力で防振ゴム14の振動を効果的に減衰させることができる。
【0017】
以上のように、本実施例によれば、コンプライアンスブッシュBの防振ゴム14に形成した貫通孔14e,14eにボール15,15を圧入するだけの簡単な構造で効果的な減衰性能を得ることができ、しかも従来の液封型のものに比べて低コストで製造可能であるばかりか、小型軽量であるためにレイアウトの自由度も増加する。
【0018】
次に、図4に基づいて上記第1実施例の変形例を説明する。
【0019】
第1実施例では防振ゴム14に形成した貫通孔14e,14eにボール15,15を圧入しているが、本変形例は前記貫通孔14e,14eを、防振ゴム14の一方の側面だけに開口する盲孔14g,14gに代えたものである。この変形例によっても、上記第1実施例と同様の作用効果を達成することができる。
【0020】
次に、図5および図6に基づいて本発明の第2実施例を説明する。
【0021】
第2実施例は、第1実施例の2個のボール15,15に代えて2枚の金属製の波板16,16を採用したものであり、それらの波板16,16は軸線Lの上下の防振ゴム14に前後方向に埋め込まれる。波板16,16は防振ゴム14を金型で加硫成形するときに内部に埋め込まれるが、その際に接着剤を使用しないことで、波板16,16と防振ゴム14とは相互に滑れるように接触している。
【0022】
従って、トレーリングアームAからの荷重の入力によって防振ゴム14が変形すると、防振ゴム14に埋め込まれた2枚の波板16,16と防振ゴム14との接触部が滑って摩擦力が作用するため、その摩擦力で防振ゴム14の振動を効果的に減衰させることができる。この第2実施例によっても、上記第1実施例と同様の作用効果を達成することができる。
【0023】
次に、図7に基づいて上記第2実施例の変形例を説明する。
【0024】
第2実施例では防振ゴム14に波板16,16を埋め込んでしているが、本変形例は前記波板16,16に代えてボール17,17を防振ゴム14に埋め込み、防振ゴム14の変形時にボール17,17との接触部に滑りによる摩擦力を発生させるものである。この変形例によっても、前記第2実施例と同様の作用効果を達成することができる。
【0025】
次に、図8に基づいて本発明の第3実施例を説明する。
【0026】
第3実施例は、軸線Lの上方(下方あるいは上下両方でも良い)の防振ゴム14に「く」字状の切れ目14hを形成したものであり、その切れ目14hの2か所に相互に接触する摩擦面14i,14iが形成される。
【0027】
従って、トレーリングアームAからの荷重の入力によって防振ゴム14が変形すると、防振ゴム14の切れ目14hの摩擦面14i,14iが滑って摩擦力が作用するため、その摩擦力で防振ゴム14の振動を効果的に減衰させることができる。この第3実施例によっても、上記第1実施例と同様の作用効果を達成することができ、しかも他部材を埋め込む必要がないので部品点数が更に削減されて一層のコストダウンが達成される。
【0028】
以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
【0029】
例えば、実施例ではサスペンション用のコンプライアンスブッシュBを例示したが、本発明はエンジンマウント、ボディマウント、デフマウント等の任意の用途に適用可能である。
【0030】
また本発明の摩擦部材はボール15,17や波板16に限定されず、その形状、材質、取付位置、数等は適宜変更可能である。
【0031】
また切れ目14hの形状、形成位置、数等も適宜変更可能である。
【0032】
また本発明の第1、第2部材は同心に配置された環状部材である必要はなく、相互に対向するように配置された板状部材であっても良い。
【0033】
【発明の効果】
以上のように請求項1に記載された発明によれば、第1部材および第2部材を接続する防振ゴムの内部にゴム以外の材質の摩擦部材を非接着の状態で埋め込んだので、荷重による第1部材および第2部材の相対変位で防振ゴムが変形すると、防振ゴムおよび摩擦部材間に滑りが発生し、その滑りに伴う摩擦力で高い減衰性能を発揮させることができる。しかも防振ゴムの内部に摩擦部材を埋め込むだけの簡単な構造であるために低コストで製造可能であり、しかも小型軽量であるためにレイアウトの自由度が高められる。
【0034】
また請求項2に記載された発明によれば、第1部材および第2部材を接続する防振ゴムに切れ目を設けることで相対向する摩擦面を形成したので、荷重による第1部材および第2部材の相対変位で防振ゴムが変形すると、相対向する摩擦面間に滑りが発生し、その滑りに伴う摩擦力で高い減衰性能を発揮させることができる。しかも防振ゴムに切れ目を設けるだけの簡単な構造であるために、特別の部材が不要になって更に低コストで製造可能であり、しかも小型軽量であるためにレイアウトの自由度が高められる。
【図面の簡単な説明】
【図1】第1実施例に係るコンプライアンスブッシュの側面図
【図2】図1の2−2線断面図
【図3】図1の3−3線断面図
【図4】第1実施例に変形例に係る、前記図3に対応する図
【図5】第2実施例に係るコンプライアンスブッシュの側面図
【図6】図5の6−6線断面図
【図7】第2実施例の変形例に係る、前記図6に対応する図
【図8】第3実施例に係る、前記図3に対応する図
【符号の説明】
12 アウターカラー(第1部材)
13 インナーカラー(第2部材)
14 防振ゴム
14h 切れ目
14i 摩擦面
15 ボール(摩擦部材)
16 波板ル(摩擦部材)
17 ボール(摩擦部材)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an anti-vibration device in which a first member and a second member to which a load is transmitted are connected by an anti-vibration rubber.
[0002]
[Prior art]
In a liquid ring type vibration damping device used for an engine mount, a body mount, a differential mount, a bush for a suspension, etc., an outer cylinder and an inner cylinder are connected by a rubber elastic body, and a pressure receiving formed inside the rubber elastic body. The chamber and the equilibrium chamber communicate with each other via the orifice passage, and the incompressible fluid sealed in the pressure receiving chamber and the equilibrium chamber in response to the deformation of the rubber elastic body accompanying the vibration input passes through the orifice passage by a resonance action. A device that exerts a vibration-proof function against a vibration input is known from the following patent documents.
[0003]
[Patent Document]
Japanese Patent Application Laid-Open No. 2000-120762
[Problems to be solved by the invention]
Incidentally, the above conventional vibration isolator requires the formation of a pressure receiving chamber, an equilibrium chamber, an orifice passage, and the like inside the rubber elastic body, which not only complicates the structure and increases the manufacturing cost, but also increases the size and weight. And the degree of freedom of layout is impaired.
[0005]
The present invention has been made in view of the above circumstances, and has as its object to provide a vibration damping device that can exhibit high damping performance while having a simple structure, small size, and light weight.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, in a vibration isolator in which a first member and a second member to which a load is transmitted are connected by a vibration isolator, A vibration damping device characterized in that a friction member made of a material other than rubber is embedded in a non-adhered state, and slippage occurs between the vibration damping rubber and the friction member against the frictional force due to deformation of the vibration damping rubber due to a load. Is proposed.
[0007]
According to the above configuration, the friction member made of a material other than rubber is embedded in a non-adhered state inside the vibration isolating rubber connecting the first member and the second member. When the vibration isolating rubber is deformed by the displacement, slippage occurs between the vibration isolating rubber and the friction member, and a high damping performance can be exhibited by the frictional force associated with the sliding. In addition, since it has a simple structure in which a friction member is simply embedded in the vibration isolating rubber, it can be manufactured at low cost, and since it is small and lightweight, the degree of freedom in layout is enhanced.
[0008]
Further, according to the invention described in claim 2, in the vibration isolator in which the first member and the second member to which the load is transmitted are connected by the vibration isolating rubber, opposing friction is provided by providing a cut in the vibration isolating rubber. A vibration isolator characterized by forming a surface and causing slippage between the friction surfaces against frictional force by deformation of the vibration isolating rubber due to a load is proposed.
[0009]
According to the above configuration, the opposing friction surfaces are formed by providing cuts in the vibration isolating rubber connecting the first member and the second member, so that the vibration isolating is performed by the relative displacement of the first member and the second member due to the load. When the rubber is deformed, slippage occurs between the friction surfaces facing each other, and high damping performance can be exhibited by the frictional force associated with the slippage. In addition, since the vibration damping rubber has a simple structure in which only a cut is formed, no special member is required, and the vibration can be manufactured at a lower cost. In addition, since it is small and lightweight, the degree of freedom in layout is increased.
[0010]
The outer collar 12 of the embodiment corresponds to the first member of the present invention, the inner collar 13 of the embodiment corresponds to the second member of the present invention, and the balls 15, 17 and corrugated plate 16 of the embodiment correspond to the present invention. Corresponding to the friction member.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples of the present invention shown in the accompanying drawings.
[0012]
1 to 3 show a first embodiment of the present invention. FIG. 1 is a side view of a compliance bush, FIG. 2 is a sectional view taken along line 2-2 of FIG. 1, and FIG. 3 is line 3-3 of FIG. It is sectional drawing.
[0013]
A compliance bush B, which elastically supports the tip of the trailing arm A of the suspension device on the vehicle body and allows the trailing arm A to move in the vehicle longitudinal direction, has a circular mounting formed at the tip of the trailing arm A. An outer collar 12 fixed to the hole 11 by press-fitting, an inner collar 13 having a bolt hole 13a through which a bolt passes and fixed to a mounting bracket on the vehicle body side, and an inner peripheral surface of the outer collar 12 and the inner collar 13. And a vibration-proof rubber 14 fixed between the outer peripheral surfaces by baking. When the outer collar 12 and the inner collar 13 are displaced relative to each other by applying a load in the front-rear direction indicated by arrows ab, the vibration isolating rubber 14 elastically deforms to absorb the impact.
[0014]
The anti-vibration rubber 14 includes a first space portion 14a, a second space portion 14b, and two third space portions 14c, 14c penetrating on both side surfaces thereof, and a load is input to the second space portion 14b. It is separated into two by a contact surface 14d orthogonal to the front-rear direction. Through holes 14e, 14e are formed at two positions above and below the axis L of the compliance bush B, and metal balls 15, 15 are formed in large-diameter portions 14f, 14f formed at the center of the through holes 14e, 14e. Press-fit. The balls 15, 15 are held by the large-diameter portions 14f, 14f by the elasticity of the vibration-proof rubber 14, and do not fall out of the through holes 14e, 14e.
[0015]
When a load in the front-rear direction is applied to the outer collar 11 of the compliance bush B from the trailing arm A as the vehicle travels, the vibration isolating rubber 14 is moved to the first space 14a, the second space 14b, and the third space. Due to the action of the portions 14c, 14c, the outer collar 12 and the inner collar 13 can be easily elastically deformed to enable relative displacement in the front-rear direction, and a shock transmitted from the wheels to the vehicle body via the trailing arm A can be buffered. . When a large input is made from the trailing arm A to the compliance bush B when the wheel rides on an obstacle, the contact surface 14d for separating the second space portion 14b of the vibration-proof rubber 14 into two parts comes into close contact. In addition, excessive deformation of the anti-vibration rubber 14 is suppressed.
[0016]
When the vibration isolating rubber 14 is deformed by the input of the load from the trailing arm A, the contact portions between the two balls 15, 15 embedded in the rubber isolating rubber 14 and the through-holes 14e, 14e slip and friction occurs. Since the force acts, the vibration of the vibration isolating rubber 14 can be effectively attenuated by the frictional force.
[0017]
As described above, according to this embodiment, it is possible to obtain effective damping performance with a simple structure in which the balls 15, 15 are simply pressed into the through holes 14e, 14e formed in the vibration isolating rubber 14 of the compliance bush B. In addition to being able to be manufactured at a lower cost than the conventional liquid-sealing type, the degree of freedom of layout is increased due to its small size and light weight.
[0018]
Next, a modification of the first embodiment will be described with reference to FIG.
[0019]
In the first embodiment, the balls 15, 15 are press-fitted into the through holes 14e, 14e formed in the anti-vibration rubber 14, but in the present modification, the through holes 14e, 14e are provided only on one side of the anti-vibration rubber 14. Are replaced with blind holes 14g, 14g that open to the side. According to this modification, the same operation and effect as those of the first embodiment can be achieved.
[0020]
Next, a second embodiment of the present invention will be described with reference to FIGS.
[0021]
In the second embodiment, two metal corrugated plates 16, 16 are employed in place of the two balls 15, 15 of the first embodiment. It is embedded in the upper and lower vibration isolating rubbers 14 in the front-back direction. The corrugated plates 16 and 16 are embedded when vulcanizing the anti-vibration rubber 14 with a mold, but the adhesive is not used at that time, so that the corrugated plates 16 and 16 and the anti-vibration rubber 14 are It is in sliding contact.
[0022]
Therefore, when the vibration isolating rubber 14 is deformed by the input of the load from the trailing arm A, the contact portions between the two corrugated plates 16, 16 embedded in the rubber isolating rubber 14 and the vibration isolating rubber 14 slide, and the frictional force is increased. , The vibration of the vibration isolating rubber 14 can be effectively attenuated by the frictional force. According to the second embodiment, the same operation and effect as those of the first embodiment can be achieved.
[0023]
Next, a modification of the second embodiment will be described with reference to FIG.
[0024]
In the second embodiment, the corrugated plates 16 and 16 are embedded in the anti-vibration rubber 14, but in this modification, the balls 17 and 17 are embedded in the anti-vibration rubber 14 instead of the corrugated plates 16 and 16, and When the rubber 14 is deformed, a frictional force due to sliding is generated at a contact portion with the balls 17, 17. According to this modification, the same operation and effect as those of the second embodiment can be achieved.
[0025]
Next, a third embodiment of the present invention will be described with reference to FIG.
[0026]
In the third embodiment, a "U" -shaped cut 14h is formed in the vibration isolating rubber 14 above (or below or both above and below the axis L), and two cuts 14h are contacted with each other. Friction surfaces 14i, 14i are formed.
[0027]
Therefore, when the vibration isolating rubber 14 is deformed by the input of the load from the trailing arm A, the friction surfaces 14i, 14i of the cuts 14h of the vibration isolating rubber 14 slide and apply a frictional force. 14 can be effectively attenuated. According to the third embodiment, the same operation and effect as those of the first embodiment can be achieved. Further, since there is no need to embed other members, the number of parts is further reduced, and the cost is further reduced.
[0028]
The embodiments of the present invention have been described above. However, various design changes can be made in the present invention without departing from the gist thereof.
[0029]
For example, in the embodiment, the compliance bush B for suspension is illustrated, but the present invention is applicable to any use such as an engine mount, a body mount, and a differential mount.
[0030]
Further, the friction member of the present invention is not limited to the balls 15, 17 and the corrugated plate 16, and its shape, material, mounting position, number, and the like can be appropriately changed.
[0031]
Also, the shape, formation position, number, and the like of the cuts 14h can be appropriately changed.
[0032]
The first and second members of the present invention need not be annular members arranged concentrically, but may be plate-like members arranged so as to face each other.
[0033]
【The invention's effect】
As described above, according to the first aspect of the invention, since the friction member made of a material other than rubber is embedded in a non-adhered state inside the vibration isolating rubber connecting the first member and the second member, the load is reduced. When the anti-vibration rubber is deformed due to the relative displacement of the first member and the second member, slippage occurs between the anti-vibration rubber and the friction member, and high damping performance can be exhibited by the frictional force associated with the slip. In addition, since it has a simple structure in which a friction member is simply embedded in the vibration isolating rubber, it can be manufactured at low cost, and since it is small and lightweight, the degree of freedom in layout is enhanced.
[0034]
According to the second aspect of the present invention, the opposing friction surfaces are formed by providing cuts in the vibration isolating rubber connecting the first member and the second member. When the vibration isolating rubber is deformed by the relative displacement of the members, slippage occurs between the friction surfaces facing each other, and high damping performance can be exhibited by the frictional force associated with the slippage. In addition, since the vibration damping rubber has a simple structure in which only a cut is formed, no special member is required, and the vibration can be manufactured at a lower cost. In addition, since it is small and lightweight, the degree of freedom in layout is increased.
[Brief description of the drawings]
FIG. 1 is a side view of a compliance bush according to a first embodiment. FIG. 2 is a cross-sectional view taken along line 2-2 of FIG. 1. FIG. 3 is a cross-sectional view taken along line 3-3 of FIG. FIG. 5 is a view corresponding to FIG. 3 according to a modified example. FIG. 5 is a side view of a compliance bush according to a second embodiment. FIG. 6 is a cross-sectional view taken along the line 6-6 in FIG. FIG. 8 corresponding to FIG. 6 according to an example FIG. 8 corresponding to FIG. 3 according to a third embodiment
12 outer collar (first member)
13 Inner collar (second member)
14 Vibration-proof rubber 14h Cut 14i Friction surface 15 Ball (friction member)
16 Corrugated sheet (friction member)
17 Ball (friction member)

Claims (2)

荷重が伝達される第1部材(12)および第2部材(13)を防振ゴム(14)で接続した防振装置において、
防振ゴム(14)の内部にゴム以外の材質の摩擦部材(15,16,17)を非接着の状態で埋め込み、荷重による防振ゴム(14)の変形により、摩擦力に抗して防振ゴム(14)および摩擦部材(15,16,17)間に滑りを発生させることを特徴とする防振装置。
In a vibration isolator in which a first member (12) and a second member (13) to which a load is transmitted are connected by a vibration isolating rubber (14),
Friction members (15, 16, 17) made of a material other than rubber are embedded in the anti-vibration rubber (14) in a non-adhered state, and the anti-friction force is prevented by deformation of the anti-vibration rubber (14) due to a load. An anti-vibration device characterized by generating a slip between the vibration rubber (14) and the friction members (15, 16, 17).
荷重が伝達される第1部材(12)および第2部材(13)を防振ゴム(14)で接続した防振装置において、
防振ゴム(14)に切れ目(14h)を設けることで相対向する摩擦面(14i)を形成し、荷重による防振ゴム(14)の変形により、摩擦力に抗して前記摩擦面(14i)間に滑りを発生させることを特徴とする防振装置。
In a vibration isolator in which a first member (12) and a second member (13) to which a load is transmitted are connected by a vibration isolating rubber (14),
Opposing friction surfaces (14i) are formed by providing cuts (14h) in the vibration isolating rubber (14), and the friction surfaces (14i) are opposed to frictional force by deformation of the vibration isolating rubber (14) due to a load. (1) An anti-vibration device characterized in that slippage occurs between them.
JP2003104805A 2003-04-09 2003-04-09 Vehicle suspension system Expired - Lifetime JP4188126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003104805A JP4188126B2 (en) 2003-04-09 2003-04-09 Vehicle suspension system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003104805A JP4188126B2 (en) 2003-04-09 2003-04-09 Vehicle suspension system

Publications (2)

Publication Number Publication Date
JP2004308825A true JP2004308825A (en) 2004-11-04
JP4188126B2 JP4188126B2 (en) 2008-11-26

Family

ID=33467490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104805A Expired - Lifetime JP4188126B2 (en) 2003-04-09 2003-04-09 Vehicle suspension system

Country Status (1)

Country Link
JP (1) JP4188126B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105041934A (en) * 2015-07-20 2015-11-11 浙江工贸职业技术学院 Lifting ring structure used for shock absorber
KR101878040B1 (en) * 2016-06-29 2018-07-16 현대자동차주식회사 Mounting bush and manufacturing method thereof
DE102017120436A1 (en) * 2017-09-05 2019-03-07 Boge Elastmetall Gmbh Rubber bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105041934A (en) * 2015-07-20 2015-11-11 浙江工贸职业技术学院 Lifting ring structure used for shock absorber
KR101878040B1 (en) * 2016-06-29 2018-07-16 현대자동차주식회사 Mounting bush and manufacturing method thereof
DE102017120436A1 (en) * 2017-09-05 2019-03-07 Boge Elastmetall Gmbh Rubber bearing

Also Published As

Publication number Publication date
JP4188126B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
JP5759328B2 (en) Vibration isolator
JP6068215B2 (en) Vibration isolator
CN109424680B (en) Vibration-proof structure
WO2019187368A1 (en) Cylindrical vibration control device
JP2007100957A (en) Elastic bearing with hydraulic damper
JP2004308825A (en) Vibration isolation device
JP2009227200A (en) Damper mount and damper mount control device of suspension for vehicle
JP2017101737A (en) Vibration controller
JP2001280386A (en) Cylindrical mount
JP2001248674A (en) Spring seat for shock absorber
WO2006077622A1 (en) Vibration damper
JP2009216136A (en) Vehicle member mount
JP3733306B2 (en) Cylindrical vibration isolator
JP2018100727A (en) Vibration isolation device
JP3893979B2 (en) Cylindrical vibration isolator
JPH09280314A (en) Vibration isolating device
JP6009845B2 (en) Anti-vibration bushing manufacturing method
JP2012127441A (en) Vibration-proof bush and torque rod comprising the same
JPH06109050A (en) Engine mount
KR20080025248A (en) Bush for vehicle
JPH04302725A (en) Cylindrical vibration isolation device
KR100460929B1 (en) A mounting device of transmission in vehicles
JP2000230605A (en) Supporting equipment for vehicular power unit
JPH0324915Y2 (en)
JP2009275746A (en) Torque rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080411

A131 Notification of reasons for refusal

Effective date: 20080416

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080910

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4