【0001】
【発明の属する技術分野】
本発明は、圧縮自己着火内燃機関の燃料噴射時期を制御する制御装置に関する。
【0002】
【従来の技術】
燃費を向上させるために内燃機関に供給する混合気の空燃比をリーン化すると、触媒のNOxの還元性能が低下する。そこで、リーン燃焼とNOx排出量の低減を両立させるために、通常の火花点火内燃機関よりも圧縮比を高めて、混合気を圧縮によって自己着火させるようにした圧縮自己着火内燃機関が従来より知られている。この圧縮自己着火内燃機関の圧縮比は、火花点火内燃機関の圧縮比よりは高く、ディーゼル機関の圧縮比より低く設定される。圧縮自己着火内燃機関は、混合気の燃焼形態がディーゼル機関とは異なるため、燃焼温度が比較的低く、NOxの排出量が少ないという利点を有する。
【0003】
圧縮自己着火内燃機関では、混合気の着火を確実にするために排気の熱を利用しており、その一手法である内部EGR(排気還流)導入手法として、排気弁の閉弁時期を排気行程中に設定するとともに、吸気弁の開弁時期を吸気行程中に設定することにより、吸排気弁のバルブタイミングに負のオーバラップ期間を設けることが行われる。特許文献1には、さらに着火を確実にするために、燃焼室内に直接燃料を噴射する燃料噴射弁を設け、前記負のオーバラップ期間において燃料を噴射する手法が提案されている。
【0004】
【特許文献1】
特開2001−3771号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の燃料噴射時期の設定では、排気弁を閉弁した後の燃焼室内の圧力が上昇しているときに燃料が噴射されるため、噴射された燃料の分布に偏りが生じ、均質な燃料の活性化効果が得られない。また、負のオーバラップ期間中に燃料を噴射させるため、燃料を活性化させるための時間が少ない。そのため、自己着火の促進効果が小さいという課題があった。
【0006】
本発明はこの点に着目してなされたものであり、燃料噴射時期をより適切に制御し、圧縮自己着火内燃機関における着火をより確実にすることができる制御装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため請求項1に記載の発明は、燃焼室内に直接燃料を噴射する燃料噴射弁を備え、排気弁の閉弁時期を排気行程中に設定するとともに、吸気弁の開弁時期を吸気行程中に設定することが可能な圧縮自己着火内燃機関の制御装置において、前記排気弁の開弁期間中に燃料噴射を実行するように前記燃料噴射弁を制御する燃料噴射時期制御手段を備えることを特徴とする。
【0008】
この構成によれば、排気弁の開弁期間中に燃焼室内に直接燃料が噴射されるので、ピストン位置が比較的低く、かつ燃焼室内の圧力が大気圧どほぼ同等の状態で燃料が噴射される。したがって、ピストン位置が高く燃焼室内の圧力が高い状態で噴射する場合に比べて、噴射された燃料が均質化し易く、また負のオーバラップ期間中の圧力上昇過程の初期の段階から燃料の活性化が進行していく。その結果、噴射された燃料をより確実に着火させることが可能となる。
【0009】
また、前記燃料噴射時期制御手段は、前記燃料噴射の実行時期を、前記排気弁のリフト量が最大となる時期より後に設定することが望ましい。
【0010】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照して説明する。
図1は本発明の一実施形態にかかる内燃機関(以下「エンジン」という)の構成を示す図である。エンジン10は、シリンダブロック8及びシリンダヘッド4を結合して構成され、シリンダブロック8には、ピストン7が摺動可能に設けられている。シリンダブロック8、ピストン7及びシリンダヘッド4に囲まれて、燃焼室9が構成されている。シリンダヘッド4には、吸気ポート2及び排気ポート11が設けられている。吸気ポート2が燃焼室9に開口する部分には、吸気弁5が設けられ、排気ポート11が燃焼室9に開口する部分には、排気弁6が設けられている。吸気弁5及び排気弁6は、電磁駆動機構12により駆動される電磁駆動弁であり、開弁時期及び閉弁時期を任意に設定することができる。電磁駆動型の吸排気弁は、例えば特開2000−283316号公報などに示されている。
【0011】
シリンダヘッド4には、燃焼室9内に直接燃料を噴射する第1燃料噴射弁1と、吸気ポート2内に燃料を噴射する第2燃料噴射弁3とが設けられている。第1燃料噴射弁1及び第2燃料噴射弁3には、加圧された燃料が図示しない燃料通路を介して供給される。
【0012】
第1燃料噴射弁1及び第2燃料噴射弁3は、図2に示すように電子制御ユニット(以下「ECU」という)21に電気的に接続されており、燃料噴射時期及び燃料噴射時間がECU21により制御される。ECU21は、電磁駆動機構12に接続されており、吸気弁5及び排気弁6の開閉弁制御を行う。
【0013】
ECU21には、エンジン10のクランク軸(図示せず)の回転角度を検出するクランク角度位置センサ22が接続されており、クランク軸の回転角度に応じた信号がECU21に供給される。クランク角度位置センサ22は、エンジン10の特定の気筒の所定クランク角度位置でパルス(以下「CYLパルス」という)を出力する気筒判別センサ、各気筒の吸入行程開始時の上死点(TDC)に関し所定クランク角度前のクランク角度位置で(4気筒エンジンではクランク角180度毎に)TDCパルスを出力するTDCセンサ及びTDCパルスより短い一定クランク角周期(例えば30度周期)で1パルス(以下「CRKパルス」という)を発生するCRKセンサから成り、CYLパルス、TDCパルス及びCRKパルスがECU21に供給される。これらのパルスは、吸排気弁の開弁期間、燃料噴射時期等の各種タイミング制御及びエンジン回転数(エンジン回転速度)NEの検出に使用される。
【0014】
またECU21には、エンジン10により駆動される車両のアクセルペダルの踏み込み量(以下「アクセルペダル操作量」という)APを検出するアクセルセンサ23が接続されており、その検出信号はECU21に供給される。
【0015】
ECU21は、アクセルペダル操作量APに応じてエンジンの要求出力トルクTRQを算出し、該要求出力トルクTRQ及びエンジン回転数NEに応じて、第1燃料噴射弁1及び第2燃料噴射弁3の燃料噴射時期CAINJ1,CAINJ2、及び燃料噴射時間TOUT1,TOUT2を算出する。そして、算出された燃料噴射時期CAINJ1,CAINJ2、及び燃料噴射時間TOUT1,TOUT2に応じて、第1燃料噴射弁1及び第2燃料噴射弁3の作動制御が行われる。本実施形態では、第1燃料噴射弁1により補助噴射が実行され、第2燃料噴射弁3により主噴射が実行される。
【0016】
さらにECU21は、要求出力トルクTRQ及びエンジン回転数NEに応じて吸気弁5及び排気弁6の開弁時期及び閉弁時期を決定し、吸気弁5及び排気弁6の駆動制御を行う。
【0017】
図3(a)は、吸排気弁のリフト特性を示す図であり、同図(b)は、燃焼室内の圧力PCYLの推移を示す図である。これらの図において、「BDC」はピストン7が下死点(Bottom Dead Center)にあるクランク角度位置に対応し、「TDC」は、ピストン7が上死点(Top Dead Center)にあるクランク角度位置に対応する。また図3(a)において、曲線L1が排気弁6のリフト特性を示し、曲線L2が吸気弁5のリフト特性を示す。この図に示すように、本実施形態では、排気の一部を燃焼室9内に残すために、排気弁6の閉弁時期CAECが、排気行程の途中に設定され、吸気弁3の開弁時期CAIOが吸気行程の途中に設定されている。すなわち、吸排気弁の開弁期間に負のオーバラップ期間TNOLが設けられている。そして、第1燃料噴射弁1による第1燃料噴射時期CAINJ1は、排気弁6の開弁期間中であって、同図(a)のクランク角度範囲RCAIJCに設定されている。また、第2燃料噴射弁3による第2燃料噴射時期CAINJ2は、負のオーバラップ期間TNOL中に設定されている。
【0018】
なお第1燃料噴射時期CAINJ1は、排気弁6のリフト量が最大となる角度位置CALMAXより後(遅角側)であって、排気弁6の閉弁時期CAECより前(進角側)に設定されることが望ましい。排気弁6の開弁期間中に燃料噴射を行うため、噴射した燃料のうち一部がそのまま排出される。排気弁6のリフト量が最大となる角度位置CALMAXより後に燃料噴射時期を設定することにより、噴射された燃料がそのまま排出される量を抑制することができる。
【0019】
第1燃料噴射弁1による第1燃料噴射時期CAINJ1を、排気弁6の開弁期間中に設定することにより、以下のような効果を奏する。すなわち、ピストン7の位置が比較的低く(下死点に近く)、燃焼室内の圧力が大気圧どほぼ同等の状態(図3(b)参照)で燃料が噴射されるので、ピストン位置が高く(上死点に近く)燃焼室内の圧力が高い状態で噴射する場合に比べて、噴射された燃料が均質化し易い。さらに、負のオーバラップ期間TNOL中の圧力上昇過程(排気弁6の閉弁時期CAEC〜排気TDC)の初期の段階から燃料の活性化が進行していくので、噴射された燃料をより確実に着火させることが可能となる。
【0020】
本実施形態では、ECU21が燃料噴射時期制御手段を構成する。
なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。例えば、上述した実施形態では、第1燃料噴射弁1及び第2燃料噴射弁3を設け、第1燃料噴射弁1により補助噴射を行い、第2燃料噴射弁3により主噴射を行うようにしたが、第2燃料噴射弁3を設けずに、第1燃料噴射弁1のみを設けて、上述したような燃料噴射時期CAINJ1において燃料噴射を実行し、必要な燃料量を全部噴射するようにしてもよい。
【0021】
また吸気弁5及び排気弁6の駆動機構は、電磁駆動式のものに限るものではなく、カム駆動式のものであってもよい。
また本発明は、クランク軸を鉛直方向とした船外機などのような船舶推進機用エンジンなどの制御にも適用が可能である。
【0022】
【発明の効果】
以上詳述したように請求項1に記載の発明によれば、排気弁の開弁期間中に燃焼室内に直接燃料が噴射されるので、ピストン位置が比較的低く、かつ燃焼室内の圧力が大気圧どほぼ同等の状態で燃料が噴射される。したがって、ピストン位置が高く燃焼室内の圧力が高い状態で噴射する場合に比べて、噴射された燃料が均質化し易く、また負のオーバラップ期間中の圧力上昇過程の初期の段階から燃料の活性化が進行していく。その結果、噴射された燃料をより確実に着火させることが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかる内燃機関の構成を示す図である。
【図2】図1に示す内燃機関を制御する制御装置の構成を示すブロック図である。
【図3】燃料噴射の実行時期を説明するための図である。
【符号の説明】
1 第1燃料噴射弁
2 吸気ポート
5 吸気弁
6 排気弁
7 ピストン
9 燃焼室
10 内燃機関
12 電磁駆動機構
21 電子制御ユニット(燃料噴射時期制御手段)
22 クランク角度位置センサ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device for controlling a fuel injection timing of a compression self-ignition internal combustion engine.
[0002]
[Prior art]
If the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine is made lean in order to improve the fuel efficiency, the NOx reduction performance of the catalyst decreases. Therefore, in order to achieve both lean combustion and reduction of NOx emission, there has been known a compression self-ignition internal combustion engine in which the compression ratio is increased more than that of a normal spark ignition internal combustion engine and the air-fuel mixture is self-ignited by compression. Have been. The compression ratio of the compression self-ignition internal combustion engine is set higher than the compression ratio of the spark ignition internal combustion engine and lower than the compression ratio of the diesel engine. The compression self-ignition internal combustion engine has the advantage that the combustion temperature of the air-fuel mixture is different from that of the diesel engine, so that the combustion temperature is relatively low and the amount of NOx emission is small.
[0003]
In a compression self-ignition internal combustion engine, the heat of exhaust gas is used to ensure the ignition of the air-fuel mixture. As one method of introducing internal EGR (exhaust gas recirculation), the closing timing of the exhaust valve is determined by the exhaust stroke. By setting the opening time of the intake valve during the intake stroke and setting the opening timing of the intake valve during the intake stroke, a negative overlap period is provided in the valve timing of the intake and exhaust valves. Patent Literature 1 proposes a method of providing a fuel injection valve for directly injecting fuel into a combustion chamber and injecting fuel during the negative overlap period in order to further ensure ignition.
[0004]
[Patent Document 1]
JP-A-2001-3771
[Problems to be solved by the invention]
However, in the above-described conventional setting of the fuel injection timing, the fuel is injected when the pressure in the combustion chamber after the exhaust valve is closed increases, so that the distribution of the injected fuel is biased, and the uniformity of the injected fuel occurs. The fuel activation effect cannot be obtained. Further, since the fuel is injected during the negative overlap period, the time for activating the fuel is short. Therefore, there is a problem that the effect of promoting self-ignition is small.
[0006]
The present invention has been made in view of this point, and an object of the present invention is to provide a control device that can more appropriately control the fuel injection timing and can more reliably ignite a compression self-ignition internal combustion engine. .
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 includes a fuel injection valve that injects fuel directly into a combustion chamber, sets a closing timing of an exhaust valve during an exhaust stroke, and sets a timing of opening an intake valve. In the control device of the compression self-ignition internal combustion engine capable of setting the fuel injection timing during the intake stroke, the fuel injection timing control means for controlling the fuel injection valve so as to execute the fuel injection during the opening period of the exhaust valve is provided. It is characterized by having.
[0008]
According to this configuration, since the fuel is directly injected into the combustion chamber during the opening period of the exhaust valve, the fuel is injected with the piston position relatively low and the pressure in the combustion chamber substantially equal to the atmospheric pressure. You. Therefore, compared to the case where the piston position is high and the pressure in the combustion chamber is high, the injected fuel is more likely to be homogenized, and the fuel is activated from the initial stage of the pressure increase process during the negative overlap period. Progresses. As a result, the injected fuel can be more reliably ignited.
[0009]
Further, it is preferable that the fuel injection timing control means sets the execution timing of the fuel injection after the timing at which the lift amount of the exhaust valve becomes maximum.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a configuration of an internal combustion engine (hereinafter, referred to as “engine”) according to one embodiment of the present invention. The engine 10 is configured by combining a cylinder block 8 and a cylinder head 4, and a piston 7 is slidably provided on the cylinder block 8. A combustion chamber 9 is surrounded by the cylinder block 8, the piston 7, and the cylinder head 4. The cylinder head 4 is provided with an intake port 2 and an exhaust port 11. An intake valve 5 is provided at a portion where the intake port 2 opens to the combustion chamber 9, and an exhaust valve 6 is provided at a portion where the exhaust port 11 opens to the combustion chamber 9. The intake valve 5 and the exhaust valve 6 are electromagnetically driven valves driven by the electromagnetic driving mechanism 12, and the opening timing and closing timing can be set arbitrarily. An electromagnetically driven intake / exhaust valve is disclosed in, for example, JP-A-2000-283316.
[0011]
The cylinder head 4 is provided with a first fuel injection valve 1 that injects fuel directly into the combustion chamber 9 and a second fuel injection valve 3 that injects fuel into the intake port 2. Pressurized fuel is supplied to the first fuel injection valve 1 and the second fuel injection valve 3 through a fuel passage (not shown).
[0012]
The first fuel injection valve 1 and the second fuel injection valve 3 are electrically connected to an electronic control unit (hereinafter referred to as “ECU”) 21 as shown in FIG. Is controlled by The ECU 21 is connected to the electromagnetic drive mechanism 12 and controls opening and closing of the intake valve 5 and the exhaust valve 6.
[0013]
The ECU 21 is connected to a crank angle position sensor 22 that detects the rotation angle of a crankshaft (not shown) of the engine 10, and supplies a signal corresponding to the rotation angle of the crankshaft to the ECU 21. The crank angle position sensor 22 outputs a pulse (hereinafter, referred to as “CYL pulse”) at a predetermined crank angle position of a specific cylinder of the engine 10, and relates to a top dead center (TDC) at the start of an intake stroke of each cylinder. A TDC sensor that outputs a TDC pulse at a crank angle position before a predetermined crank angle (every 180 degrees of crank angle in a four-cylinder engine), and one pulse (hereinafter referred to as “CRK”) at a constant crank angle cycle shorter than the TDC pulse (for example, a 30-degree cycle). The CYL pulse, the TDC pulse, and the CRK pulse are supplied to the ECU 21. These pulses are used for various timing controls such as a period during which the intake and exhaust valves are opened, a fuel injection timing, and the like, and detection of an engine speed (engine speed) NE.
[0014]
The ECU 21 is connected to an accelerator sensor 23 that detects an amount of depression of an accelerator pedal (hereinafter referred to as “accelerator pedal operation amount”) AP of a vehicle driven by the engine 10, and a detection signal is supplied to the ECU 21. .
[0015]
The ECU 21 calculates the required output torque TRQ of the engine according to the accelerator pedal operation amount AP, and calculates the fuel of the first fuel injector 1 and the second fuel injector 3 according to the required output torque TRQ and the engine speed NE. The injection timings CAINJ1 and CAINJ2 and the fuel injection times TOUT1 and TOUT2 are calculated. Then, operation control of the first fuel injection valve 1 and the second fuel injection valve 3 is performed according to the calculated fuel injection timings CAINJ1 and CAINJ2 and the fuel injection times TOUT1 and TOUT2. In the present embodiment, the first fuel injection valve 1 performs the auxiliary injection, and the second fuel injection valve 3 performs the main injection.
[0016]
Further, the ECU 21 determines the opening timing and closing timing of the intake valve 5 and the exhaust valve 6 according to the required output torque TRQ and the engine speed NE, and controls the drive of the intake valve 5 and the exhaust valve 6.
[0017]
FIG. 3A is a diagram showing the lift characteristics of the intake and exhaust valves, and FIG. 3B is a diagram showing the transition of the pressure PCYL in the combustion chamber. In these figures, “BDC” corresponds to the crank angle position where the piston 7 is at the bottom dead center (Bottom Dead Center), and “TDC” is the crank angle position where the piston 7 is at the top dead center (Top Dead Center). Corresponding to In FIG. 3A, a curve L1 indicates the lift characteristic of the exhaust valve 6, and a curve L2 indicates the lift characteristic of the intake valve 5. As shown in this figure, in the present embodiment, in order to leave a part of the exhaust gas in the combustion chamber 9, the closing timing CAEC of the exhaust valve 6 is set in the middle of the exhaust stroke, and the opening of the intake valve 3 is opened. The timing CAIO is set during the intake stroke. That is, a negative overlap period TNOL is provided during the opening period of the intake and exhaust valves. The first fuel injection timing CAINJ1 by the first fuel injection valve 1 is set during the valve opening period of the exhaust valve 6 and in the crank angle range RCAIJC shown in FIG. The second fuel injection timing CAINJ2 by the second fuel injection valve 3 is set during the negative overlap period TNOL.
[0018]
The first fuel injection timing CAINJ1 is set after the angle position CALMAX at which the lift amount of the exhaust valve 6 is maximized (retarded side) and before the valve closing timing CAEC of the exhaust valve 6 (advanced side). It is desirable to be done. Since fuel injection is performed during the opening period of the exhaust valve 6, a part of the injected fuel is directly discharged. By setting the fuel injection timing after the angular position CALMAX at which the lift amount of the exhaust valve 6 is maximized, the amount of injected fuel that is directly discharged can be suppressed.
[0019]
By setting the first fuel injection timing CAINJ1 by the first fuel injection valve 1 during the opening period of the exhaust valve 6, the following effects can be obtained. That is, since the position of the piston 7 is relatively low (close to the bottom dead center) and fuel is injected in a state where the pressure in the combustion chamber is substantially equal to the atmospheric pressure (see FIG. 3B), the piston position is high. The injected fuel is more likely to be homogenized than when the fuel is injected at a high pressure in the combustion chamber (close to top dead center). Further, since the activation of the fuel proceeds from the initial stage of the pressure increasing process (the closing timing CAEC of the exhaust valve 6 to the exhaust TDC) during the negative overlap period TNOL, the injected fuel can be more reliably used. It is possible to cause ignition.
[0020]
In the present embodiment, the ECU 21 constitutes a fuel injection timing control unit.
The present invention is not limited to the embodiment described above, and various modifications are possible. For example, in the above-described embodiment, the first fuel injection valve 1 and the second fuel injection valve 3 are provided, the first fuel injection valve 1 performs auxiliary injection, and the second fuel injection valve 3 performs main injection. However, the second fuel injection valve 3 is not provided, only the first fuel injection valve 1 is provided, the fuel injection is performed at the fuel injection timing CAINJ1 as described above, and the necessary fuel amount is completely injected. Is also good.
[0021]
The drive mechanism of the intake valve 5 and the exhaust valve 6 is not limited to the electromagnetic drive type, but may be a cam drive type.
Further, the present invention can be applied to control of a marine propulsion engine such as an outboard motor having a vertical crankshaft.
[0022]
【The invention's effect】
As described in detail above, according to the first aspect of the present invention, since fuel is directly injected into the combustion chamber during the opening period of the exhaust valve, the piston position is relatively low and the pressure in the combustion chamber is high. Fuel is injected at almost the same pressure. Therefore, compared to the case where the piston position is high and the pressure in the combustion chamber is high, the injected fuel is more likely to be homogenized, and the fuel is activated from the initial stage of the pressure increase process during the negative overlap period. Progresses. As a result, the injected fuel can be more reliably ignited.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an internal combustion engine according to one embodiment of the present invention.
FIG. 2 is a block diagram showing a configuration of a control device for controlling the internal combustion engine shown in FIG.
FIG. 3 is a diagram for explaining an execution timing of fuel injection.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 first fuel injection valve 2 intake port 5 intake valve 6 exhaust valve 7 piston 9 combustion chamber 10 internal combustion engine 12 electromagnetic drive mechanism 21 electronic control unit (fuel injection timing control means)
22 Crank angle position sensor