JP2004308603A - Fluid injection valve - Google Patents

Fluid injection valve Download PDF

Info

Publication number
JP2004308603A
JP2004308603A JP2003105234A JP2003105234A JP2004308603A JP 2004308603 A JP2004308603 A JP 2004308603A JP 2003105234 A JP2003105234 A JP 2003105234A JP 2003105234 A JP2003105234 A JP 2003105234A JP 2004308603 A JP2004308603 A JP 2004308603A
Authority
JP
Japan
Prior art keywords
valve
seat
peripheral surface
downstream
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003105234A
Other languages
Japanese (ja)
Inventor
Shohei Okuyama
昌平 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003105234A priority Critical patent/JP2004308603A/en
Publication of JP2004308603A publication Critical patent/JP2004308603A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid injection valve preventing fluid leak to an injection hole during shut off of fluid injection. <P>SOLUTION: A flow passage 27 flowing fluid therethrough toward the injection hole 31 is formed, a valve body 26 surrounding an outer circumference of the flow passage 27 and having a valve seat 28 in an upper stream side of the injection hole 31 and a valve element 40 moving to a lower stream side in the flow passage 27 and shutting off injection of fluid from the injection hole 31 by abutting on the valve seat 28 are provided. A plurality of seat parts 46, 47 which are formed by abutment of the valve element 40 and the valve seat 28 is positioned with having a gap part 48 separating the valve element 40 and the valve seat 28 therebetween and mutually shifting to a flow direction X of the flow passage 27. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料等の流体を噴射する流体噴射弁に関する。
【0002】
【従来の技術】
従来、流路を形成する弁ボディの噴孔より上流側に弁座を設け、その弁座に弁部材を当接させることにより噴孔からの流体噴射を遮断するようにした流体噴射弁が公知である。特許文献1には、弁部材の外周面を弁座の内周面に当接させることで周方向に延びる円環状のシート部を一つ形成する技術が開示されている。この技術において流体噴射量を高精度に制御するには、シート部の上流側から下流側にある噴孔への流体洩れを低減する必要がある。流体洩れを低減する方法としては、弁部材及び/又は弁座においてシート部を形成する部分の真円度乃至は表面粗さ等の加工精度を高める方法が考えられている。
【0003】
【特許文献1】
特開2001−317431号公報
【0004】
【発明が解決しようとする課題】
しかし、弁部材及び/又は弁座においてシート部形成部分の加工精度を向上させても、それら弁部材や弁座等の組付けに伴ってシート部形成部分の変形が生じてしまう。そのため、シート部にクリアランスが生じ、噴孔への流体洩れを十分低減し切れない場合がある。
本発明の目的は、流体噴射の遮断時に噴孔への流体洩れを防止する流体噴射弁を提供することにある。
【0005】
【課題を解決するための手段】
請求項1〜9に記載の発明によると、弁ボディは流路の外周を囲む弁座を噴孔より上流側に有し、弁部材は流路内を下流側又は上流側に移動して弁座に当接することにより噴孔からの流体噴射を遮断する。そして、弁部材と弁座とが当接して形成する複数のシート部は、弁部材と弁座とを隔てる隙間部を間に挟んで、流路の流れ方向に互いにずれて位置する。これにより、流れ方向に並ぶ二つのシート部の間では流体が隙間部に閉じ込められるため、当該二つのシート部のうち下流側シート部の流れ方向両側において流体の圧力差が減少し、下流側シート部のクリアランスから流体が洩れ難くなる。以上の原理により流体噴射の遮断時には、最下流のシート部の上流側から下流側にある噴孔に流体が洩れることを防止できる。
【0006】
請求項2に記載の発明によると、弁部材が弁座と当接する側に移動するとき、上流側のシート部と下流側のシート部とがほぼ同時に形成される。また一方、請求項3に記載の発明によると、弁部材が弁座と当接する側に移動するとき、上流側のシート部は下流側のシート部より先に形成される。このような請求項2、3に記載の各発明によると、下流側シート部の形成時点においては下流側シート部の上流側の隙間部に流体が閉じ込められた状態となる。そのため、下流側シート部における流体洩れの防止効果を下流側シート部の形成と同時に確実に得ることができる。
【0007】
請求項4及び5に記載の発明によると、弁部材及び弁座の少なくとも一方において、上流側のシート部を形成する部分と下流側のシート部を形成する部分との一方は他方より高い弾性を有する。この構成によれば、弾性の高い部分で形成されるシート部において液密性を向上できると共に、弾性の低い部分すなわち剛性の高い部分で形成されるシート部において耐衝撃性を確保できる。特に請求項5に記載の発明では、上流側のシート部を形成する部分が下流側のシート部を形成する部分より高い弾性を有するので、上流側シート部の上流側から下流側にある隙間部に燃料が洩れ難くなる。これにより、隙間部に閉じ込められた燃料にさらに燃料が追加されて隙間部内の圧力が増大することを抑制できるので、下流側シート部における流体洩れの防止効果が低下しない。
【0008】
請求項6〜9に記載の発明によると、弁部材の外周面と弁座の内周面とが当接することにより、周方向に延びる環状のシート部が複数形成される。特に請求項7に記載の発明では、弁部材の外周面が段階的に縮径する段付円柱面状に形成され、弁座の内周面がほぼ一定のテーパ角度で縮径する円錐面状に形成される。一方、請求項8に記載の発明では、弁部材の外周面が球面状に形成され、弁座の内周面が小径側に向かってテーパ角度が段階的に拡大する円錐面状に形成される。また一方、請求項9に記載の発明では、弁部材の外周面が球面状に形成され、弁座の内周面が段階的に縮径する段付円柱面状に形成される。このような請求項7、8、9に記載の各発明によると、上述した効果を奏する複数のシート部を簡素な構成により形成できる。
【0009】
【発明の実施の形態】
以下、本発明の複数の実施形態を図面に基づいて説明する。
(第一実施形態)
本発明の第一実施形態による流体噴射弁としての燃料噴射弁を図2に示す。第一実施形態の燃料噴射弁10において筒部材11、固定コア15、可動コア16、弁部材としてのニードル40及び弁ボディ26は、図1の上方から下方に向かって燃料を流す流路をそれぞれ内周壁で形成している。
【0010】
筒部材11は円筒形に形成され、噴孔31側から順に第一磁性部12、非磁性部13、第二磁性部14を有している。非磁性部13は第一磁性部12と第二磁性部14との間で磁束が短絡することを防ぐ。固定コア15は磁性材で円筒形に形成され、筒部材11の内周壁に同軸上に固定されている。可動コア16は磁性材で円筒形に形成され、筒部材11の内周側に同軸上に収容されている。可動コア16は、固定コア15の下流側において軸方向に往復移動可能である。スプリング17の一端部は固定コア15に、スプリング17の他端部は可動コア16にそれぞれ係止されている。スプリング17は可動コア16を反固定コア側すなわち下流側に向かって付勢している。フィルタ18は固定コア15の上流側において筒部材11の内周壁に固定され、図示しない燃料搬送管から燃料噴射弁10に供給される燃料中の異物を除去する。
【0011】
筒部材11の外周壁にはスプール20が固定され、そのスプール20にコイル21が巻回されている。スプール20及びコイル21の外周側を樹脂モールドしたコネクタ22が覆っている。ターミナル23はコネクタ22に埋設され、コイル21と電気的に接続されている。ターミナル23を通じてコイル21が通電されると、固定コア15と可動コア16との間に磁気吸引力が働く。
【0012】
図1及び図2に示すように、弁ボディ26は金属材で円筒形に形成され、筒部材11の下流側端部の内周壁に同軸上に固定されている。噴孔プレート30は有底円筒形に形成され、弁ボディ26の外周壁に同軸上に固定されている。噴孔プレート30の底壁部の中心近傍を複数の噴孔31が貫通している。弁ボディ26が内周壁により形成する流路27は下流側端部において各噴孔31に連通しており、各噴孔31に向かって燃料を流す。弁ボディ26は流路27の下流側端部の外周を囲む内周壁部分で弁座28を形成しており、弁座28は各噴孔31より上流側に位置している。弁座28の内周面29は、流路27の下流側に向かってほぼ一定のテーパ角度θで縮径する円錐面状に形成されている。
【0013】
ニードル40は、その全体を金属材で形成されて有底円筒形を呈しており、弁ボディ26及び筒部材11の内周側に同軸上に収容されている。ニードル40の反底壁部側は可動コア16に接合されており、ニードル40は可動コア16と一体となって軸方向に往復移動可能である。ニードル40の側壁部を複数の通孔41が貫通しており、燃料はニードル40内の流路から各通孔41を通過して流路27に流入する。
【0014】
ニードル40の底壁部42は弁座28の内周側の流路27に突入している。底壁部42の外周面43は、流路27の下流側に向かって段階的に縮径する段付円柱面状に形成されており、一定径部分と径変化部分との境界線に二つのエッジ部44,45を形成している。エッジ部44とエッジ部45とは前者より後者が小径となる同軸円状に配置され、流路27の流れ方向Xにおいて互いにずれている。ニードル40が下流側に移動することで、エッジ部44とエッジ部45とは流れ方向Xにずれた位置において弁座28の内周面29にほぼ同時に当接する。エッジ部44と内周面29との当接部分により上流側シート部46が、エッジ部45と内周面29との当接部分により下流側シート部47がそれぞれ、ニードル40及び弁座28の周方向に延びる円環状に形成される。シート部46,47が共に形成された状態で、それらシート部46,47間には外周面43と内周面29とを隔てる隙間部48が円環状に形成される。シート部46,47が形成されることで、上流側シート部46より上流側の流路27と下流側シート部47より下流側の各噴孔31との連通が遮断される。
【0015】
以上説明した燃料噴射弁10において、コイル21への通電がオンされて固定コア15と可動コア16との間に磁気吸引力が発生すると、ニードル40と共に可動コア16がスプリング17の付勢力に抗して上流側に移動する。これにより、ニードル40の各エッジ部44,45が弁座28の内周面29から離れるため、各噴孔31から燃料が噴射される。
【0016】
一方、コイル21への通電がオフされてコア15,16間の磁気吸引力が消滅すると、スプリング17の付勢力により可動コア16及びニードル40が下流側に移動する。これにより、ニードル40の各エッジ部44,45が弁座28の内周面29に当接して各シート部46,47が形成されるため、各噴孔31からの燃料噴射が遮断される。シート部46,47がほぼ同時形成される燃料噴射弁10では、そのシート部形成時点においてシート部間に挟まれる隙間部48に燃料が閉じ込められた状態となる。そのため、下流側シート部47の流れ方向両側(すなわち上流側と下流側)において流体の圧力差が実質的になくなる。下流側シート部47のクリアランスからの燃料洩れ量は下流側シート部47の流れ方向両側の圧力差に比例するので、その圧力差が実質的になくなる燃料噴射弁10では、下流側シート部47の上流側から下流側にある各噴孔31への燃料洩れが防止される。したがって、噴孔31からの燃料噴射量を高精度に制御することが可能になる。
【0017】
尚、ニードル40が下流側に移動するとき、上流側のエッジ部44が下流側のエッジ部45より先に弁座28の内周面29に当接するようにしてもよい。この場合、上流側シート部46が下流側シート部47より先に形成されるため、下流側シート部47の形成時点においては隙間部48に燃料が閉じ込められた状態となり、上述と同様の効果が得られる。
【0018】
(第二実施形態)
本発明の第二実施形態による流体噴射弁としての燃料噴射弁を図3に示す。第一実施形態と実質的に同一の構成部分には同一符号を付す。
第二実施形態の燃料噴射弁50において上流側のエッジ部44は、ゴム等の弾性材で形成され、金属材で形成された下流側のエッジ部45よりも高い弾性を有している。換言すれば、下流側のエッジ部45の剛性は上流側のエッジ部44の剛性よりも高くされている。上流側のエッジ部44と下流側のエッジ部45とが弁座28の内周面29に当接するタイミングについては、両者がほぼ同時となるように設定されるが、後者よりも前者が先になるように設定してもよい。
【0019】
このような燃料噴射弁50では、弾性の高いエッジ部44が形成する上流側シート部46において液密性が高められ、それにより上流側シート部46の上流側から下流側にある隙間部48への燃料洩れが低減される。そのため、隙間部48に閉じ込められた燃料にさらに燃料が追加されて隙間部48内の圧力が増大することを抑制できるので、下流側シート部47における燃料洩れの防止効果が低下しない。それに加え、剛性の高いエッジ部45が形成する下流側シート部47においては、ニードル40が弁座28に当接するときの衝撃に対する耐久性(耐衝撃性)を確保することができる。
尚、下流側のエッジ部45を弾性材で形成し、上流側のエッジ部44をエッジ部45よりも低弾性の金属材で形成するようにしてもよい。
【0020】
(第三実施形態)
本発明の第三実施形態による流体噴射弁としての燃料噴射弁を図4に示す。第一実施形態と実質的に同一の構成部分には同一符号を付す。
第三実施形態の燃料噴射弁60では、外周面63が球面状のボール部材62でニードル40の底壁部が構成されている。また、弁ボディ26において弁座28の内周面29は、流路27の下流側に向かってテーパ角度がθ1,θ2と離散的に拡大する円錐面状に形成されている。すなわち内周面29は、小径側に向かってテーパ角度が段階的に拡大する円錐面状に形成されており、テーパ角度が変化する境界線の両側部分に二つの着座面64,65を形成している。テーパ角度がθ1である着座面64と、テーパ角度がθ1より大きなθ2である着座面65とは、流路27の流れ方向Xにおいて互いにずれている。ニードル40が下流側に移動することで、ボール部材62の外周面63は各着座面64,65に対して流れ方向Xにずれた位置において当接する。本実施形態において外周面63は各着座面64,65にほぼ同時に当接するが、外周面63が着座面65より先に着座面64に当接するようにしてもよい。着座面64と外周面63との当接部分により上流側シート部66が、着座面65と外周面63との当接部分により下流側シート部67がそれぞれ、ニードル40及び弁座28の周方向に延びる円環状に形成される。シート部66,67が共に形成された状態で、それらシート部66,67間には各着座面64,66と外周面63とを隔てる隙間部68が円環状に形成される。
【0021】
このような燃料噴射弁60では、シート部66,67が形成されると、上流側シート部66より上流側の流路27と下流側シート部67より下流側の各噴孔31との連通が遮断されるため、各噴孔31からの燃料噴射が遮断される。シート部66,67がほぼ同時形成される燃料噴射弁60では、そのシート部形成時点においてシート部間に挟まれる隙間部68に燃料が閉じ込められた状態となる。これにより、下流側シート部67の流れ方向両側で流体の圧力差が実質的になくなるため、下流側シート部67の上流側から下流側にある各噴孔31への燃料洩れが防止される。
【0022】
(第四実施形態)
本発明の第四実施形態による流体噴射弁としての燃料噴射弁を図5に示す。第一実施形態と実質的に同一の構成部分には同一符号を付す。
第四実施形態の燃料噴射弁70では、外周面73が球面状のボール部材72でニードル40の底壁部が構成されている。また、弁ボディ26において弁座28の内周面29は、流路27の下流側に向かって段階的に縮径する段付円柱面状に形成されており、一定径部分と径変化部分との境界線に二つのエッジ部74,75を形成している。エッジ部74とエッジ部75とは前者より後者が小径となる同軸円状に配置され、流路27の流れ方向Xにおいて互いにずれている。ニードル40が下流側に移動することで、ボール部材72の外周面73は各エッジ部74,75に対して、流れ方向Xにずれた位置において当接する。本実施形態において外周面73は各エッジ部74,75にほぼ同時に当接するが、外周面73がエッジ部75より先にエッジ部74に当接するようにしてもよい。エッジ部74と外周面73との当接部分により上流側シート部76が、エッジ部75と外周面73との当接部分により下流側シート部77がそれぞれ、ニードル40及び弁座28の周方向に延びる円環状に形成される。シート部76,77が共に形成された状態で、それらシート部76,77間には内周面29と外周面73とを隔てる隙間部78が円環状に形成される。
【0023】
このような燃料噴射弁70では、シート部76,77が形成されると、上流側シート部76より上流側の流路27と下流側シート部77より下流側の各噴孔31との連通が遮断されるため、各噴孔31からの燃料噴射が遮断される。シート部76,77がほぼ同時形成される燃料噴射弁70では、そのシート部形成時点においてシート部間に挟まれる隙間部78に燃料が閉じ込められた状態となる。これにより、下流側シート部77の流れ方向両側で流体の圧力差が実質的になくなるため、下流側シート部77の上流側から下流側にある各噴孔31への燃料洩れが防止される。
【0024】
尚、本実施形態ではエッジ部74,75の双方が金属材で形成されているが、上流側のエッジ部74を弾性材で形成し、下流側のエッジ部75をエッジ部74よりも低弾性の金属材で形成することで、第二実施形態と同様な効果を得るようにしてもよい。あるいは、下流側のエッジ部75を弾性材で形成し、上流側のエッジ部74をエッジ部75よりも低弾性の金属材で形成するようにしてもよい。
【0025】
ところで、上述の複数の実施形態では、弁部材としてのニードル40が流路27の下流側に移動するときに当該ニードル40が弁座28に当接する燃料噴射弁10,50,60,70に本発明を適用している。これに対し、弁部材が上流側への移動時に弁座に当接する流体噴射弁に本発明を適用してもよい。
また、上述の複数の実施形態では、本発明に従うシート部を二つずつ形成しているが、本発明に従うシート部を三つ以上形成するようにしてもよい。
【図面の簡単な説明】
【図1】本発明の第一実施形態による燃料噴射弁の要部を拡大して示す断面図である。
【図2】本発明の第一実施形態による燃料噴射弁を示す断面図である。
【図3】本発明の第二実施形態による燃料噴射弁の要部を拡大して示す断面図である。
【図4】本発明の第三実施形態による燃料噴射弁の要部を拡大して示す断面図である。
【図5】本発明の第四実施形態による燃料噴射弁の要部を拡大して示す断面図である。
【符号の説明】
10,50,60,70 燃料噴射弁(流体噴射弁)
26 弁ボディ
27 流路
28 弁座
29 内周面
30 噴孔プレート
31 噴孔
40 ニードル(弁部材)
42 底壁部
43 外周面
44,45,74,75 エッジ部
46,47,66,67,76,77 シート部
48,68,78 隙間部
62,72 ボール部材
63,73 外周面
64,65 着座面
X 流れ方向
θ,θ1,θ2 テーパ角度
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluid injection valve that injects fluid such as fuel.
[0002]
[Prior art]
BACKGROUND ART Conventionally, there is known a fluid injection valve in which a valve seat is provided on an upstream side of an injection hole of a valve body that forms a flow path, and fluid injection from the injection hole is shut off by contacting a valve member with the valve seat. It is. Patent Literature 1 discloses a technique in which an outer circumferential surface of a valve member is brought into contact with an inner circumferential surface of a valve seat to form one annular seat portion extending in a circumferential direction. In this technique, in order to control the fluid injection amount with high accuracy, it is necessary to reduce fluid leakage from the upstream to the downstream of the seat portion to the injection holes. As a method of reducing fluid leakage, a method of increasing processing accuracy such as roundness or surface roughness of a portion forming a seat portion in a valve member and / or a valve seat has been considered.
[0003]
[Patent Document 1]
JP 2001-317431 A
[Problems to be solved by the invention]
However, even if the processing accuracy of the seat portion forming portion in the valve member and / or the valve seat is improved, the seat portion forming portion is deformed with the assembly of the valve member, the valve seat and the like. For this reason, a clearance may be generated in the seat portion, and fluid leakage to the injection hole may not be sufficiently reduced.
An object of the present invention is to provide a fluid injection valve that prevents fluid leakage to an injection hole when fluid injection is cut off.
[0005]
[Means for Solving the Problems]
According to the first to ninth aspects of the present invention, the valve body has a valve seat surrounding the outer periphery of the flow path on the upstream side of the injection hole, and the valve member moves in the flow path to the downstream side or the upstream side to open the valve. By contacting the seat, fluid ejection from the injection hole is shut off. The plurality of seat portions formed by the abutment between the valve member and the valve seat are positioned to be shifted from each other in the flow direction of the flow path with a gap separating the valve member and the valve seat interposed therebetween. Thereby, since the fluid is confined in the gap between the two sheet portions arranged in the flow direction, the pressure difference of the fluid on both sides in the flow direction of the downstream sheet portion of the two sheet portions is reduced, and the downstream sheet portion is reduced. Fluid hardly leaks from the clearance of the part. According to the above principle, when the fluid ejection is interrupted, it is possible to prevent the fluid from leaking from the upstream side of the most downstream sheet portion to the injection hole located downstream.
[0006]
According to the second aspect of the present invention, when the valve member moves to the side in contact with the valve seat, the upstream seat portion and the downstream seat portion are formed almost simultaneously. On the other hand, according to the third aspect of the invention, when the valve member moves to the side in contact with the valve seat, the upstream seat portion is formed before the downstream seat portion. According to the second and third aspects of the present invention, at the time of forming the downstream sheet portion, the fluid is confined in the upstream gap of the downstream sheet portion. Therefore, the effect of preventing fluid leakage in the downstream sheet portion can be reliably obtained simultaneously with the formation of the downstream sheet portion.
[0007]
According to the fourth and fifth aspects of the invention, in at least one of the valve member and the valve seat, one of the portion forming the upstream seat portion and the portion forming the downstream seat portion has higher elasticity than the other. Have. According to this configuration, it is possible to improve the liquid tightness of the sheet portion formed of the high elasticity portion, and to ensure the impact resistance of the sheet portion formed of the low elasticity portion, that is, the high rigidity portion. In particular, according to the fifth aspect of the present invention, since the portion forming the upstream sheet portion has higher elasticity than the portion forming the downstream sheet portion, the gap portion from the upstream side to the downstream side of the upstream sheet portion is provided. Makes it difficult for fuel to leak. Accordingly, it is possible to suppress an increase in pressure in the gap due to additional fuel being added to the fuel confined in the gap, and the effect of preventing fluid leakage in the downstream seat portion does not decrease.
[0008]
According to the invention described in claims 6 to 9, a plurality of annular seat portions extending in the circumferential direction are formed by the outer peripheral surface of the valve member being in contact with the inner peripheral surface of the valve seat. In particular, in the invention according to claim 7, the outer peripheral surface of the valve member is formed in a stepped cylindrical surface shape in which the diameter is gradually reduced, and the inner peripheral surface of the valve seat is formed in a conical surface shape in which the diameter is reduced at a substantially constant taper angle. Formed. On the other hand, in the invention described in claim 8, the outer peripheral surface of the valve member is formed in a spherical shape, and the inner peripheral surface of the valve seat is formed in a conical shape in which the taper angle gradually increases toward the smaller diameter side. . On the other hand, according to the ninth aspect of the present invention, the outer peripheral surface of the valve member is formed in a spherical shape, and the inner peripheral surface of the valve seat is formed in a stepped cylindrical shape whose diameter is gradually reduced. According to each of the inventions described in the seventh, eighth, and ninth aspects, it is possible to form a plurality of seat portions having the above-described effects with a simple configuration.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 2 shows a fuel injection valve as a fluid injection valve according to the first embodiment of the present invention. In the fuel injection valve 10 of the first embodiment, the cylindrical member 11, the fixed core 15, the movable core 16, the needle 40 as a valve member, and the valve body 26 each have a flow path through which fuel flows downward from above in FIG. The inner peripheral wall is formed.
[0010]
The cylindrical member 11 is formed in a cylindrical shape, and has a first magnetic part 12, a non-magnetic part 13, and a second magnetic part 14 in this order from the injection hole 31 side. The non-magnetic portion 13 prevents the magnetic flux from short-circuiting between the first magnetic portion 12 and the second magnetic portion 14. The fixed core 15 is formed of a magnetic material into a cylindrical shape, and is coaxially fixed to the inner peripheral wall of the cylindrical member 11. The movable core 16 is formed of a magnetic material into a cylindrical shape, and is accommodated coaxially on the inner peripheral side of the tubular member 11. The movable core 16 is capable of reciprocating in the axial direction on the downstream side of the fixed core 15. One end of the spring 17 is locked to the fixed core 15, and the other end of the spring 17 is locked to the movable core 16. The spring 17 urges the movable core 16 toward the non-fixed core side, that is, toward the downstream side. The filter 18 is fixed to the inner peripheral wall of the tubular member 11 on the upstream side of the fixed core 15, and removes foreign matter in the fuel supplied to the fuel injection valve 10 from a fuel transfer pipe (not shown).
[0011]
A spool 20 is fixed to the outer peripheral wall of the tubular member 11, and a coil 21 is wound around the spool 20. The outer peripheral sides of the spool 20 and the coil 21 are covered with a resin-molded connector 22. Terminal 23 is embedded in connector 22 and is electrically connected to coil 21. When the coil 21 is energized through the terminal 23, a magnetic attractive force acts between the fixed core 15 and the movable core 16.
[0012]
As shown in FIGS. 1 and 2, the valve body 26 is formed of a metal material and has a cylindrical shape, and is coaxially fixed to an inner peripheral wall at a downstream end of the cylindrical member 11. The injection hole plate 30 is formed in a cylindrical shape with a bottom and is coaxially fixed to the outer peripheral wall of the valve body 26. A plurality of injection holes 31 penetrate the vicinity of the center of the bottom wall of the injection hole plate 30. The flow path 27 formed by the inner peripheral wall of the valve body 26 communicates with each of the injection holes 31 at the downstream end, and flows the fuel toward each of the injection holes 31. The valve body 26 forms a valve seat 28 at an inner peripheral wall portion surrounding the outer periphery of the downstream end of the flow path 27, and the valve seat 28 is located upstream of each injection hole 31. The inner peripheral surface 29 of the valve seat 28 is formed in a conical shape whose diameter decreases at a substantially constant taper angle θ toward the downstream side of the flow path 27.
[0013]
The needle 40 is entirely formed of a metal material, has a cylindrical shape with a bottom, and is accommodated coaxially on the inner peripheral side of the valve body 26 and the cylindrical member 11. The needle 40 is joined to the movable core 16 on the side opposite to the bottom wall, and the needle 40 can reciprocate in the axial direction integrally with the movable core 16. A plurality of through holes 41 penetrate the side wall of the needle 40, and the fuel flows from the flow path in the needle 40 through each through hole 41 into the flow path 27.
[0014]
The bottom wall 42 of the needle 40 projects into the flow path 27 on the inner peripheral side of the valve seat 28. The outer peripheral surface 43 of the bottom wall portion 42 is formed in the shape of a stepped cylinder whose diameter is gradually reduced toward the downstream side of the flow path 27, and two boundary lines between the constant diameter portion and the diameter change portion are provided. Edge portions 44 and 45 are formed. The edge portion 44 and the edge portion 45 are arranged in a coaxial circular shape with the latter having a smaller diameter than the former, and are shifted from each other in the flow direction X of the flow path 27. As the needle 40 moves to the downstream side, the edge portion 44 and the edge portion 45 abut on the inner peripheral surface 29 of the valve seat 28 at a position shifted in the flow direction X at the same time. The upstream seat portion 46 is formed by the contact portion between the edge portion 44 and the inner peripheral surface 29, and the downstream seat portion 47 is formed by the contact portion between the edge portion 45 and the inner peripheral surface 29, respectively. It is formed in an annular shape extending in the circumferential direction. In a state where the sheet portions 46 and 47 are formed together, a gap portion 48 that separates the outer peripheral surface 43 and the inner peripheral surface 29 is formed between the sheet portions 46 and 47 in an annular shape. The formation of the seat portions 46 and 47 blocks communication between the flow path 27 upstream of the upstream seat portion 46 and each of the injection holes 31 downstream of the downstream seat portion 47.
[0015]
In the fuel injection valve 10 described above, when energization of the coil 21 is turned on and a magnetic attraction force is generated between the fixed core 15 and the movable core 16, the movable core 16 together with the needle 40 resists the urging force of the spring 17. And move upstream. As a result, the respective edge portions 44 and 45 of the needle 40 are separated from the inner peripheral surface 29 of the valve seat 28, so that fuel is injected from the respective injection holes 31.
[0016]
On the other hand, when the power to the coil 21 is turned off and the magnetic attraction between the cores 15 and 16 disappears, the movable core 16 and the needle 40 move downstream by the urging force of the spring 17. As a result, the respective edge portions 44 and 45 of the needle 40 abut on the inner peripheral surface 29 of the valve seat 28 to form the respective seat portions 46 and 47, so that the fuel injection from the respective injection holes 31 is shut off. In the fuel injection valve 10 in which the seats 46 and 47 are formed almost simultaneously, the fuel is confined in the gap 48 sandwiched between the seats when the seat is formed. Therefore, the pressure difference of the fluid on both sides in the flow direction of the downstream sheet portion 47 (that is, the upstream side and the downstream side) is substantially eliminated. Since the amount of fuel leakage from the clearance of the downstream seat portion 47 is proportional to the pressure difference between both sides of the downstream seat portion 47 in the flow direction, in the fuel injection valve 10 where the pressure difference is substantially eliminated, Fuel leakage from the upstream side to each of the injection holes 31 on the downstream side is prevented. Therefore, the fuel injection amount from the injection hole 31 can be controlled with high accuracy.
[0017]
When the needle 40 moves downstream, the upstream edge portion 44 may abut the inner peripheral surface 29 of the valve seat 28 before the downstream edge portion 45. In this case, since the upstream sheet portion 46 is formed before the downstream sheet portion 47, the fuel is confined in the gap portion 48 at the time of formation of the downstream sheet portion 47, and the same effect as described above is obtained. can get.
[0018]
(Second embodiment)
FIG. 3 shows a fuel injection valve as a fluid injection valve according to a second embodiment of the present invention. Components substantially the same as those in the first embodiment are denoted by the same reference numerals.
In the fuel injection valve 50 of the second embodiment, the upstream edge portion 44 is formed of an elastic material such as rubber, and has higher elasticity than the downstream edge portion 45 formed of a metal material. In other words, the rigidity of the downstream edge 45 is higher than the rigidity of the upstream edge 44. The timing at which the upstream edge portion 44 and the downstream edge portion 45 come into contact with the inner peripheral surface 29 of the valve seat 28 is set so that they are substantially simultaneous, but the former is earlier than the latter. May be set.
[0019]
In such a fuel injection valve 50, the liquid-tightness is improved in the upstream seat portion 46 formed by the highly elastic edge portion 44, and thereby, the gap is formed from the upstream side of the upstream seat portion 46 to the downstream side thereof. Fuel leakage is reduced. For this reason, it is possible to suppress an increase in the pressure in the gap portion 48 due to the additional fuel added to the fuel confined in the gap portion 48, and the effect of preventing the fuel leakage in the downstream seat portion 47 does not decrease. In addition, in the downstream seat portion 47 formed by the highly rigid edge portion 45, durability (impact resistance) against impact when the needle 40 abuts on the valve seat 28 can be secured.
Note that the downstream edge portion 45 may be formed of an elastic material, and the upstream edge portion 44 may be formed of a metal material having lower elasticity than the edge portion 45.
[0020]
(Third embodiment)
FIG. 4 shows a fuel injection valve as a fluid injection valve according to a third embodiment of the present invention. Components substantially the same as those in the first embodiment are denoted by the same reference numerals.
In the fuel injection valve 60 of the third embodiment, the bottom wall portion of the needle 40 is constituted by the ball member 62 whose outer peripheral surface 63 is spherical. In the valve body 26, the inner peripheral surface 29 of the valve seat 28 is formed in a conical shape whose taper angle discretely increases to θ1 and θ2 toward the downstream side of the flow path 27. That is, the inner peripheral surface 29 is formed in a conical shape whose taper angle gradually increases toward the smaller diameter side, and two seating surfaces 64 and 65 are formed on both sides of the boundary line where the taper angle changes. ing. The seating surface 64 whose taper angle is θ1 and the seating surface 65 whose taper angle is θ2 larger than θ1 are shifted from each other in the flow direction X of the flow path 27. As the needle 40 moves downstream, the outer peripheral surface 63 of the ball member 62 comes into contact with each of the seating surfaces 64 and 65 at a position shifted in the flow direction X. In the present embodiment, the outer peripheral surface 63 abuts the seat surfaces 64 and 65 almost simultaneously, but the outer peripheral surface 63 may abut the seat surface 64 before the seat surface 65. The upstream seat portion 66 is formed by the contact portion between the seating surface 64 and the outer peripheral surface 63, and the downstream seat portion 67 is formed by the contact portion between the seating surface 65 and the outer peripheral surface 63, respectively, in the circumferential direction of the needle 40 and the valve seat 28. And is formed in an annular shape. In a state where the seat portions 66 and 67 are formed together, a gap portion 68 that separates the seating surfaces 64 and 66 from the outer peripheral surface 63 is formed between the seat portions 66 and 67 in an annular shape.
[0021]
In such a fuel injection valve 60, when the seat portions 66 and 67 are formed, communication between the flow path 27 upstream of the upstream seat portion 66 and each injection hole 31 downstream of the downstream seat portion 67 is established. Since the fuel injection is cut off, the fuel injection from each injection hole 31 is cut off. In the fuel injection valve 60 in which the seats 66 and 67 are formed almost simultaneously, the fuel is confined in the gap 68 sandwiched between the seats when the seat is formed. Thereby, the pressure difference of the fluid on both sides in the flow direction of the downstream seat portion 67 is substantially eliminated, so that the fuel leakage from the upstream side of the downstream seat portion 67 to each of the injection holes 31 on the downstream side is prevented.
[0022]
(Fourth embodiment)
FIG. 5 shows a fuel injection valve as a fluid injection valve according to a fourth embodiment of the present invention. Components substantially the same as those in the first embodiment are denoted by the same reference numerals.
In the fuel injection valve 70 of the fourth embodiment, the bottom wall portion of the needle 40 is constituted by the ball member 72 whose outer peripheral surface 73 is spherical. In the valve body 26, the inner peripheral surface 29 of the valve seat 28 is formed in a stepped cylindrical shape whose diameter gradually decreases toward the downstream side of the flow path 27, and has a constant diameter portion and a diameter change portion. , Two edge portions 74 and 75 are formed. The edge portion 74 and the edge portion 75 are arranged in a coaxial circle with the latter having a smaller diameter than the former, and are shifted from each other in the flow direction X of the flow path 27. As the needle 40 moves downstream, the outer peripheral surface 73 of the ball member 72 comes into contact with each of the edge portions 74 and 75 at a position shifted in the flow direction X. In the present embodiment, the outer peripheral surface 73 contacts the edge portions 74 and 75 almost simultaneously. However, the outer peripheral surface 73 may contact the edge portion 74 before the edge portion 75. The contact portion between the edge portion 74 and the outer peripheral surface 73 causes the upstream seat portion 76, and the contact portion between the edge portion 75 and the outer peripheral surface 73 causes the downstream seat portion 77 to rotate in the circumferential direction of the needle 40 and the valve seat 28. And is formed in an annular shape. In a state where the sheet portions 76 and 77 are formed together, a gap portion 78 that separates the inner peripheral surface 29 and the outer peripheral surface 73 is formed between the sheet portions 76 and 77 in an annular shape.
[0023]
In such a fuel injection valve 70, when the seat portions 76 and 77 are formed, the communication between the flow path 27 upstream of the upstream seat portion 76 and each of the injection holes 31 downstream of the downstream seat portion 77 is established. Since the fuel injection is cut off, the fuel injection from each injection hole 31 is cut off. In the fuel injection valve 70 in which the seats 76 and 77 are formed almost simultaneously, at the time of forming the seat, the fuel is confined in the gap 78 sandwiched between the seats. Thereby, the pressure difference of the fluid on both sides in the flow direction of the downstream seat portion 77 is substantially eliminated, so that the fuel leakage from the upstream side of the downstream seat portion 77 to each of the injection holes 31 on the downstream side is prevented.
[0024]
In this embodiment, both the edge portions 74 and 75 are formed of a metal material. However, the upstream edge portion 74 is formed of an elastic material, and the downstream edge portion 75 has lower elasticity than the edge portion 74. The same effect as in the second embodiment may be obtained by forming with the above metal material. Alternatively, the downstream edge portion 75 may be formed of an elastic material, and the upstream edge portion 74 may be formed of a metal material having lower elasticity than the edge portion 75.
[0025]
By the way, in the above-described embodiments, when the needle 40 as the valve member moves to the downstream side of the flow path 27, the needle 40 comes into contact with the fuel injection valve 10, 50, 60, 70 which contacts the valve seat 28. The invention has been applied. On the other hand, the present invention may be applied to a fluid injection valve that comes into contact with a valve seat when the valve member moves to the upstream side.
In the above-described embodiments, two sheet portions according to the present invention are formed, but three or more sheet portions according to the present invention may be formed.
[Brief description of the drawings]
FIG. 1 is an enlarged sectional view showing a main part of a fuel injection valve according to a first embodiment of the present invention.
FIG. 2 is a sectional view showing a fuel injection valve according to the first embodiment of the present invention.
FIG. 3 is an enlarged sectional view showing a main part of a fuel injection valve according to a second embodiment of the present invention.
FIG. 4 is an enlarged sectional view showing a main part of a fuel injection valve according to a third embodiment of the present invention.
FIG. 5 is an enlarged sectional view showing a main part of a fuel injection valve according to a fourth embodiment of the present invention.
[Explanation of symbols]
10, 50, 60, 70 Fuel injection valve (fluid injection valve)
26 valve body 27 flow path 28 valve seat 29 inner peripheral surface 30 injection hole plate 31 injection hole 40 needle (valve member)
42 Bottom wall 43 Outer peripheral surfaces 44, 45, 74, 75 Edges 46, 47, 66, 67, 76, 77 Seats 48, 68, 78 Gaps 62, 72 Ball members 63, 73 Outer peripheral surfaces 64, 65 Surface X Flow direction θ, θ1, θ2 Taper angle

Claims (9)

噴孔に向かって流体を流す流路を形成し、前記流路の外周を囲む弁座を前記噴孔より上流側に有する弁ボディと、
前記流路内を下流側又は上流側に移動して前記弁座に当接することにより前記噴孔からの前記流体の噴射を遮断する弁部材と、
を備え、
前記弁部材と前記弁座とが当接して形成する複数のシート部は、前記弁部材と前記弁座とを隔てる隙間部を間に挟んで、前記流路の流れ方向に互いにずれて位置することを特徴とする流体噴射弁。
A valve body having a flow path through which a fluid flows toward the injection hole and having a valve seat surrounding the outer periphery of the flow path on the upstream side of the injection hole;
A valve member that shuts off the ejection of the fluid from the injection hole by moving in the flow path to the downstream side or the upstream side and abutting on the valve seat,
With
A plurality of seat portions formed by the valve member and the valve seat in contact with each other are located offset from each other in the flow direction of the flow path with a gap portion separating the valve member and the valve seat therebetween. A fluid injection valve characterized by the above-mentioned.
前記弁部材が前記弁座と当接する側に移動するとき、上流側の前記シート部と下流側の前記シート部とがほぼ同時に形成されることを特徴とする請求項1に記載の流体噴射弁。2. The fluid injection valve according to claim 1, wherein when the valve member moves to a side in contact with the valve seat, the upstream seat portion and the downstream seat portion are formed substantially simultaneously. 3. . 前記弁部材が前記弁座と当接する側に移動するとき、上流側の前記シート部は下流側の前記シート部より先に形成されることを特徴とする請求項1に記載の流体噴射弁。2. The fluid injection valve according to claim 1, wherein when the valve member moves to a side that comes into contact with the valve seat, the upstream seat portion is formed earlier than the downstream seat portion. 3. 前記弁部材及び前記弁座の少なくとも一方において、上流側の前記シート部を形成する部分と下流側の前記シート部を形成する部分とのうち一方は他方より高い弾性を有することを特徴とする請求項1、2又は3に記載の流体噴射弁。In at least one of the valve member and the valve seat, one of a portion forming the seat portion on the upstream side and a portion forming the seat portion on the downstream side has higher elasticity than the other. Item 4. The fluid injection valve according to item 1, 2 or 3. 前記弁部材及び前記弁座の少なくとも一方において、上流側の前記シート部を形成する部分は下流側の前記シート部を形成する部分より高い弾性を有することを特徴とする請求項4に記載の流体噴射弁。The fluid according to claim 4, wherein at least one of the valve member and the valve seat has a higher elasticity at a portion forming the seat portion on the upstream side than a portion forming the seat portion on the downstream side. Injection valve. 前記弁部材の外周面と前記弁座の内周面とが当接することにより、周方向に延びる環状の前記シート部が複数形成されることを特徴とする請求項1〜5のいずれか一項に記載の流体噴射弁。The plurality of annular seat portions extending in the circumferential direction are formed by abutting an outer peripheral surface of the valve member and an inner peripheral surface of the valve seat. 3. The fluid injection valve according to item 1. 前記弁部材の外周面は段階的に縮径する段付円柱面状に形成され、前記弁座の内周面はほぼ一定のテーパ角度で縮径する円錐面状に形成されることを特徴とする請求項6に記載の流体噴射弁。An outer peripheral surface of the valve member is formed in a stepped cylindrical surface having a diameter gradually reduced, and an inner peripheral surface of the valve seat is formed in a conical surface with a reduced diameter at a substantially constant taper angle. 7. The fluid injection valve according to claim 6, wherein: 前記弁部材の外周面は球面状に形成され、前記弁座の内周面は小径側に向かってテーパ角度が段階的に拡大する円錐面状に形成されることを特徴とする請求項6に記載の流体噴射弁。7. The valve device according to claim 6, wherein an outer peripheral surface of the valve member is formed in a spherical shape, and an inner peripheral surface of the valve seat is formed in a conical surface in which a taper angle gradually increases toward a small diameter side. A fluid injection valve as described. 前記弁部材の外周面は球面状に形成され、前記弁座の内周面は段階的に縮径する段付円柱面状に形成されることを特徴とする請求項6に記載の流体噴射弁。7. The fluid injection valve according to claim 6, wherein an outer peripheral surface of the valve member is formed in a spherical shape, and an inner peripheral surface of the valve seat is formed in a stepped cylindrical surface whose diameter is reduced stepwise. .
JP2003105234A 2003-04-09 2003-04-09 Fluid injection valve Pending JP2004308603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003105234A JP2004308603A (en) 2003-04-09 2003-04-09 Fluid injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003105234A JP2004308603A (en) 2003-04-09 2003-04-09 Fluid injection valve

Publications (1)

Publication Number Publication Date
JP2004308603A true JP2004308603A (en) 2004-11-04

Family

ID=33467806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105234A Pending JP2004308603A (en) 2003-04-09 2003-04-09 Fluid injection valve

Country Status (1)

Country Link
JP (1) JP2004308603A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573670U (en) * 1978-11-17 1980-05-21
JPS588872A (en) * 1981-07-06 1983-01-19 Michitoshi Kitano Valve
JPS63152968U (en) * 1987-03-27 1988-10-06
JPH04106576U (en) * 1991-02-28 1992-09-14 エヌオーケー株式会社 solenoid valve
JPH11200999A (en) * 1998-01-09 1999-07-27 Nissan Motor Co Ltd Fuel injection valve for internal combustion engine
JP2000517023A (en) * 1997-06-07 2000-12-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング valve
WO2002001066A1 (en) * 2000-06-27 2002-01-03 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
JP2002331447A (en) * 2001-05-10 2002-11-19 Denso Corp Seat part grinding method of fuel injection nozzle
JP2003240149A (en) * 2002-02-13 2003-08-27 Aisan Ind Co Ltd Solenoid valve

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573670U (en) * 1978-11-17 1980-05-21
JPS588872A (en) * 1981-07-06 1983-01-19 Michitoshi Kitano Valve
JPS63152968U (en) * 1987-03-27 1988-10-06
JPH04106576U (en) * 1991-02-28 1992-09-14 エヌオーケー株式会社 solenoid valve
JP2000517023A (en) * 1997-06-07 2000-12-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング valve
JPH11200999A (en) * 1998-01-09 1999-07-27 Nissan Motor Co Ltd Fuel injection valve for internal combustion engine
WO2002001066A1 (en) * 2000-06-27 2002-01-03 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
JP2002331447A (en) * 2001-05-10 2002-11-19 Denso Corp Seat part grinding method of fuel injection nozzle
JP2003240149A (en) * 2002-02-13 2003-08-27 Aisan Ind Co Ltd Solenoid valve

Similar Documents

Publication Publication Date Title
JP6021785B2 (en) Fuel injection valve
JP2010229997A (en) Fuel injection valve
JP2007205234A (en) Fuel injection valve
JP2008031853A (en) Fuel injection valve
JP2010216344A (en) Fuel injection valve
JP5262972B2 (en) Fuel injection valve
JP2006250026A (en) Fuel injection valve
CN102959297A (en) Solenoid valve
JP2006258035A (en) Fuel injection valve
JP2018159294A (en) Fuel injection valve
JP6613973B2 (en) Fuel injection device
JP2011163242A (en) Fuel injection valve
JP4577654B2 (en) Electromagnetic drive device and fuel injection valve using the same
US11162465B2 (en) Fuel injection valve
JP2007064113A (en) Fuel injection valve
JP2004308603A (en) Fluid injection valve
JP2007071105A (en) Fuel injector
JP4305858B2 (en) Fuel injection valve
JP4147405B2 (en) Fuel injection valve
WO2020039955A1 (en) Fuel injection valve
JP3932967B2 (en) Fuel injection device
JP6554955B2 (en) Fuel injection valve
JP6256495B2 (en) Fuel injection valve
WO2017010034A1 (en) Fuel injection valve
JP2005069090A (en) Fuel injection valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070723