JP2004308690A - Linear motion device - Google Patents

Linear motion device Download PDF

Info

Publication number
JP2004308690A
JP2004308690A JP2003099444A JP2003099444A JP2004308690A JP 2004308690 A JP2004308690 A JP 2004308690A JP 2003099444 A JP2003099444 A JP 2003099444A JP 2003099444 A JP2003099444 A JP 2003099444A JP 2004308690 A JP2004308690 A JP 2004308690A
Authority
JP
Japan
Prior art keywords
linear motion
operating body
screw shaft
motor
motion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003099444A
Other languages
Japanese (ja)
Other versions
JP4247570B2 (en
JP2004308690A5 (en
Inventor
Shuji Sato
修治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pulse Motor Co Ltd
Original Assignee
Nippon Pulse Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pulse Motor Co Ltd filed Critical Nippon Pulse Motor Co Ltd
Priority to JP2003099444A priority Critical patent/JP4247570B2/en
Publication of JP2004308690A publication Critical patent/JP2004308690A/en
Publication of JP2004308690A5 publication Critical patent/JP2004308690A5/ja
Application granted granted Critical
Publication of JP4247570B2 publication Critical patent/JP4247570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To allow an operating element 3 to be pushed and pulled independent of a guide tolerance on the side of the operating element 3, solve the nonconformity of a side load being applied on a screw shaft 401 and a rotary nut due to a pushing and pulling load, and solve the problem of drop of thrust due to tight screw engagement and malfunction when driving the operating element 3 back and forth with the screw shaft 401 of a linear motor 4. <P>SOLUTION: A fitting tolerance of a guide 203 vertically guiding the operating element 3 is set to be higher than a shaft center assembling tolerance of the screw shaft 401 of the linear motor 4. A tip part of the screw shaft 401 is connected to the operating element 3 with a loosely fixing means 5 absorbing the center deviation or rotational run-out of the screw shaft due to the shaft center assembling tolerance of the linear motor 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高精度に位置決めガイドされる作動体を、直動モータを用いて押し引き動作させる直動装置に関するものである。
【0002】
【従来の技術】
通常、検体の分析プロセス等においては、試薬の分注、容器の移動、容器内検体の反応、撹拌等に際し、精度の高い位置決めを行う必要があり、例えば、試薬等の液体を複数の容器に分配状に注入する分注機、試験管内の検体を撹拌棒の挿入により撹拌する攪拌機、各種センサーを近接停止して容器内検体の分析や、反応促進する分析機などが知られている。これらに用いられる直進(進退)動作は、一般的に、位置決め動作させる作動体を、ボールガイドに(1〜5)/100mmの精度の嵌め合い公差をもって一対のガイド軸に案内させ、軽快かつ精度良く進退移動させる構造ものが採用され、対象物に対して近接停止させるだけでなく、その移動過程においても位置決め精度が要求される場合もある。
【0003】
しかしながら、これらの位置決め駆動機構は、駆動源として出力軸が回転する回転型モータを用い、送りネジの一端をカップリングを介してモータ軸と連結し、中間を連結ナット部材を介して作動体に螺合させ、他端を基体に回転可能に軸支した構造のものであるため、駆動機構の部品点数や構造が複雑になり、コスト高の要因となる不都合がある。
【0004】
ところで、この様な複雑な機構を不要とし、安価なものとするために、例えば、特開平8−39639号公報に開示された如く、直動モータを動力源とした成形装置の型締装置への採用を試みたものが知られている。
直動モータは、出力軸にネジ軸を用い、該ネジ軸を回転ナット(ロータ)に螺合して非回転の直進運動に変換した構成となっているため、その製作において、構成部品の精度上の問題等に起因して、組立時にネジ軸の軸芯が芯ズレて傾むくなどの組付け精度に限界があり、また、ネジ軸とナットは、駆動時の熱膨張を勘案した螺合(歯合)公差をもって組み付けられており、特にナットに樹脂製のものが用いられる場合には、ネジ軸との膨張係数が異なるため、係る公差をも勘案して製作しなければならないなど、これら軸芯組付け公差に対する構造上の問題を抱えており、その利用範囲が限られたものとなっていた。
【0005】
そのため、前記型締装置のように、作動体(可動盤)を4つのガイド軸に沿って案内させ最終的に基体(固定盤)に押しつけて送り締め停止するように押し引き駆動したものにおいては、作動体を、その移動過程を含めて、直動モータの軸芯組付け公差を上回る高精度の嵌め合い公差でガイドする必要がないため、モータのネジ軸をガイド軸間の中心位置にセットし、かつ、モータ側の公差と作動体側のガイド公差を略同等かつ略無負荷に設定し、さらに、モータの回転ナットに高価なボールネジ構造を採用するなどの所定の要件を満たせば、押し引き駆動することは可能であるが、前記軸芯ズレや螺合ブレなどの問題に起因して、ネジ軸とナットとの間にサイドロードがかかり、耐久性を損なうという問題があり、結局、回転型モータを用いた駆動機構よりもコスト高となる要因も加わって、実質的に採用されるものでなかった。
また、上述した高精度の移動と位置決めが要求される装置においては、作動体が直動モータの組付け公差を上回る公差設定でガイドされるため、作動体(または基体)にネジ軸を連結して押し引き駆動させるようにおいては、前記軸芯ズレや螺合ブレの問題に起因して、ネジ軸とナットとの間にサイドロードがかかり、螺合がきつくなって推力が低下し、作動不良を招来するなど実質的に使用することが困難であった。
【0006】
【特許文献1】
特開平8−39639号公報
【0007】
【発明が解決しようとする課題】
本発明は、上記の如き問題点を一掃すべく創案されたものであって、直動モータのネジ軸によって作動体を進退駆動するものでありながら、直動モータが軸芯の芯ズレや螺合ブレ等その製作上の問題を有していても、作動体側のガイド公差に依存することなく作動体を押し引き動作することができ、正逆駆動に伴う押引負荷によりネジ軸と回転ナットにサイドロードがかかる不具合を解消し、螺合がきつくなって推力の低下や動作不良を生じることが無くなり、直動モータの耐久性を向上することができ、その結果、対象物に対して近接停止させるだけでなく、その移動過程においても位置決め精度が要求され、回転型モータを使用しなければならないような分注機や分析機等の直動装置として用いることができ、その利用範囲を拡大することができる直動装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するために本発明が採用した技術手段は、基体に設けられたガイドに、作動体を所定の嵌め合い公差をもってスライド可能に嵌挿せしめて進退移動自在に構成すると共に、該作動体を直動モータによって駆動するに、前記ガイドとの嵌め合い公差は、前記直動モータのネジ軸の軸芯組付け公差を上回る精度をもって構成する一方、前記直動モータを前記基体または作動体の何れか一方に配設し、かつ、前記ネジ軸の一端を、前記直動モータが配設された側とは異なる基体または作動体に対し、直動モータの前記軸芯組付け公差によるネジ軸の芯ズレ若しくは回転ブレを吸収する遊着手段をもって連結せしめ、前記作動体の直進動作を行うべく構成したことを特徴とするものである。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を好適な実施の形態として例示する直動装置を図面に基づいて詳細に説明する。図1は、直動装置の要部正面図、図2は要部側面図、図3はモータネジ軸の連結部詳細図、図4はモータネジ軸の連結説明図である。図に示すように、直動装置1は、上側基部201と下側基部202とを有する側面視略コ字状に形成された基体2と、該基体2の左右に所定間隔を存して、それぞれ上側基部201と下側基部202に架設(立設)された軸状のガイド203、203と、該ガイド203に所定の嵌め合い公差をもってスライド(昇降)可能に装着される作動体3とによって進退(昇降)移動自在に構成すると共に、前記上側基部201に配設される直動ステッピングモータ4(以下単に直動モータという)のネジ軸401の先端部を前記作動体3に遊着手段5をもって連結することで昇降(進退)駆動可能に構成されている。
【0010】
前記作動体3のガイド203との嵌挿構造は、作動体3に形成された案内孔301、301内にボールガイド302を設けてガイド203に嵌挿する、所謂ボールガイド構造によって、約2/100mmの嵌め合い公差をもって高精度に昇降ガイドされるようになっている。
なお、基体2と作動体3の構成態様、および直動モータ4の配設態様はこれに限定されず、例えば、前記凹状の基体2を横面視凸状の基体とし、その上下に、それぞれスライド自在にガイド203を嵌装して基体の両側より突出せしめ、ガイド203の左右両端部に作動体を組として配設し、一方の作動体側に直動モータを装着せしめ、他方の作動体を、位置決め等の所定の作業動作すべく構成したものであっても良い。この場合の他方の作動体は、例えば、作動体に各種センサーを設けておき、試験管等の容器内の検体に対して、磁性反応をさせたり、透過率を測定したりするために容器に近接させて位置決めしたり、あるいは、試験管ラックを所定の位置に押し移動させて搬送位置決めするなどの直進(進退)動作の作業用として用いられる。また、図1において直動モータ4を作動体3側に配設し、上側基部201または下側基部202のいずれかにネジ軸401の先端部を連結するようにしてもよい。
【0011】
図3、図4は前記ネジ軸401の先端部と前記作動体3との前記遊着手段5による連結構造を示めす。
前記遊着手段5は、前記作動体3に設けられる受け部51と、該受け部51に遊嵌継合すべく前記ネジ軸先端に形成された継ぎ手部52とからなる一対の凹凸関係で抜け止め構成されている。つまり、受け部51は、作動体3に形成された凹溝511と、略L字状に折曲形成されたプレート部材512と、このプレート部材512に切欠き形成されたU字状の係止凹部513とで構成され、継ぎ手部52は、前記ネジ軸401の先端部に係止凸部521を周設形成すべく、ネジ軸401の軸芯周り(円周廻り)に前記係止凹部513に係合(掛合)される凹状の継ぎ手溝522が刻設され、この場合、ネジ軸401が直動モータ4側で廻り止め規制されていないていないため、継ぎ手溝522には係止凹部513へ当接する廻り止め規制部523が一体形成されている。
これにより、前記受け部51と継ぎ手部52とは、前記継ぎ手溝522を係止凹部513に係合した状態で、係止凸部521を凹溝511に挿入させて、プレート部材512を作動体3にネジ止めすれば、ネジ軸401の先端部(係止凸部521)が係止凹部513で抜け止め規制されて上下、左右、前後(XYZ軸)方向に揺動可能に遊着される、所謂ユニバーサルジョイント機構により連結されている。
【0012】
図5はネジ軸401の先端部に形成される係止凸部の他の実施例を示すものであって、前記係止凸部521をネジ軸401に一体形成するのでなく、係止凸部521aとしてワッシャー部材を用い、継ぎ手溝522aおよび係止凹部513へ当接する廻り止め規制部523aを角筒部材によって形成し、これら部材を取着ボルト521bに挿入し、取着ボルト521bをネジ軸401に穿設した雌ねじ部402に螺入することで構成される。
【0013】
また、図6はネジ軸401が直動モータ4側で廻り止め規制部403により規制されている場合における係止凸部の他の実施例を示すものであって、ネジ軸401の先端部に、所定間隔を存して対向する一対の内外輪間にベアリングボールが内装されたベアリング521cを取着ボルト521bによりネジ軸401に穿設した雌ねじ部402に螺入して装着させたものである。ベアリングボールは内外輪に設けられた湾曲継ぎ手溝521dに遊嵌されており、作動体3に形成された凹溝511aの対向面域に外輪を嵌装し、ドーナツ状の取付けプレート512aにより抜け止め固定することで、ネジ軸401の先端部が首振り(主として湾曲継ぎ手溝521dから取着ボルト521b)及び前後に揺動可能に構成される。
【0014】
次に、直動装置1を分注機に適用した場合の構成について説明する。シリンダユニット6を構成するにあたり、複数のシリンダ611、611を有するシリンダブロック61が前記下側基部202に設けられ、前記各シリンダ611内に密封嵌装されてピストン動作する複数のプランジャー621、621を有するプランジャーブロック62が前記作動体3に設けられている。
前記シリンダ611には、先端に注射針612が設けられており、シリンダ611は、前記下側基部202の前面に、それぞれ個別に取り付けられた開閉可能な押さえ蓋711を有するシリンダホルダー71、71に対して着脱自在に装着される。
各プランジャー621は、そのT字状の頭部を載置させて手前側から挿入するよう作動体3に形成されたU字状のプランジャー装着溝721と、前記頭部を被嵌して作動体3にネジ止め固定されるカバー体722とを有するプランジャーホルダー72に対して着脱自在に装着される。
これにより、プランジャーブロック62として機能する作動体3が、直動モータ4の正逆駆動により一体的に昇降移動され、各プランジャー621は、容器8内の任意の試液(検体)をシリンダ611内に定量吸入し、これを定量吐出するようになっている。なお、前記シリンダ611とプランジャー621には、市販の注射器やシリンジのシリンダおよびプランジャーが代用されている。
【0015】
また、作業ステージ(基台)上に配設された分注テーブルTにも直動装置1が適用されており、この場合、作動体3としての分注テーブルTに、基台に設けられた直動モータ4(図示しない)のネジ軸401が上記同様の遊着手段5をもって連結されており、前進後退移動可能に構成されている。また、分注テーブルTは、その下面域において、前記ガイド203と案内孔301との嵌合構造に代用して形成された、例えば、特開2001−82469公報に開示された如きのガイド構造によって、凸状レールと凹状案内溝とが、凹凸嵌合(図示しない)による嵌め合い公差を持って精度良くスライド自在に構成されている。なお、凸状レールと凹状案内溝を広幅に形成させて、両者の側壁部を前記一対のガイド203、案内孔301に代用させても良い。
この様に、直動装置1が適用された分注機は、背面側に設けられた作動機構9(内部省略)、および他の構成部材と共に、前後、左右、上下(XYZ軸)方向の任意に動作可能であり、また分注テーブルTは、前後移動可能または揺動可能な作業ステージ上に配設されいて、作業ステージ上に配設された試液ボトル(図示せず)や分注テーブルTに縦横複数セットされたカートリッジ容器(小容器)8の配置部位に対し精度良く位置決めし、試液容器からシリンダ611内に吸入した試液(薬液)を、検体等が入っている任意列の複数のカートリッジ容器8、8・・・に対し所定量の試液を分配状に同時に注出するようになっている。なお、試液容器はカートリッジ容器と一体形成されたものと別体で配設されるものが任意に使用される。
【0016】
叙述の如く構成された本発明の実施例の形態において、分注機が分注テーブルT上に移動し、各シリンダ611内に約0.5〜3cc程度を吸入した試液を各子容器8、8……に順次滴下状に小分けして定量吐出(分注)する作業が行われるが、その際、作動体3は、高価な試液を1回分の吸引と吐出に必要な量だけ無駄なく取り扱うよう、モータの回転制御によりプランジャー621のピストンストローク量(位置決め移動量)とピストンスピードを設定し、前記ガイド203にスライド(昇降)可能に装着させてバランス良く昇降する必要がある。
従来の回転型モータを用いた送りネジ方式の駆動機構では、送りネジと作動体3の嵌め合い螺合公差および送りピッチを主体に、ガイド203と作動体3の嵌め合い公差を従属する設定で精度が保たれていたが、直動モータ4を用いようとした場合には、直動モータ自身が持つ組立等の精度上の問題から係る精度維持のバランスが崩れ採用することができない。
ところが本発明における直動装置1は、作動体3を、前記ガイド203と案内孔301の嵌め合い公差を、前記直動モータ4のネジ軸401の軸芯組付け公差を上回る精度をもってスライド(昇降)可能に構成させる一方、前記直動モータ4を前記基体2に配設し、かつ、前記ネジ軸401の一端を、作動体3に対し、直動モータ4の前記軸芯組付け公差によるネジ軸401の芯ズレ若しくは回転ブレを吸収する遊着手段5をもって連結せしめ、前記作動体の直進動作を行うべく構成されている。
【0017】
このため、直動モータ4のネジ軸401によって作動体3を進退駆動するものでありながら、直動モータ4が軸芯の芯ズレや螺合ブレ等その製作上の問題を有していても、作動体3側のガイド公差に依存することなく作動体3を押し引き動作することができ、遊着手段5の形成位置も殊更ガイド203、203間の中心に配設する必要が無くなるばかりか、正逆駆動に伴う押引負荷によりネジ軸401と回転ナットにサイドロードがかかる不具合を解消し、螺合がきつくなって推力の低下や動作不良を生じることが無くなり、直動モータ4の耐久性を向上することができる。その結果、プランジャー621の先端をシリンダ611底部側に近接させて吸引待機位置に位置決めするなど対象物に対して近接停止させるだけでなく、吸引後に僅かに押し移動して分配吐出するような過程における位置決め精度が要求される使い勝手にも対応することができ、分注機や分析機等の直動装置として従来の回転型モータを用いた送りネジ方式の駆動機構のものに比し何ら遜色のない性能を維持して用いることができ、送りネジ、カップリング、連結ナット部材といった駆動機構を構成する部品を用いる必要が無くなり構造が簡素化されて製作し易く安価なものとして提供でき、その利用範囲を拡大することができる。
【0018】
前記遊着手段5は、前記作動体3に設けられる受け部51と、該受け部51に遊嵌継合すべく前記ネジ軸401の先端に形成された継ぎ手部52とからなる一対の凹凸関係で抜け止め構成されているため、極めて簡単な自在継ぎ手構造をもって形成することができる。
つまり、前記受け部51を、前記凹溝511と前記係止凹部513とで形成し、前記継ぎ手部52を、ネジ軸401の先端に係止凸部521として形成しておき、この係止凸部521を凹溝511内に挿入し、係止凹部513で抜け止め規制して遊着する。さらに、凹溝511と係止凹部513は、作動体3自体を加工して形成しても良いが、凹溝511を作動体3自体に成形加工し、係止凹部513を別体のプレート部材512に形成してあるので、プレート部材512の着脱操作で簡単に受け部51と継ぎ手部52の連結を解離することができ、モータの着脱も容易に行える。
【0019】
この様に、作動体3は、遊着手段5を介して直動モータ4により押動と引動の動作が行われる。その際、ネジ軸401にサイドロードが掛からないように、前記継ぎ手溝522(522a、521d)の幅がプレート部材512の板厚(ボールベアリングの球径)よりも幅広に設定してあるため、図1に示すように継ぎ手溝522幅からプレート部材512の板厚を差し引いたクリアランス分の移動量が、その反転始動時において位置決め誤差として生じることとなり、ネジ軸401の押し引き反転始動時には、このクリアランス分を加味したモータ制御が必要となる。
そこで、押動から引動の様に動作方向が反対になる場合においては、クリアランス分の移動量を、移動(回転)パルス数に換算したクリアランスパルス数補正を行い、次ぎの位置決め点への制御パルス数にこのクリアランス補正パルス数(移動量誤差値)を加算することでクリアランス分の位置決め誤差をキャンセルする制御が行われる。これにより、クリアランス分の位置決め精度誤差を解消する事が可能となる。
【0020】
【発明の効果】
基体2に所定間隔を存して設けられたそれぞれのガイド203に、作動体3を所定の嵌め合い公差をもってスライド可能に嵌挿せしめて進退移動自在に構成すると共に、該作動体3を直動モータ4によって駆動するに、前記ガイド203との嵌め合い公差は、前記直動モータ4のネジ軸401の軸芯組付け公差を上回る精度をもって構成する一方、前記直動モータ4を、前記基体2または作動体3の何れか一方に配設し、かつ、前記ネジ軸401の一端を、前記直動モータ4が配設された側とは異なる基体2または作動体3に対し、直動モータ4の前記軸芯組付け公差によるネジ軸の芯ズレ若しくは回転ブレを吸収する遊着手段5をもって連結せしめ、前記作動体3の直進動作を行うべく構成したことにより、
直動モータ4のネジ軸401によって作動体3を進退駆動するものでありながら、直動モータ4が軸芯の芯ズレや螺合ブレ等その製作上の問題を有していても、作動体3側のガイド公差に依存することなく作動体3を押し引き動作することができ、正逆駆動に伴う押引負荷によりネジ軸401と回転ナットにサイドロードがかかる不具合を解消し、螺合がきつくなって推力の低下や動作不良を生じることが無くなり、直動モータ4の耐久性を向上することができ、その結果、対象物に対して近接停止させるだけでなく、その移動過程においても位置決め精度が要求され、回転型モータを使用しなければならないような分注機や分析機等の直動装置として用いることができ、その利用範囲を拡大することができる。
【図面の簡単な説明】
【図1】分注機構として用いられる直動装置の要部正面図。
【図2】図1の要部側面図。
【図3】モータネジ軸の継ぎ手構造を示す詳細図。
【図4】モータネジ軸の連結説明図。
【図5】ネジ軸先端部に形成される係止凸部の他の実施例を示す分解斜視図。
【図6】モータネジ軸の連結構造における他の実施例を示す要部断面図。
【符号の説明】
1 直動装置
2 基体
201 上側基部
202 下側基部
203 ガイド
3 作動体
301 案内孔
302 ボールガイド
4 直動モータ
401 ネジ軸
402 雌ねじ部
403 規制部
5 遊着手段
51 受け部
511 凹溝
511a 凹溝
512 プレート部材
512a 取付けプレート
513 係止凹部
52 継ぎ手部
521 係止凸部
521a 係止凸部
521b 取着ボルト
521c ベアリング
521d 湾曲継ぎ手溝
522 継ぎ手溝手溝
522a 継ぎ手溝手溝
523 規制部
523a 規制部
6 シリンダユニット
61 シリンダブロック
611 シリンダ
612 注射針
62 プランジャーブロック
621 プランジャー
71 シリンダホルダー
711 押さえ蓋
72 プランジャーホルダー
721 プランジャー装着溝
722 カバー体
8 容器
9 作動機構
T 分注テーブル
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear motion device that pushes and pulls an operating body that is highly accurately positioned and guided using a linear motion motor.
[0002]
[Prior art]
Usually, in a sample analysis process, etc., it is necessary to perform highly accurate positioning when dispensing a reagent, moving a container, reacting a sample in a container, stirring, and the like.For example, a liquid such as a reagent is transferred to a plurality of containers. There are known a dispensing machine for dispensing in a dispensing manner, a stirrer for stirring a sample in a test tube by inserting a stirring rod, an analyzer for analyzing a sample in a container by stopping various sensors close to each other, and promoting a reaction. In general, the linearly moving (advancing / retracting) operation used in these methods is such that an operating body to be positioned is guided by a pair of guide shafts to a ball guide with a fitting tolerance of (1 to 5) / 100 mm. A structure that allows the robot to move forward and backward is employed. In some cases, positioning accuracy is required in the moving process in addition to stopping the robot in proximity to the object.
[0003]
However, these positioning drive mechanisms use a rotary motor whose output shaft rotates as a drive source, connect one end of the feed screw to the motor shaft via a coupling, and connect the middle to the operating body via a connection nut member. Since it has a structure in which it is screwed and the other end is rotatably supported on the base, the number of components and the structure of the drive mechanism are complicated, and there is an inconvenience that causes a cost increase.
[0004]
By the way, in order to make such a complicated mechanism unnecessary and to make it inexpensive, for example, as disclosed in Japanese Patent Application Laid-Open No. 8-39639, a mold clamping device of a molding device using a linear motor as a power source has been proposed. Some have tried to adopt a known one.
The linear motion motor uses a screw shaft as an output shaft, and the screw shaft is screwed into a rotating nut (rotor) to convert the motion into a non-rotating linear motion. Due to the above problems etc., there is a limit to the assembly accuracy such as the shaft axis of the screw shaft being misaligned and tilting during assembly, and the screw shaft and nut are screwed together taking into account the thermal expansion during driving (Tooth) It is assembled with tolerance, especially when resin is used for the nut, since the expansion coefficient with the screw shaft is different, it is necessary to take into account such tolerance. There was a structural problem with respect to the shaft core assembly tolerance, and its use range was limited.
[0005]
Therefore, as in the mold clamping device, the operating body (movable plate) is guided along the four guide shafts, and is finally pressed against the base (fixed plate) to be pushed and pulled so as to stop feeding and stopping. Since it is not necessary to guide the operating body with a high-accuracy fitting tolerance exceeding the shaft assembly tolerance of the linear motion motor, including its moving process, the screw shaft of the motor is set at the center position between the guide shafts. If the tolerances on the motor side and the guide tolerances on the operating body side are set to be approximately equal and substantially no load, and if the motor rotation nuts meet predetermined requirements such as adopting an expensive ball screw structure, push-pull Although it is possible to drive, there is a problem that the side load is applied between the screw shaft and the nut due to the problems such as the axial misalignment and the screwing deviation, and the durability is impaired. Use type motor It was also added factors that costly than the drive mechanism, not intended to be substantially employed.
Further, in the above-described device requiring high-precision movement and positioning, since the operating body is guided with a tolerance setting exceeding the assembly tolerance of the linear motor, a screw shaft is connected to the operating body (or the base). In the case of pushing and pulling, the side load is applied between the screw shaft and the nut due to the problem of the shaft center misalignment and the screwing deviation, the screwing is tight, the thrust is reduced, and the operation is defective. And it was difficult to use it substantially.
[0006]
[Patent Document 1]
JP-A-8-39639
[Problems to be solved by the invention]
The present invention has been conceived in order to eliminate the above-described problems, and in which an operating body is driven forward and backward by a screw shaft of a linear motion motor, while the linear motion motor has a misalignment or a screw. Even if there is a problem in the manufacturing such as joint blur, the operating body can be pushed and pulled without depending on the guide tolerance of the operating body side, and the screw shaft and the rotating nut are The problem that side load is applied to the motor is eliminated, the screwing is not tight, the thrust is not reduced, and the malfunction does not occur, and the durability of the linear motor can be improved. In addition to stopping, it requires positioning accuracy in its moving process, and can be used as a linear motion device such as a dispenser or analyzer that requires the use of a rotary motor, expanding its use range. This And to provide a linear motion device capable.
[0008]
[Means for Solving the Problems]
The technical means adopted by the present invention to solve the above-mentioned problem is that an operating body is slidably fitted to a guide provided on a base with a predetermined fitting tolerance so as to be movable forward and backward, and the operating body is configured to be movable. Is driven by a linear motor, the fitting tolerance with the guide is configured with an accuracy that exceeds the shaft core assembly tolerance of the screw shaft of the linear motor, while the linear motor is mounted on the base or the operating body. One of the screw shafts, and the other end of the screw shaft, with respect to the base or the operating body different from the side on which the linear motor is provided, the screw shaft by the shaft core assembly tolerance of the linear motor. The moving body is connected by a play means for absorbing a center deviation or a rotational shake of the moving body, and the operating body is configured to perform a straight running operation.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a linear motion device illustrating an embodiment of the present invention as a preferred embodiment will be described in detail with reference to the drawings. FIG. 1 is a front view of a main part of a linear motion device, FIG. 2 is a side view of a main part, FIG. 3 is a detailed view of a connection part of a motor screw shaft, and FIG. As shown in FIG. 1, the linear motion device 1 includes a base 2 having an upper base 201 and a lower base 202 and formed in a substantially U-shape in a side view, and a predetermined interval on the left and right sides of the base 2. Axial guides 203, 203 erected (standing) on the upper base 201 and the lower base 202, respectively, and the operating body 3 slidably (elevated) with a predetermined fitting tolerance on the guide 203. It is configured to be movable forward and backward (elevation), and the tip of a screw shaft 401 of a linear stepping motor 4 (hereinafter simply referred to as a linear motor) disposed on the upper base 201 is attached to the operating body 3 by play means 5. Are connected so that they can be driven up and down (forward and backward).
[0010]
The insertion structure of the operating body 3 with the guide 203 is approximately 2 / a due to a so-called ball guide structure in which a ball guide 302 is provided in guide holes 301 formed in the operating body 3 and inserted into the guide 203. The ascending and descending guide is designed to be highly accurate with a fitting tolerance of 100 mm.
Note that the configuration of the base 2 and the operating body 3 and the arrangement of the linear motor 4 are not limited thereto. For example, the concave base 2 is a convex base when viewed from the side, The guide 203 is slidably fitted and protruded from both sides of the base, and an operating body is provided as a set on both left and right ends of the guide 203, a linear motion motor is mounted on one operating body side, and the other operating body is mounted. It may be configured to perform a predetermined work operation such as positioning. In this case, the other working body is provided with various sensors in the working body, for example, to allow a sample in a container such as a test tube to react magnetically or to measure the transmittance. It is used for work of a straight-ahead (advance / retreat) operation such as positioning in close proximity or pushing and moving a test tube rack to a predetermined position to carry and position. In FIG. 1, the linear motor 4 may be provided on the operating body 3 side, and the tip of the screw shaft 401 may be connected to either the upper base 201 or the lower base 202.
[0011]
FIGS. 3 and 4 show a connection structure of the tip end of the screw shaft 401 and the operating body 3 by the play means 5.
The loosening means 5 is provided with a pair of concave and convex relations including a receiving portion 51 provided on the operating body 3 and a joint portion 52 formed at the tip of the screw shaft to be loosely fitted to the receiving portion 51. Stop is configured. That is, the receiving portion 51 includes the concave groove 511 formed in the operating body 3, the plate member 512 bent and formed in a substantially L-shape, and the U-shaped engagement formed by notching the plate member 512. The coupling portion 52 is formed around the axis of the screw shaft 401 (around the circumference) so as to form a locking projection 521 around the tip of the screw shaft 401. A concave joint groove 522 to be engaged with (engaged with) is formed. In this case, since the screw shaft 401 is not restricted from rotating on the side of the linear motor 4, the engagement concave portion 513 is formed in the joint groove 522. The rotation-stop restricting portion 523 that comes into contact with is formed integrally.
Thus, the receiving portion 51 and the joint portion 52 allow the engaging convex portion 521 to be inserted into the concave groove 511 in a state where the joint groove 522 is engaged with the engaging concave portion 513, and the plate member 512 is actuated. 3, the tip of the screw shaft 401 (locking projection 521) is prevented from coming off by the locking recess 513, and is loosely attached to swing in the vertical, left, right, front and rear (XYZ axis) directions. , A so-called universal joint mechanism.
[0012]
FIG. 5 shows another embodiment of the locking projection formed at the tip of the screw shaft 401. The locking projection 521 is not formed integrally with the screw shaft 401, but is formed as a locking projection. A washer member is used as 521a, and a detent member 523a that contacts the joint groove 522a and the locking concave portion 513 is formed of a rectangular tubular member. Is formed by screwing into a female screw portion 402 formed in the hole.
[0013]
FIG. 6 shows another embodiment of the locking projection in the case where the screw shaft 401 is regulated by the rotation preventing regulating portion 403 on the side of the linear motion motor 4. A bearing 521c having a bearing ball mounted between a pair of opposed inner and outer rings at a predetermined interval is screwed into a female screw portion 402 formed in a screw shaft 401 by an attachment bolt 521b and mounted. . The bearing ball is loosely fitted in the curved joint groove 521d provided in the inner and outer rings, and the outer ring is fitted in the surface area facing the concave groove 511a formed in the operating body 3, and is prevented from falling off by the donut-shaped mounting plate 512a. By fixing, the tip of the screw shaft 401 is configured to be able to swing (mainly from the curved joint groove 521d to the attachment bolt 521b) and swing back and forth.
[0014]
Next, a configuration in a case where the linear motion device 1 is applied to a dispenser will be described. In constituting the cylinder unit 6, a cylinder block 61 having a plurality of cylinders 611, 611 is provided on the lower base 202, and a plurality of plungers 621, 621 which are fitted and sealed in the cylinders 611 and operate as pistons. A plunger block 62 having the following structure is provided on the operating body 3.
The cylinder 611 is provided with an injection needle 612 at the tip. The cylinder 611 is provided on a front surface of the lower base 202 in a cylinder holder 71 having an openable and closable holding lid 711 individually attached thereto. It is detachably attached to it.
Each plunger 621 is fitted with a U-shaped plunger mounting groove 721 formed in the operating body 3 so that the T-shaped head is placed and inserted from the near side, and the head is fitted. It is detachably attached to a plunger holder 72 having a cover 722 fixed to the operating body 3 with screws.
As a result, the operating body 3 functioning as the plunger block 62 is integrally moved up and down by forward and reverse driving of the linear motor 4, and each plunger 621 transfers an arbitrary reagent (sample) in the container 8 to the cylinder 611. A fixed amount is sucked into the inside, and the fixed amount is discharged. The cylinder 611 and the plunger 621 are replaced with cylinders and plungers of a commercially available syringe or syringe.
[0015]
The linear motion device 1 is also applied to the dispensing table T provided on the work stage (base). In this case, the dispensing table T as the operating body 3 is provided on the base. The screw shaft 401 of the linear motion motor 4 (not shown) is connected by the same play means 5 as described above, and is configured to be able to move forward and backward. In addition, the dispensing table T has a lower surface area formed by a guide structure as disclosed in Japanese Patent Application Laid-Open No. 2001-82469, which is formed in place of the fitting structure of the guide 203 and the guide hole 301. The convex rail and the concave guide groove are configured to be slidable with good fitting tolerance by means of concave and convex fitting (not shown). The convex rail and the concave guide groove may be formed to have a wide width, and the side walls of both may be substituted for the pair of guides 203 and the guide holes 301.
As described above, the dispensing machine to which the linear motion device 1 is applied includes an operating mechanism 9 (inside omitted) provided on the back side and other components, along with arbitrary components in the front-rear, left-right, up-down (XYZ axis) directions. The dispensing table T is disposed on a work stage that can be moved back and forth or swingable, and a sample solution bottle (not shown) and a dispensing table T that are disposed on the work stage. A plurality of cartridges (small containers) 8 which are set vertically and horizontally are accurately positioned with respect to the arrangement site of the cartridge containers (small containers) 8. A predetermined amount of reagent solution is simultaneously poured into the containers 8, 8. The sample solution container may be arbitrarily used separately from the one integrally formed with the cartridge container.
[0016]
In the embodiment of the present invention configured as described above, the dispenser moves on the dispensing table T, and sucks about 0.5 to 3 cc of the test solution into each cylinder 611, and dispenses the test solution into each of the child containers 8, The operation of dispensing a fixed amount (dispensing) by subdividing the droplets sequentially in the form of droplets 8 is performed. At this time, the working body 3 handles the expensive reagent solution in an amount necessary for a single suction and discharge. As described above, it is necessary to set the piston stroke amount (positioning movement amount) and the piston speed of the plunger 621 by controlling the rotation of the motor, and to mount the plunger 621 on the guide 203 so as to be slidable (elevated) so as to ascend and descend in good balance.
In the drive mechanism of the feed screw system using the conventional rotary motor, the setting tolerance of the fitting between the guide 203 and the operating body 3 depends mainly on the screwing tolerance of the fitting between the feed screw and the operating body 3 and the feed pitch. Although the accuracy is maintained, when the linear motor 4 is used, the balance of maintaining the accuracy is lost due to a problem in accuracy of the linear motor itself, such as assembly, and cannot be adopted.
However, the linear motion device 1 according to the present invention slides (moves up and down) the operating body 3 so that the fitting tolerance between the guide 203 and the guide hole 301 exceeds the assembly tolerance of the screw shaft 401 of the linear motor 4. The linear motor 4 is disposed on the base 2 and one end of the screw shaft 401 is connected to the operating body 3 by a screw according to the shaft core assembly tolerance of the linear motor 4. The shaft 401 is connected with the play means 5 for absorbing the misalignment or the rotation blur of the shaft 401, and is configured to perform the straight running operation of the operating body.
[0017]
For this reason, even though the operating body 3 is driven forward and backward by the screw shaft 401 of the linear motor 4, even if the linear motor 4 has a problem in its manufacture such as a misalignment of the shaft center or a screwing error. In addition, the operating body 3 can be pushed and pulled without depending on the guide tolerance of the operating body 3 side, and it is not only necessary to dispose the play means 5 at the center between the specially arranged guides 203, 203. This eliminates the problem that the side load is applied to the screw shaft 401 and the rotating nut due to the push / pull load accompanying the forward / reverse drive. Performance can be improved. As a result, not only is the tip of the plunger 621 approached to the bottom side of the cylinder 611 to be positioned at the suction standby position, but also is not stopped close to the target object, but is also slightly pushed and moved after the suction to distribute and discharge. It can respond to the usability that requires the positioning accuracy in, and is comparable to that of the feed screw type drive mechanism using a conventional rotary motor as a linear motion device such as a dispenser or analyzer. It can be used while maintaining its performance, and it is not necessary to use parts that constitute a drive mechanism such as a feed screw, a coupling, and a connecting nut member, and the structure is simplified, and it can be provided as an easy-to-manufacture and inexpensive product. The range can be expanded.
[0018]
The loosening means 5 has a pair of concave and convex relations including a receiving portion 51 provided on the operating body 3 and a joint portion 52 formed at the tip of the screw shaft 401 to be loosely fitted to the receiving portion 51. , It can be formed with a very simple universal joint structure.
That is, the receiving portion 51 is formed by the concave groove 511 and the locking concave portion 513, and the joint portion 52 is formed as a locking convex portion 521 at the tip of the screw shaft 401. The part 521 is inserted into the concave groove 511, and is prevented from coming off by the locking concave part 513 and loosely attached. Further, the concave groove 511 and the locking concave portion 513 may be formed by processing the operating body 3 itself. However, the concave groove 511 is formed in the operating body 3 itself, and the locking concave portion 513 is formed as a separate plate member. Since it is formed at 512, the connection between the receiving portion 51 and the joint portion 52 can be easily released by the attachment / detachment operation of the plate member 512, and the attachment / detachment of the motor can be easily carried out.
[0019]
Thus, the operation body 3 is pushed and pulled by the linear motor 4 via the play means 5. At this time, the width of the joint groove 522 (522a, 521d) is set to be wider than the plate thickness of the plate member 512 (the ball diameter of the ball bearing) so that a side load is not applied to the screw shaft 401. As shown in FIG. 1, a movement amount corresponding to a clearance obtained by subtracting the plate thickness of the plate member 512 from the width of the joint groove 522 is generated as a positioning error when the reversal is started. Motor control considering the clearance is required.
Therefore, when the operation direction is reversed, such as from pushing to pulling, the amount of clearance movement is corrected to the number of movement (rotation) pulses, the number of clearance pulses is corrected, and the control pulse to the next positioning point is adjusted. By adding the number of clearance correction pulses (movement amount error value) to the number, control for canceling the positioning error for the clearance is performed. This makes it possible to eliminate the positioning accuracy error for the clearance.
[0020]
【The invention's effect】
The operating body 3 is slidably fitted to each guide 203 provided at a predetermined interval on the base body 2 with a predetermined fitting tolerance so that the operating body 3 can be moved forward and backward, and the operating body 3 is moved by a linear motor. 4, the fitting tolerance with the guide 203 is configured with an accuracy exceeding the tolerance of assembling the axis of the screw shaft 401 of the linear motor 4, while the linear motor 4 is connected to the base 2 or The one end of the screw shaft 401 is disposed on one of the operating bodies 3 and one end of the screw shaft 401 is connected to the base 2 or the operating body 3 different from the side on which the linear motor 4 is disposed. By connecting with the play means 5 for absorbing the center deviation of the screw shaft due to the shaft core assembling tolerance or the rotational shake, the linear motion of the operating body 3 is performed.
Even though the operating body 3 is driven forward and backward by the screw shaft 401 of the linear motor 4, even if the linear motor 4 has a problem in its manufacture such as misalignment of the shaft center and unbalanced screwing, the operating body 3 The operation body 3 can be pushed and pulled without depending on the guide tolerance on the third side, and the problem that the screw shaft 401 and the rotating nut are side-loaded by the push-pull load accompanying the forward / reverse drive is eliminated, and the screw engagement is reduced. Tightening does not cause a decrease in thrust or malfunction, and the durability of the linear motor 4 can be improved. As a result, not only is it stopped close to an object, but also positioning is performed during its movement process. It can be used as a linear motion device such as a dispenser or an analyzer, which requires precision and requires the use of a rotary motor, thereby expanding its use range.
[Brief description of the drawings]
FIG. 1 is a front view of a main part of a linear motion device used as a dispensing mechanism.
FIG. 2 is a side view of a main part of FIG. 1;
FIG. 3 is a detailed view showing a joint structure of a motor screw shaft.
FIG. 4 is an explanatory view of connection of a motor screw shaft.
FIG. 5 is an exploded perspective view showing another embodiment of the locking projection formed at the tip of the screw shaft.
FIG. 6 is an essential part cross-sectional view showing another embodiment of the connection structure of the motor screw shaft.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Linear motion device 2 Substrate 201 Upper base 202 Lower base 203 Guide 3 Actuator 301 Guide hole 302 Ball guide 4 Linear motor 401 Screw shaft 402 Female screw 403 Restriction 5 Playing means 51 Reception part 511 Recessed groove 511a Recessed groove 512 Plate member 512a Mounting plate 513 Locking concave portion 52 Joint portion 521 Locking convex portion 521a Locking convex portion 521b Mounting bolt 521c Bearing 521d Curved joint groove 522 Joint groove groove 522a Joint groove groove 523 Regulator 523a Regulator 6 cylinder unit 61 Cylinder block 611 Cylinder 612 Injection needle 62 Plunger block 621 Plunger 71 Cylinder holder 711 Holding lid 72 Plunger holder 721 Plunger mounting groove 722 Cover body 8 Container 9 Operating mechanism T Dispensing table

Claims (8)

基体に設けられたガイドに、作動体を所定の嵌め合い公差をもってスライド可能に嵌挿せしめて進退移動自在に構成すると共に、該作動体を直動モータによって駆動するに、前記ガイドとの嵌め合い公差は、前記直動モータのネジ軸の軸芯組付け公差を上回る精度をもって構成する一方、前記直動モータを前記基体または作動体の何れか一方に配設し、かつ、前記ネジ軸の一端を、前記直動モータが配設された側とは異なる基体または作動体に対し、直動モータの前記軸芯組付け公差によるネジ軸の芯ズレ若しくは回転ブレを吸収する遊着手段をもって連結せしめ、前記作動体の直進動作を行うべく構成したことを特徴とする直動装置。An operating body is slidably inserted into a guide provided on the base body with a predetermined fitting tolerance so as to be able to move forward and backward. While the linear motion motor is configured with an accuracy exceeding the shaft core assembly tolerance of the screw shaft, the linear motion motor is disposed on either the base or the operating body, and one end of the screw shaft is The linear motion motor is connected to a base or an operating body different from the side on which the linear motion motor is provided, by a play means for absorbing a deviation of the screw shaft or a rotational deviation due to the shaft core assembly tolerance of the linear motion motor, A linear motion device configured to perform a linear motion of the operating body. 請求項1において、 前記遊着手段は、前記基体または作動体に設けられる受け部と、該受け部に遊嵌継合すべく前記ネジ軸先端に形成された継ぎ手部とからなる一対の凹凸関係で抜け止め構成されることを特徴とする直動装置。The pair of concave-convex portions according to claim 1, wherein the attaching means comprises a receiving portion provided on the base or the operating body, and a coupling portion formed at the tip of the screw shaft so as to be loosely fitted to the receiving portion. A linear motion device characterized in that the linear motion device is configured to be prevented from falling off. 請求項2において、 前記受け部を、凹溝と係止凹部とで形成し、前記継ぎ手部に係止凸部を設けて、前記受け部と継ぎ手部とは、前記係止凸部を凹溝に挿入し、前記係止凹部で抜け止め規制して遊着されることを特徴とする直動装置。In Claim 2, The receiving part is formed of a concave groove and a locking concave part, a locking convex part is provided in the joint part, and the receiving part and the joint part form the locking convex part with a concave groove. A linear motion device, wherein the linear motion device is loosely inserted in the locking concave portion and loosely attached. 請求項3において、 前記受け部は、前記係止凹部が切欠き形成されたプレート部材よりなり、前記基体または作動体に着脱可能に取着されていることを特徴とする直動装置。4. The linear motion device according to claim 3, wherein the receiving portion is formed of a plate member in which the locking recess is formed with a notch, and is detachably attached to the base or the operating body. 5. 請求項3または4において、 前記凹溝を前記基体または作動体に設け、前記係止凸部は、前記ネジ軸の軸芯周りに刻設された凹状の継ぎ手溝によりネジ軸に一体形成されていることを特徴とする直動装置。5. The screw shaft according to claim 3, wherein the concave groove is provided on the base or the operating body, and the locking protrusion is formed integrally with the screw shaft by a concave joint groove engraved around the axis of the screw shaft. 6. A linear motion device. 請求項2乃至5の何れかにおいて、 前記直動モータ側でネジ軸が廻り止め規制されない場合において、前記受け部と継ぎ手部とは、廻り止め継合されることを特徴とする直動装置。The linear motion device according to any one of claims 2 to 5, wherein, when the rotation of the screw shaft is not restricted on the translation motor side, the rotation of the receiving portion and the joint portion is stopped. 請求項1乃至6の何れかにおいて、前記作動体を、前記基体の両側より突出せしめた前記ガイドの両側に配設すると共に、一方の作動体側に直動モータを装着せしめ、他方の作動体を、位置決め等の所定の作業動作すべく構成したことを特徴とする直動装置。The operating body according to any one of claims 1 to 6, wherein the operating body is disposed on both sides of the guide protruding from both sides of the base, a linear motion motor is mounted on one operating body side, and the other operating body is mounted. A linear motion device configured to perform a predetermined work operation such as positioning and the like. 請求項1乃至7の何れかにおいて、前記作動体の押動と引き動の反転始動時において、前記遊着手段により形成されるネジ軸のクリアランス移動量を、直動モータの移動パルス数に換算せしめて前記クリアランスの誤差補正用パルス数として設定し、前記反転始動時の移動量は、任意の位置決め点への制御パルス数に前記誤差補正用パルス数を加算するモータ制御によって位置決めするよう構成したことを特徴とする直動装置。8. The method according to claim 1, wherein at the time of the reversal start of the pushing and pulling of the operating body, the clearance movement amount of the screw shaft formed by the play means is converted into the number of movement pulses of the linear motor. At least, it is set as the number of error correction pulses of the clearance, and the movement amount at the time of the inversion start is configured to be positioned by motor control that adds the number of error correction pulses to the number of control pulses to an arbitrary positioning point. Linear motion device characterized by the above-mentioned.
JP2003099444A 2003-04-02 2003-04-02 Linear motion device Expired - Fee Related JP4247570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003099444A JP4247570B2 (en) 2003-04-02 2003-04-02 Linear motion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003099444A JP4247570B2 (en) 2003-04-02 2003-04-02 Linear motion device

Publications (3)

Publication Number Publication Date
JP2004308690A true JP2004308690A (en) 2004-11-04
JP2004308690A5 JP2004308690A5 (en) 2005-10-13
JP4247570B2 JP4247570B2 (en) 2009-04-02

Family

ID=33463910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099444A Expired - Fee Related JP4247570B2 (en) 2003-04-02 2003-04-02 Linear motion device

Country Status (1)

Country Link
JP (1) JP4247570B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155656A (en) * 2005-12-08 2007-06-21 Nippon Pulse Motor Co Ltd Fluid feeder
JP2008115882A (en) * 2006-10-31 2008-05-22 Toyota Motor Corp Operating property measuring device for rotary-linear motion converting mechanism
WO2012105504A1 (en) * 2011-01-31 2012-08-09 株式会社日立ハイテクノロジーズ Analysis device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155656A (en) * 2005-12-08 2007-06-21 Nippon Pulse Motor Co Ltd Fluid feeder
JP4715487B2 (en) * 2005-12-08 2011-07-06 日本パルスモーター株式会社 Liquid supply device in dispenser etc.
JP2008115882A (en) * 2006-10-31 2008-05-22 Toyota Motor Corp Operating property measuring device for rotary-linear motion converting mechanism
WO2012105504A1 (en) * 2011-01-31 2012-08-09 株式会社日立ハイテクノロジーズ Analysis device
JP2012159315A (en) * 2011-01-31 2012-08-23 Hitachi High-Technologies Corp Analyzer
CN103339512A (en) * 2011-01-31 2013-10-02 株式会社日立高新技术 Analysis device
EP2672272A1 (en) * 2011-01-31 2013-12-11 Hitachi High-Technologies Corporation Analysis device
US8802032B2 (en) 2011-01-31 2014-08-12 Hitachi High-Technologies Corporation Analyzer
EP2672272A4 (en) * 2011-01-31 2014-12-03 Hitachi High Tech Corp Analysis device

Also Published As

Publication number Publication date
JP4247570B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP3899617B2 (en) Actuator
US6871989B2 (en) Movable reflector type headlamp having nut sliding guide
US7261554B2 (en) Injection unit of injection molding machine
US9347439B2 (en) Electronically controlled linear pump drive
US20060292257A1 (en) Injection unit of injection molding machine
US20070144281A1 (en) Linear actuator
CN110556967B (en) Linear drive device
JP2004308690A (en) Linear motion device
EP1129809B1 (en) Driving unit for a pressure application shaft in a welding apparatus
US5789830A (en) In-line rotational drive
JPH0533542A (en) Motor holder for actuator
CN212470484U (en) Screw locking device and screw assembly robot
JP2001356257A (en) Lens driving device
CN216300188U (en) Three-dimensional printing equipment
JP2011169423A (en) Linear motion device
JPH01177938A (en) Accurate positioning device
JPH0933782A (en) Lens moving device
EP1526307A2 (en) Linear type actuator
JP2001269974A (en) Injection equipment of injection molding machine
CN112571721A (en) Phase adjusting device and phase adjusting method
CN219641732U (en) Novel sample injection device
JP2007020746A (en) Medical paste kneading device and medical paste unit
JPH0529852Y2 (en)
JPH0764643A (en) Driver positioning method using roller screw mechanism
JP2006168058A (en) Injection molding machine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081229

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees