JP2004308357A - Heat insulation structure - Google Patents

Heat insulation structure Download PDF

Info

Publication number
JP2004308357A
JP2004308357A JP2003106361A JP2003106361A JP2004308357A JP 2004308357 A JP2004308357 A JP 2004308357A JP 2003106361 A JP2003106361 A JP 2003106361A JP 2003106361 A JP2003106361 A JP 2003106361A JP 2004308357 A JP2004308357 A JP 2004308357A
Authority
JP
Japan
Prior art keywords
weight
heat insulating
parts
insulating material
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003106361A
Other languages
Japanese (ja)
Inventor
Osao Hori
長生 堀
Koichiro Takahashi
晃一郎 高橋
Masaki Yamada
正樹 山田
Hideto Karuga
英人 軽賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
SK Kaken Co Ltd
Original Assignee
Obayashi Corp
SK Kaken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, SK Kaken Co Ltd filed Critical Obayashi Corp
Priority to JP2003106361A priority Critical patent/JP2004308357A/en
Publication of JP2004308357A publication Critical patent/JP2004308357A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat insulation structure stably maintaining heat insulation for a long period by enhancing safety and having superior heat insulation in the same degree as a urethane foam. <P>SOLUTION: The heat insulation structure has an application film layer in the outdoor side of a member separating the outdoor of a building from the indoor, and a heat insulator layer in the indoor side. (1) The film application layer has an application film of infrared reflectance of 20%, and (2) the heat insulator layer is formed of a heat insulator composition containing 100 pts.wt. of cement, at least 4 pts.wt. of a foaming organic resin granule and 1-50 pts.wt. of an organic binder. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、建築物の断熱構造に関する。
【0002】
【従来の技術】
建築物を構成する外壁、屋根等の部材には、断熱性を高めるために、一般に屋内側に断熱材が設けられている。断熱材を形成する材料としては、例えば、ウレタンフォーム、フェノールフォーム、セルロースファイバー、ロックウール等が用いられている。この中でも、ウレタンフォームは、熱伝導率が約0.02〜0.03W/(m・K)であり断熱性に優れること、比較的低コストで施工できること等の理由から頻繁に用いられている。
【0003】
しかしながら、ウレタンフォームは火災等によって燃焼し易いという欠点がある。そのため、一旦ウレタンフォームに着火した場合には、瞬時に燃え広がる現象(いわゆる爆燃)が生じるおそれがある。爆燃が発生した場合には、消火が困難な状態となり、深刻な事態を招くおそれがある。
【0004】
また、太陽光の直射を受ける部位では、建築物を構成する部材の温度が著しく上昇する。そのため、部材の屋内側に施工されたウレタンフォームは、温度上昇した部材との界面付近で熱により劣化し易くなる。ウレタンフォームが劣化すると、安定した断熱性を発揮できないばかりか、ウレタンフォームの密着性不良、脱落等が生じるおそれもある。
【0005】
これに関して、例えば、特許文献1には、太陽光の影響を抑制し、室内温度を上昇させにくい断熱建材が開示されている。具体的には、金属基板の片面が塗装面であり、反対面に断熱材を配置した断熱建材であって、塗装面とした基板表面の350〜2100nmの波長領域での太陽熱反射率(R)が20%以上であり、該塗装面が800〜2100nmの波長領域での太陽熱反射率(RE/NIR)が30%以上の顔料を2〜70重量%含有する少なくとも1層の塗膜を備える、熱線反射機能を備えた断熱建材が開示されている。
【0006】
しかしながら、従来技術における断熱構造には、安全性及び優れた断熱性の長期安定維持の点でさらなる改良の余地がある。
【0007】
【特許文献1】
特開2001−32399号公報
【0008】
【発明が解決しようとする課題】
本発明は、安全性が高く、ウレタンフォームと同程度の優れた断熱性を有し、かつ断熱性を長期安定維持できる断熱構造を提供することを主な目的とする。
【0009】
【課題を解決するための手段】
本発明者は、上記の目的を達成すべく鋭意研究を重ねた結果、建築物の屋外と屋内とを隔てる部材の屋外側に特定の塗膜層を有し、屋内側に特定の断熱材層を有する断熱構造が上記目的を達成できることを見出し、本発明を完成するに至った。
【0010】
即ち、本発明は、下記の断熱構造に係るものである。
1.建築物の屋外と屋内とを隔てる部材の屋外側に塗膜層を有し、屋内側に断熱材層を有する断熱構造であって、
(1)塗膜層が、赤外線反射率20%以上の塗膜を有しており、
(2)断熱材層が、セメント100重量部、発泡有機樹脂粉粒体4重量部以上、有機バインダー(水溶性高分子を除く)1重量部以上50重量部以下を含有する断熱材組成物から形成されている
ことを特徴とする断熱構造。
2.断熱材層が、セメント、骨材、発泡有機樹脂粉粒体及び有機バインダー(水溶性高分子を除く)を含む組成物であって、セメント100重量部に対して発泡有機樹脂粉粒体4重量部以上40重量部未満、有機バインダー1重量部以上50重量部以下を含有し、かつ、発泡有機樹脂粉粒体の含有量が組成物中5重量%を超える断熱材組成物から形成されている上記項1記載の断熱構造。
3.発泡有機樹脂粉粒体のかさ密度が0.015g/cm以下である上記項1又は2記載の断熱構造。
4.発泡有機樹脂粉粒体が発泡スチロール粉粒体である上記項1〜3のいずれかに記載の断熱構造。
5.発泡有機樹脂粉粒体が難燃処理されたものである上記項1〜4のいずれかに記載の断熱構造。
6.建築物の屋外と屋内とを隔てる部材の熱貫流率が、7W/(m・K)以上である上記項1〜5のいずれかに記載の断熱構造。
【0011】
【発明の実施の形態】
本発明の断熱構造は、建築物の屋外と屋内とを隔てる部材の屋外側に塗膜層を有し、屋内側に断熱材層を有する断熱構造であって、
(1)塗膜層が、赤外線反射率20%以上の塗膜を有しており、
(2)断熱材層が、セメント100重量部、発泡有機樹脂粉粒体4重量部以上、有機バインダー(水溶性高分子を除く)1重量部以上50重量部以下を含有する断熱材組成物から形成されていることを特徴とする。
【0012】
建築物の屋外と屋内とを隔てる部材
建築物の屋外と屋内とを隔てる部材(以下「部材」とも言う)としては、建築物の屋外と屋内とを隔てる役割を有するものが該当する。即ち、建築物を構成する部材であって、少なくとも一部が屋外の外気に露出しているものが該当する。このような部材としては、例えば、外壁、屋根等が挙げられる。
【0013】
このような部材は、通常1種又は2種以上の材料から構成される。外壁材料としては、例えば、コンクリート、モルタル、軽量モルタル、軽量コンクリート、けい酸カルシウム板、ALC板、石膏ボード、スレート板、押出し成形板、窯業系サイディング材、金属系サイディング材、プラスチック系サイディング材、各種合板等が挙げられる。屋根材料としては、例えば、粘土瓦、スレート瓦、プレスセメント瓦、コンクリート瓦、金属系屋根材等が挙げられる。これらの材料を2種以上組み合わせてなる複合型の部材としては、例えば、複数の板材の間にグラスウール等の断熱材、空気層等を介在させてなる部材が挙げられる。
【0014】
部材の熱貫流率は特に限定されないが、通常1W/(m・K)以上、好ましくは3〜8W/(m・K)程度である。本発明の断熱構造は、このような熱貫流率を有する部材に対して好適に適用できるほか、熱貫流率7W/(m・K)以上という高い熱貫流率を有する部材に対しても適用できる。
【0015】
なお本明細書における熱貫流率は、住宅金融公庫監修「木造住宅工事共通仕様書(解説付)」の付録4「熱貫流率の計算方法」に基づくものである。具体的には、熱貫流率は、以下の手順に従って算出される。
1)式1より、部材の熱伝導率及び厚さから熱抵抗を算出する。
2)式2より、部材の熱抵抗及び空気の熱伝達抵抗から熱貫流抵抗を算出する。
3)式3より、熱貫流抵抗から熱貫流率を算出する。
*式1:熱抵抗(m・K/W)=厚さ(m)/熱伝導率(W/(m・K))
*式2:熱貫流抵抗(m・K/W)=屋内側空気の熱伝達抵抗(m・K/W)+部材の熱抵抗(m・K/W)+屋外側空気の熱伝達抵抗(m・K/W)
*式3:熱貫流率(W/(m・K))=1/熱貫流抵抗(m・K/W)
(但し、屋内側空気の熱伝達抵抗を0.09(m・K/W)とし、屋外側空気の熱伝達抵抗を0.04(m・K/W)とする)。
【0016】
塗膜層
塗膜層は、部材の屋外側に設けられるものであり、赤外線反射率20%以上の塗膜を有する。塗膜の赤外線反射率は40%以上が好ましく、50%以上がより好ましい。赤外線反射率20%以上の塗膜を有することにより、部材と断熱材層の界面付近における温度上昇を抑制でき、断熱材層の密着性低下、脱落等を確実に防止又は抑制できる。本明細書における赤外線反射率は、波長800〜2100nmの光の分光反射率を測定し、その平均値を算出することにより求められる値である。
【0017】
赤外線反射率20%以上の塗膜は、例えば、合成樹脂と赤外線反射性を有する顔料とを含む塗料(以下「赤外線反射塗料」とも言う)から形成できる。赤外線反射率は、赤外線反射性を有する顔料の量により適宜調整できる。
【0018】
合成樹脂としては限定されず、例えば、酢酸ビニル樹脂、塩化ビニル樹脂、エポキシ樹脂、アルキド樹脂、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、アクリルシリコン樹脂、フッ素樹脂等が挙げられる。これらの樹脂は、1種又は2種以上を混合して使用できる。またこれらの樹脂の複合系、架橋反応性を有するもの等も使用できる。
【0019】
赤外線反射性を有する顔料としては限定されず、例えば、アルミニウムフレーク、酸化チタン、硫酸バリウム、酸化亜鉛、酸化鉄、酸化マグネシウム、アルミナ、酸化アンチモン、酸化ジルコニウム、酸化イットリウム、酸化インジウム、シリカ、珪酸マグネシウム、炭酸カルシウム等が挙げられる。この中でも、特にアルミニウムフレーク、酸化チタン、硫酸バリウム、酸化亜鉛、酸化鉄、酸化マグネシウム及びアルミナの少なくとも1種が好ましい。
【0020】
赤外線反射塗料には、必要に応じて、塗膜に様々な色彩を付与するための顔料を配合できる。このような顔料は、赤外線透過性を有する顔料でもよいが、赤外線反射性を有する顔料であることが好ましい。本発明における塗膜層には、赤外線反射率20%以上の塗膜が含まれるため、塗膜に白色以外の色相を付与した場合でも、十分な赤外線反射効果を発揮できる。
【0021】
赤外線透過性を有する顔料としては限定されず、例えば、ペリレン顔料、アゾ顔料、黄鉛、弁柄、朱、チタニウムレッド、カドミウムレッド、キナクリドンレッド、イソインドリノン、ベンズイミダゾロン、フタロシアニングリーン、フタロシアニンブルー、コバルトブルー、インダスレンブルー、群青、紺青等が挙げられる。これらの顔料も、1種又は2種以上を混合して使用できる。
【0022】
赤外線反射塗料中の顔料(用いる全ての顔料)の含有量は、通常、顔料容積濃度2〜60%の範囲内で所定の赤外線反射率を満たすように調整できる。なお厳密には、赤外線反射率は、顔料の種類により変化するため、必ずしも上記範囲内に限定されるものではない。
【0023】
赤外線反射塗料には、上記成分のほか、一般塗料に含まれ得る添加剤を配合してもよい。例えば、骨材、繊維、増粘剤、造膜助剤、レベリング剤、湿潤剤、可塑剤、凍結防止剤、pH調整剤、防腐剤、防黴剤、防藻剤、抗菌剤、分散剤、消泡剤、紫外線吸収剤、酸化防止剤、触媒、架橋剤等が挙げられる。これら添加剤の配合量は、赤外線反射率を所定範囲に制御できる限り、適宜設定できる。
【0024】
赤外線反射塗料は、通常、上記合成樹脂、顔料、添加剤等を混合することにより調製できる。調製時には、必要に応じて、水、溶剤等を混合してもよい。例えば、合成樹脂として水系樹脂を用いた場合には、水、親水性有機溶剤等を混合できる。合成樹脂として非水系樹脂を用いた場合には、芳香族炭化水素系溶剤、脂肪族炭化水素系溶剤等の非水系溶剤を混合できる。
【0025】
塗膜層は、例えば、部材上に、赤外線反射塗料を塗装することにより形成できる。塗装方法は特に限定されず、例えば、スプレーガン、ローラー、刷毛等の塗装器具を用いて行えばよい。必要に応じて、塗装前に、部材表面に下塗り塗料、下地調整塗材、断熱性塗料(中空バルーンを配合した塗料等)を塗付してもよい。これらは本発明における塗膜層の一部として含まれる。塗膜の厚みも特に限定されないが、通常10〜500μm、好ましくは20〜200μm程度である。
【0026】
なお、必要に応じて、赤外線反射塗料を塗り重ねることもできる。また赤外線反射塗料の塗膜上に、さらに透明塗料、着色塗料等を塗装してもよい。但し、この場合には、透明塗料、着色塗料等としては、赤外線透過性を有するものでもよいが、赤外線反射性を有するものが好ましい。これらの塗膜も本発明における塗膜層の一部として含まれる。
【0027】
断熱材層
断熱材層は、部材の屋内側に設けられるものであり、セメント100重量部、発泡有機樹脂粉粒体4重量部以上、有機バインダー(水溶性高分子を除く)1重量部以上50重量部以下を含有する断熱材組成物から形成されている。
【0028】
(セメント)
セメントは特に限定されず、公知のもの又は市販品を使用できる。例えば、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、白色ポルトランドセメント等のポルトランドセメントのほか、アルミナセメント、超速硬セメント、膨張セメント、酸性リン酸塩セメント、シリカセメント、高炉セメント、フライアッシュセメント、キーンスセメント等が挙げられる。これらは1種又は2種以上を混合して使用できる。これらの中でも、ポルトランドセメントが好ましい。より具体的には、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメント及び白色ポルトランドセメントの少なくとも1種が好ましいものとして挙げられる。
【0029】
(発泡有機樹脂粉粒体)
発泡有機樹脂粉粒体としては、個々の粉粒体中に気孔を有するものであればよい。発泡有機樹脂粉粒体のかさ密度としては、通常0.08g/cm以下であり、好ましくは0.03g/cm以下、より好ましくは0.015g/cm以下、最も好ましくは0.009g/cm以下である。
【0030】
発泡有機樹脂粉粒体を構成する発泡有機樹脂としては限定されない。例えば、発泡スチロール、発泡フェノール、発泡ポリエチレン、発泡ポリプロピレン、発泡ポリ塩化ビニル等の公知の発泡有機樹脂を使用できる。これらは1種又は2種以上を混合して使用できる。これらの中でも、特に発泡スチロールが好ましい。
【0031】
粉粒体の粒子径は、所望の断熱性、発泡有機樹脂の種類等に応じて適宜設定できる。通常は平均粒径1〜5mm程度である。上記粉粒体としては、発泡有機樹脂を粉砕したものも好適に使用できる。例えば、発泡スチロールを破砕して得られる粉粒体も使用できる。発泡スチロール等の廃棄物を破砕したものを使用してもよく、この場合には廃棄物の有効利用にも貢献できる。
【0032】
粉粒体としては、予め難燃処理したものを使用してもよい。難燃処理方法は特に限定されず、例えば、アルコキシシラン化合物、珪酸塩化合物、難燃剤等を粉粒体にコーティングする方法、粉粒体に吸着させる方法等が挙げられる。
【0033】
アルコキシシラン化合物としては限定的でなく、例えば、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン等が挙げられる。
【0034】
珪酸塩化合物も特に限定されず、例えば、珪酸ナトリウム、珪酸カリウム、珪酸リチウム、珪酸アンモニウム等のほか、市販の水ガラス等も挙げられる。
【0035】
難燃剤も特に限定されず、例えば、トリクレジルホスフェート、ジフェニルクレジルフォスフェート、ジフェニルオクチルフォスフェート、トリ(β−クロロエチル)フォスフェート、トリブチルフォスフェート、トリ(ジクロロプロピル)フォスフェート、トリフェニルフォスフェート、トリ(ジブロモプロピル)フォスフェート、クロロフォスフォネート、ブロモフォスフォネート、ジエチル−N, N−ビス(2−ヒドロキシエチル)アミノメチルフォスフェート、ジ(ポリオキシエチレン)ヒドロキシメチルフォスフォネート等の有機リン系化合物;塩素化ポリフェニル、塩素化ポリエチレン、塩化ジフェニル、塩化トリフェニル、五塩化脂肪酸エステル、パークロロペンタシクロデカン、塩素化ナフタレン、テトラクロル無水フタル酸等の塩素化合物;テトラブロモビスフェノールA、デカブロモジフェニルオキサイド、ヘキサブロモシクロドデカン、トリブロモフェノール、エチレンビステトラブロモフタルイミド、エチレンビスペンタブロモジフェニル等の臭素化合物:三酸化アンチモン、五塩化アンチモン等のアンチモン化合物;三塩化リン、五塩化リン、リン酸アンモニウム、ポリリン酸アンモニウム等のリン化合物;ホウ酸亜鉛、ホウ酸ナトリウム、水酸化アルミニウム等の無機質化合物等が挙げられる。
【0036】
上記アルコキシシラン化合物、珪酸塩化合物、難燃剤等(以下「難燃処理剤」とも言う)は、1種又は2種以上を混合して使用できる。
【0037】
難燃処理剤は、必要に応じて、水又は他の適当な溶媒に溶解又は分散させ、その溶液又は分散液を粉粒体に付与すればよい。上記溶液又は分散液にアクリル系樹脂等のバインダーを適宜配合してもよい。上記溶液又は分散液を付与後は、乾燥又は必要により熱処理すればよい。これにより難燃処理できる。難燃処理剤の付与量は、所望の難燃性、粉粒体の種類等に応じて適宜設定できる。
【0038】
発泡有機樹脂粉粒体の含有量は、セメント100重量部に対して4重量部以上である。上限は特に限定されないが、通常70重量部程度である。かかる範囲内に規定することにより、優れた断熱性及び強度が発現される。
【0039】
(有機バインダー)
有機バインダー(水溶性高分子を除く)としては、公知の樹脂類、ゴム類等を含むものを使用できる。例えば、樹脂類としては、例えば、アクリル樹脂、酢酸ビニル樹脂、プロピオン酸ビニル、ベオバ、アクリル酢酸ビニル樹脂、エチレン酢酸ビニル樹脂、塩化ビニル樹脂、エポキシ樹脂等が挙げられる。ゴム類としては、例えば、クロロプレンゴム、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム等が挙げられる。これらは1種又は2種以上を混合して使用できる。これらの中でも、アクリル樹脂、酢酸ビニル樹脂及びアクリル酢酸ビニル樹脂の少なくとも1種が好ましい。
【0040】
このような有機バインダーは、いずれの形態でも使用できる。例えば、粉末状は勿論、エマルジョン等の状態でも使用できる。いずれの形態でも、公知のもの又は市販品が使用できる。
【0041】
有機バインダーの含有量は、セメント100重量部に対して、1重量部以上50重量部以下、好ましくは2重量部以上30重量部以下である。この範囲に規定することにより、十分な強度と断熱性が発揮される。
【0042】
(骨材)
断熱材組成物には、上記セメント、発泡有機樹脂粉粒体及び有機バインダーに加えて、骨材を配合してもよい。
【0043】
骨材としては特に限定されず、公知の骨材の中から適宜選択できる。この中でも、特に無機質骨材が好ましい。無機質骨材としては、例えば、山砂、川砂、珪砂等のほか、無機質軽量骨材等が挙げられる。これらは1種又は2種以上を混合して使用できる。この中でも、特に無機質軽量骨材が好ましい。無機質軽量骨材としては、例えば、パーライト、膨張頁岩、膨張バーミキュライト、軽石、シラスバルーン等が挙げられる。
【0044】
骨材の粒度は、所望の断熱性、強度等に応じて適宜決定できる。通常は平均粒径0.1〜5mm程度である。
【0045】
骨材の配合量は、骨材の種類(密度等)、所望の断熱性能等に応じて適宜設定できる。例えば、無機質軽量骨材の場合には、セメント100重量部に対して通常5〜200重量部、好ましくは10〜100重量部程度とすれば良い。このような範囲とすることにより、優れた断熱性、強度等が得られる。
【0046】
なお、断熱材組成物に骨材を配合する場合には、セメント、発泡有機樹脂粉粒体、有機バインダーの含有量は次のように規定することが好ましい。即ち、セメント100重量部に対して発泡有機樹脂粉粒体4重量部以上40重量部未満(好ましくは5重量部以上35重量部以下)、有機バインダー1重量部以上50重量部以下を含有し、かつ、発泡有機樹脂粉粒体の含有量が組成物中5重量%を超える(好ましくは6重量%以上)ようにすることが好ましい。
【0047】
(断熱材組成物に配合できるその他の添加剤)
断熱材組成物には、上記成分のほか、必要に応じて、界面活性剤、難燃剤、減水剤、消泡剤、造膜助剤等の添加剤を配合できる。特に、以下に説明するような添加剤を断熱材組成物に配合できる。
【0048】
▲1▼ 針状粒子からなる無機化合物粉末を配合できる。かかる粉末を配合することにより、より高い強度を付与できる。かかる粉末としては、例えば、針状炭酸カルシウムが好ましい。粉末の添加量は特に限定されないが、セメント100重量部に対して、通常1〜20重量部程度である。
【0049】
▲2▼ 水溶性高分子及び粘土鉱物粉粒体の少なくとも1種を配合できる。これらの成分を配合することにより、断熱材組成物の均一化を促進できる。例えば、断熱材組成物をポンプ圧送する場合には、ポンプ圧送効率をより高められる。また乾燥性を改善できる。従って、本発明組成物を部材に吹き付けて断熱材層を形成する場合には、水溶性高分子を含むことが望ましい。
【0050】
水溶性高分子としては、例えば、ポリビニルアルコール、ポリ(メタ)アクリル酸、ポリアルキレンオキサイド、バイオガム、ガラクトマンナン誘導体;アルギン酸及びその誘導体;ゼラチン、カゼイン及びアルブミン並びにこれらの誘導体;セルロース誘導体等が挙げられる。水溶性高分子は、高粘度品がより好ましく、水溶性高分子の1%水溶液の粘度が8000mPa・s以上(B型粘度計を用いた20℃における測定値:以下同じ)が好ましく、10000mPa・s以上がより好ましく、12000mPa・s以上が最も好ましい。
【0051】
粘土鉱物粉粒体としては、例えば、アロフェン、ヒシンゲル石、パイロフィライト、タルク、ウンモ、モンモリロン石、バーミキュル石、リョクデイ石、カオリン、パリゴルスカイト等が挙げられる。これらは1種又は2種以上を混合して使用できる。この中でも、セルロース誘導体及びモンモリロン石が好ましい。
【0052】
水溶性高分子及び粘土鉱物粉粒体の少なくとも1種の含有量は、最終製品の用途等に応じて適宜設定できるが、セメント100重量部に対して、通常1〜30重量部、好ましくは2〜15重量部程度である。
【0053】
▲3▼ 硬化促進剤を配合できる。これにより、塗膜の硬化が促進できる。硬化促進剤としては、例えば、アルミン酸リチウム、アルミン酸ナトリウム、アルミン酸カリウム等のアルカリ金属アルミン酸塩;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸塩;水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸アルミニウム等の硫酸塩;その他、消石灰、石膏、カルシウムアルミネート等が挙げられる。
【0054】
硬化促進剤の配合量は、最終製品の用途等に応じて適宜設定すればよいが、セメント100重量部に対して、通常1〜30重量部、好ましくは2〜20重量部程度である。
【0055】
▲4▼ 減水剤を配合できる。減水剤としては特に限定されず、例えば、芳香族スルホン酸系減水剤、ポリカルボン酸系減水剤、リグニンスルホン系減水剤、メラミン系減水剤等が挙げられる。これらは公知のもの又は市販品が使用できる。
【0056】
減水剤の配合量は、最終製品の用途等に応じて適宜設定すれば良いが、セメント100重量部に対して、通常0.05〜5重量部、好ましくは0.1〜4重量部程度である。
【0057】
(断熱材組成物の調製方法)
断熱材組成物は、上記のセメント、発泡有機樹脂粉粒体、有機バインダー、必要に応じて骨材及び/又は他の添加剤を混合機、ニーダー等により均一に混合することにより調製できる。この場合には、必要に応じて水を配合してもよい。水の配合量は限定的ではないが、セメント100重量部に対して、通常100〜1500重量部程度とすればよい。
【0058】
(断熱材層の形成方法)
断熱材層は、部材の屋内側に、例えば、前記断熱材組成物を吹き付け、塗布等した後、乾燥させることにより形成できる。部材に軽量モルタル等の湿式無機質塗料を塗布した後、前記断熱材組成物を吹き付け、塗布等してもよい。その他、当該断熱材組成物の成形体を部材の屋内側に設置して形成してもよい。断熱材組成物の成形体を用いる場合には、通常、部材の屋内側に接触させて設けるが、建築物の構造等を考慮して、必要に応じて、空間を介して設けてもよい。
【0059】
吹き付けにより施工する場合には、例えば、スネーク式圧送ポンプ等で断熱材組成物をポンプ圧送し、吹き付けガンを通じて所望部位に被着させればよい。勿論、断熱材層の形成方法としては、吹き付け以外の方法も採用できる。
【0060】
断熱材層の厚みは特に限定されず、所望の断熱性に応じて適宜設定できるが、通常10〜50mm、好ましくは20〜40mm程度である。
【0061】
断熱材層の比重も特に限定されず、所望の断熱性に応じて適宜設定できるが、通常0.3g/cm以下であり、好ましくは0.2g/cm以下、より好ましくは0.1g/cm以下である。かかる断熱層の比重は、例えば、発泡有機樹脂粉粒体の粒径、含有量等により制御できる。
【0062】
断熱材層の熱伝導率としては、通常0.06W/(m・K)未満であり、好ましくは0.05W/(m・K)以下、より好ましくは0.045W/(m・K)以下である。
【0063】
また、断熱材層は、ISO5660に規定される発熱性試験において、加熱強度50kW/m、加熱時間5分の条件下における総発熱量が8MJ/m以下であることが望ましい。特に、断熱材層は、ISO5660に規定される発熱性試験において、加熱強度50kW/m、加熱時間10分の条件下における総発熱量が8MJ/m以下であることがより望ましい。即ち、断熱材層は、平成12年建設省告示第1402号の難燃材料としての性能、更には平成12年建設省告示第1401号の準不燃材料としての性能を満足することが望ましい。
【0064】
【発明の効果】
本発明の断熱構造は、ウレタンフォーム等の燃焼性が高い材料を含まない点で安全性が高い。即ち、火災等による爆燃等のおそれがない。しかも、ウレタンフォームと同程度の優れた断熱性を発揮する。
【0065】
赤外線反射率20%以上の塗膜を有する塗膜層との組み合わせにより、従来品と比べて、断熱材層と部材との界面における温度上昇が抑制されており、断熱材層の劣化、脱落、ズレ落ち等を確実に防止又は抑制できる。これにより断熱材層の断熱性能を長期にわたり安定維持できる。
【0066】
【実施例】
以下に実施例及び比較例を示し、本発明をより具体的に説明する。但し、本発明は実施例に限定されるものではない。
(断熱材層サンプルの作製)
参考例1〜4及び比較参考例1
下記表1に示す配合に従って原料を均一に混合し、4種類の断熱材組成物を調製した。表1に示す各原料(水を除く)の配合量は、固形分量を示す。
【0067】
【表1】

Figure 2004308357
【0068】
なお、表1に示す原料としては、次のものを用いた。
・セメント:普通ポルトランドセメント
・有機発泡樹脂粉粒体1:再生発泡スチロール破砕品(平均粒径約3mm、かさ密度0.008g/cm
・有機発泡樹脂粉粒体2:再生発泡スチロール破砕品(平均粒径約3mm、かさ密度0.011g/cm
・有機発泡樹脂粉粒体3:再生発泡スチロール破砕品(平均粒径約3mm、かさ密度0.02g/cm
・有機発泡樹脂粉粒体4:有機発泡樹脂粉粒体2の100重量部に対して珪酸リチウム溶液とアクリルスチレンエマルジョンとの混合物(珪酸リチウム溶液(固形分23重量%):アクリルスチレンエマルジョン(固形分50重量%)=9:1(重量比))60重量部を添加混合後、50℃で24時間かけて乾燥したもの。
・有機バインダー:酢酸ビニル・アクリル酸エステル共重合エマルジョン(固形分50重量%)
・水溶性高分子:メチルセルロース(1%水溶液粘度が15000mPa・s)・骨材:シラスバルーン(平均粒径200μm)
・硬化促進剤:石膏
参考例1〜4における断熱材組成物を、石膏ボード(厚さ12.5mm)に吹き付け後、乾燥させて4種類の断熱材層(厚さ30mm)を作製した。各断熱材層を99mm×99mm×42.5mmの大きさに切り出して、断熱材層サンプルとした。
【0069】
次いで、得られたサンプルを試験体として、下記(1)〜(3)に示す試験を実施した。試験結果を下記表2に示す。下記表2には、比較参考例1として、ウレタンフォームの物性を併せて示す。
(1)熱伝導率
熱伝導率計(商標名「Kemthrm QTM−D3」京都電子工業製)により熱伝導率(W/(m・K))を測定した。
(2)発熱性試験
ISO5660規定のコーンカロリーメーターにより発熱性を測定した。コーンカロリーメーターとしては(商標名「CONE2A」アトラス製)を用いた。
【0070】
なお、発熱性試験は、加熱強度50kW/mとした。発熱性試験の評価基準は、以下の通りである。
◎:加熱時間10分での最高発熱速度が200kW/mを超えず、総発熱量が8MJ/m以下
○:加熱時間5分での最高発熱速度が200kW/mを超えず、総発熱量が8MJ/m以下
△:加熱時間5分での最高発熱速度が200kW/mを超えず、総発熱量が8MJ/mを超える
×:加熱時間5分での最高発熱速度が200kW/m以上であり、総発熱量が8MJ/mを超える
(3)溶接火玉試験
断熱材組成物を上向き(石膏ボードは下向き)にして試験体を水平に置き、試験体表面から高さ250mmの位置で、溶接機(BP交流アーク溶接機)により1分間連続して溶接を行った。溶接火玉試験の評価基準は、以下の通りである。○:試験体が爆燃を起こさなかった
×:試験体が爆燃した
【0071】
【表2】
Figure 2004308357
【0072】
実施例1〜4及び比較例1〜2
配合例1〜4で得た断熱材組成物を金属板(厚さ0.6mm、熱貫流率7.7W/(m・K))の片面に吹き付け、乾燥することにより断熱層(厚さ30mm)を形成した。
【0073】
次いで、金属板のもう一方の面に下記の塗料1又は2を吹き付け塗装し、塗膜層(厚さ60μm)を形成した。このようにして得られた試験体について、下記(4)の試験を実施した。断熱材層と塗膜層との組み合わせ及び試験結果を下記表3に示す。
・塗料1:非水分散形アクリルポリオール樹脂(Tg:40℃、水酸基価:50KOHmg/g、溶剤:ミネラルスピリット)とその硬化剤(ヘキサメチレンジイソシアネート、NCO含有量12重量%、溶剤:ミネラルスピリット)との合計樹脂固形分100重量部に対して、酸化チタン15重量部、黄色酸化鉄1.3重量部、弁柄2.4重量部、フタロシアニンブルー0.5重量部を含有するグレー色の塗料。赤外線反射率を分光光度計(商標名「UV−3100」島津製作所製)にて測定したところ66%であった。赤外線反射率測定に供した試験板は、アルミ板に黒色塗料(アクリル樹脂の固形分100重量部にカーボンブラックを11重量部含むもの)を乾燥膜厚が60μmとなるように塗布後、塗料1を乾燥膜厚が60μmとなるように塗付して作製したものである。
・塗料2:非水分散形アクリルポリオール樹脂(Tg:40℃、水酸基価:50KOHmg/g、溶剤:ミネラルスピリット)とその硬化剤(ヘキサメチレンジイソシアネート、NCO含有量12重量%、溶剤:ミネラルスピリット)との合計樹脂固形分100重量部に対して、酸化チタン15重量部、黄色酸化鉄0.8重量部、弁柄0.5重量部、カーボンブラック0.7重量部含有するグレー色の塗料。塗料2の赤外線反射率は7%であった。
(4)赤外線ランプ試験
試験体の塗膜層側から200mmの距離に赤外線ランプ(250W)を設置し、赤外線ランプを24時間連続照射した。照射後、断熱材層と金属板との界面の状態を確認した。赤外線ランプ試験の評価基準は、以下の通りである。
○:異常なし
△:わずかに脆化が認められる
×:明らかに脆化が認められる
【0074】
【表3】
Figure 2004308357
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat insulating structure for a building.
[0002]
[Prior art]
2. Description of the Related Art Insulating members such as an outer wall and a roof constituting a building are generally provided with a heat insulating material on the indoor side in order to enhance heat insulation. As a material for forming the heat insulating material, for example, urethane foam, phenol foam, cellulose fiber, rock wool, or the like is used. Among them, urethane foam is frequently used because it has a thermal conductivity of about 0.02 to 0.03 W / (m · K), is excellent in heat insulation, can be constructed at a relatively low cost, and the like. .
[0003]
However, urethane foam has a disadvantage that it is easily burned by a fire or the like. Therefore, once the urethane foam is ignited, there is a possibility that a phenomenon (so-called deflagration) that spreads instantaneously may occur. When deflagration occurs, it becomes difficult to extinguish the fire, which may cause a serious situation.
[0004]
In addition, in a part that receives direct sunlight, the temperature of members constituting the building rises remarkably. Therefore, the urethane foam installed on the indoor side of the member is easily deteriorated by heat near the interface with the member whose temperature has increased. When the urethane foam is deteriorated, not only is it not possible to exhibit stable heat insulating properties, but also there is a possibility that poor adhesion and detachment of the urethane foam may occur.
[0005]
In this regard, for example, Patent Literature 1 discloses an insulated building material that suppresses the influence of sunlight and hardly raises the indoor temperature. More specifically, the metal substrate is a heat-insulating building material in which one surface is a painted surface and a heat insulating material is disposed on the other surface, and the solar thermal reflectance (R) in the wavelength region of 350 to 2100 nm of the painted substrate surface is obtained.E) Is 20% or more, and the coated surface has a solar thermal reflectance (R) in a wavelength region of 800 to 2100 nm.E / NIR) Comprising at least one coating film containing 2 to 70% by weight of 30% or more of a pigment having a heat ray reflection function.
[0006]
However, the heat insulating structure in the prior art has room for further improvement in terms of safety and long-term stability of excellent heat insulating properties.
[0007]
[Patent Document 1]
JP 2001-32399 A
[0008]
[Problems to be solved by the invention]
The main object of the present invention is to provide a heat insulating structure that is highly safe, has excellent heat insulating properties comparable to urethane foam, and can maintain heat insulating properties stably for a long period of time.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, have a specific coating layer on the outdoor side of a member that separates the building from the outside and the indoor, and a specific heat insulating material layer on the indoor side. It has been found that a heat insulating structure having the above can achieve the above object, and the present invention has been completed.
[0010]
That is, the present invention relates to the following heat insulation structure.
1. A heat insulating structure having a coating layer on the outdoor side of a member separating the building from the outside and the indoor, and having a heat insulating material layer on the indoor side,
(1) The coating layer has a coating having an infrared reflectance of 20% or more,
(2) From a heat insulating material composition in which the heat insulating material layer contains 100 parts by weight of cement, 4 parts by weight or more of foamed organic resin particles, and 1 to 50 parts by weight of an organic binder (excluding a water-soluble polymer). Is formed
A heat insulating structure characterized by the following.
2. The heat insulating material layer is a composition containing cement, aggregate, expanded organic resin particles and an organic binder (excluding a water-soluble polymer), and 4 parts by weight of expanded organic resin particles with respect to 100 parts by weight of cement. Parts by weight and less than 40 parts by weight, from 1 part by weight to 50 parts by weight of an organic binder, and is formed from a heat insulating material composition in which the content of the foamed organic resin particles exceeds 5% by weight in the composition. Item 2. The heat insulating structure according to Item 1.
3. The bulk density of the foamed organic resin particles is 0.015 g / cm3Item 3. The heat insulating structure according to Item 1 or 2, wherein
4. Item 4. The heat insulating structure according to any one of Items 1 to 3, wherein the expanded organic resin particles are expanded polystyrene particles.
5. Item 5. The heat insulating structure according to any one of Items 1 to 4, wherein the foamed organic resin particles have been subjected to a flame retardant treatment.
6. The heat transmission coefficient of the member that separates the outside and the inside of the building is 7 W / (m2・ K) The heat insulating structure according to any one of the above items 1 to 5, which is not less than K).
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The heat insulating structure of the present invention is a heat insulating structure having a coating layer on the outdoor side of a member separating the building from the outside and the indoor, and having a heat insulating material layer on the indoor side,
(1) The coating layer has a coating having an infrared reflectance of 20% or more,
(2) From a heat insulating material composition in which the heat insulating material layer contains 100 parts by weight of cement, 4 parts by weight or more of foamed organic resin particles, and 1 to 50 parts by weight of an organic binder (excluding a water-soluble polymer). It is characterized by being formed.
[0012]
A member that separates the outside and the inside of a building
As a member (hereinafter, also referred to as a “member”) that separates the outside and the inside of a building, a member that has a role of separating the outside and the inside of the building corresponds. That is, a member constituting a building, at least a part of which is exposed to the outside air, corresponds to the member. Examples of such a member include an outer wall and a roof.
[0013]
Such members are usually composed of one or more materials. As the outer wall material, for example, concrete, mortar, lightweight mortar, lightweight concrete, calcium silicate plate, ALC plate, gypsum board, slate plate, extruded plate, ceramic siding material, metal siding material, plastic siding material, Various plywoods and the like can be mentioned. Examples of the roof material include a clay tile, a slate tile, a press cement tile, a concrete tile, a metal roof material, and the like. As a composite member formed by combining two or more of these materials, for example, a member in which a heat insulating material such as glass wool, an air layer, or the like is interposed between a plurality of plate members is exemplified.
[0014]
Although the heat transmission coefficient of the member is not particularly limited, it is usually 1 W / (m2K) or more, preferably 3 to 8 W / (m2・ K) The heat insulating structure of the present invention can be suitably applied to a member having such a heat transmission coefficient, and has a heat transmission coefficient of 7 W / (m).2-It can be applied to a member having a high heat transmission coefficient of K) or more.
[0015]
The heat transmission coefficient in this specification is based on Appendix 4 “Method of calculating heat transmission coefficient” of “General Specifications for Wooden House Construction (Commentary)” supervised by the Housing Finance Corporation. Specifically, the heat transmission coefficient is calculated according to the following procedure.
1) Calculate the thermal resistance from the thermal conductivity and the thickness of the member from Equation 1.
2) The heat flow resistance is calculated from the thermal resistance of the member and the heat transfer resistance of the air from Equation 2.
3) Calculate the heat flow rate from the heat flow resistance using Equation 3.
* Equation 1: Thermal resistance (m2· K / W) = thickness (m) / thermal conductivity (W / (m · K))
* Equation 2: Heat flow resistance (m2· K / W) = Heat transfer resistance of indoor side air (m2・ K / W) + thermal resistance of member (m2・ K / W) + heat transfer resistance of outdoor air (m2・ K / W)
* Equation 3: Heat transmission coefficient (W / (m2・ K)) = 1 / heat flow resistance (m2・ K / W)
(However, the heat transfer resistance of the indoor side air is 0.09 (m2· K / W) and the heat transfer resistance of the outdoor air is 0.04 (m2・ K / W)).
[0016]
Coating layer
The coating film layer is provided on the outdoor side of the member and has a coating film having an infrared reflectance of 20% or more. The infrared reflectance of the coating film is preferably 40% or more, more preferably 50% or more. By having a coating film having an infrared reflectance of 20% or more, a rise in temperature near the interface between the member and the heat insulating material layer can be suppressed, and a decrease in the adhesion of the heat insulating material layer, falling off, and the like can be reliably prevented or suppressed. The infrared reflectance in the present specification is a value obtained by measuring the spectral reflectance of light having a wavelength of 800 to 2100 nm and calculating the average value.
[0017]
The coating film having an infrared reflectance of 20% or more can be formed, for example, from a paint containing a synthetic resin and a pigment having infrared reflectivity (hereinafter also referred to as “infrared reflective paint”). The infrared reflectance can be appropriately adjusted depending on the amount of the pigment having infrared reflectance.
[0018]
The synthetic resin is not limited, and examples thereof include vinyl acetate resin, vinyl chloride resin, epoxy resin, alkyd resin, polyester resin, acrylic resin, urethane resin, acrylic silicon resin, and fluororesin. These resins can be used alone or in combination of two or more. Further, a composite system of these resins, a resin having crosslinking reactivity, and the like can also be used.
[0019]
The pigment having infrared reflectivity is not limited, for example, aluminum flake, titanium oxide, barium sulfate, zinc oxide, iron oxide, magnesium oxide, alumina, antimony oxide, zirconium oxide, yttrium oxide, indium oxide, silica, magnesium silicate , Calcium carbonate and the like. Among these, at least one of aluminum flake, titanium oxide, barium sulfate, zinc oxide, iron oxide, magnesium oxide and alumina is particularly preferred.
[0020]
If necessary, a pigment for imparting various colors to the coating film may be added to the infrared reflective paint. Such a pigment may be a pigment having an infrared transmittance, but is preferably a pigment having an infrared reflectivity. Since the coating film layer in the present invention contains a coating film having an infrared reflectance of 20% or more, a sufficient infrared reflection effect can be exerted even when a hue other than white is imparted to the coating film.
[0021]
It is not limited as a pigment having an infrared transmission property. , Cobalt blue, induslen blue, ultramarine, navy blue and the like. These pigments can be used alone or in combination of two or more.
[0022]
The content of the pigment (all the pigments used) in the infrared reflective paint can be adjusted so as to satisfy a predetermined infrared reflectance within a range of a pigment volume concentration of 2 to 60%. Strictly speaking, since the infrared reflectance changes depending on the type of the pigment, it is not necessarily limited to the above range.
[0023]
In addition to the above components, additives that can be included in general paints may be added to the infrared reflective paint. For example, aggregates, fibers, thickeners, film-forming aids, leveling agents, wetting agents, plasticizers, antifreeze agents, pH adjusters, preservatives, fungicides, anti-algal agents, antibacterial agents, dispersants, Examples include an antifoaming agent, an ultraviolet absorber, an antioxidant, a catalyst, and a crosslinking agent. The amounts of these additives can be appropriately set as long as the infrared reflectance can be controlled within a predetermined range.
[0024]
The infrared reflective paint can be usually prepared by mixing the above synthetic resin, pigment, additive and the like. At the time of preparation, water, a solvent and the like may be mixed as necessary. For example, when an aqueous resin is used as the synthetic resin, water, a hydrophilic organic solvent, and the like can be mixed. When a non-aqueous resin is used as the synthetic resin, a non-aqueous solvent such as an aromatic hydrocarbon solvent or an aliphatic hydrocarbon solvent can be mixed.
[0025]
The coating layer can be formed, for example, by applying an infrared reflective paint on the member. The coating method is not particularly limited, and for example, may be performed using a coating device such as a spray gun, a roller, or a brush. If necessary, an undercoat, a base adjustment coating material, or a heat insulating paint (such as a paint containing a hollow balloon) may be applied to the member surface before painting. These are included as a part of the coating layer in the present invention. Although the thickness of the coating film is not particularly limited, it is usually about 10 to 500 μm, preferably about 20 to 200 μm.
[0026]
In addition, if necessary, an infrared reflective paint can be applied again. Further, a transparent paint, a colored paint or the like may be further applied on the coating film of the infrared reflective paint. However, in this case, the transparent paint, the colored paint and the like may be those having infrared transmittance, but those having infrared reflectivity are preferred. These coatings are also included as part of the coating layer in the present invention.
[0027]
Insulation layer
The heat insulating material layer is provided on the indoor side of the member, and is 100 parts by weight of cement, 4 parts by weight or more of foamed organic resin particles, and 1 to 50 parts by weight of an organic binder (excluding a water-soluble polymer). Is formed from a heat insulating material composition containing:
[0028]
(cement)
The cement is not particularly limited, and known or commercially available cements can be used. For example, Portland cements such as ordinary Portland cement, early-strength Portland cement, ultra-high-strength Portland cement, moderately heated Portland cement, sulfate-resistant Portland cement, white Portland cement, etc., as well as alumina cement, ultra-rapid hardening cement, expanded cement, Phosphate cement, silica cement, blast furnace cement, fly ash cement, keince cement and the like. These can be used alone or in combination of two or more. Of these, Portland cement is preferred. More specifically, preferred are at least one of ordinary Portland cement, early-strength Portland cement, ultra-high-strength Portland cement, moderately heated Portland cement, sulfate-resistant Portland cement, and white Portland cement.
[0029]
(Foamed organic resin powder)
As the foamed organic resin particles, any particles having pores in each particle may be used. The bulk density of the foamed organic resin particles is usually 0.08 g / cm3Or less, preferably 0.03 g / cm3Or less, more preferably 0.015 g / cm3Or less, most preferably 0.009 g / cm3It is as follows.
[0030]
The foamed organic resin constituting the foamed organic resin particles is not limited. For example, a known foamed organic resin such as foamed styrene, foamed phenol, foamed polyethylene, foamed polypropylene, and foamed polyvinyl chloride can be used. These can be used alone or in combination of two or more. Among these, Styrofoam is particularly preferred.
[0031]
The particle size of the powder can be appropriately set according to the desired heat insulating properties, the type of the foamed organic resin, and the like. Usually, the average particle size is about 1 to 5 mm. As the above-mentioned powders and granules, those obtained by pulverizing a foamed organic resin can also be suitably used. For example, a powder obtained by crushing styrene foam can be used. A crushed waste such as styrene foam may be used. In this case, it is possible to contribute to effective use of the waste.
[0032]
As the granules, those which have been subjected to a flame retarding treatment in advance may be used. The flame retardation treatment method is not particularly limited, and examples thereof include a method of coating an alkoxysilane compound, a silicate compound, a flame retardant, and the like on a granular material, and a method of adsorbing the granular material.
[0033]
The alkoxysilane compound is not limited, for example, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diethyl Examples include dimethoxysilane and diethyldiethoxysilane.
[0034]
The silicate compound is not particularly limited, and includes, for example, sodium silicate, potassium silicate, lithium silicate, ammonium silicate and the like, as well as commercially available water glass.
[0035]
The flame retardant is not particularly limited. For example, tricresyl phosphate, diphenylcresyl phosphate, diphenyloctyl phosphate, tri (β-chloroethyl) phosphate, tributyl phosphate, tri (dichloropropyl) phosphate, triphenyl phosphate Fate, tri (dibromopropyl) phosphate, chlorophosphonate, bromophosphonate, diethyl-N, N-bis (2-hydroxyethyl) aminomethylphosphate, di (polyoxyethylene) hydroxymethylphosphonate, etc. Chlorinated polyphenyl, chlorinated polyethylene, diphenyl chloride, triphenyl chloride, pentachloride fatty acid ester, perchloropentacyclodecane, chlorinated naphthalene, anhydrous tetrachlorophthalate Chlorine compounds such as acids; bromine compounds such as tetrabromobisphenol A, decabromodiphenyl oxide, hexabromocyclododecane, tribromophenol, ethylenebistetrabromophthalimide, and ethylenebispentabromodiphenyl: antimony trioxide, antimony pentachloride and the like Antimony compounds; phosphorus compounds such as phosphorus trichloride, phosphorus pentachloride, ammonium phosphate and ammonium polyphosphate; and inorganic compounds such as zinc borate, sodium borate, and aluminum hydroxide.
[0036]
The above alkoxysilane compounds, silicate compounds, flame retardants and the like (hereinafter also referred to as “flame retardant”) can be used alone or in combination of two or more.
[0037]
The flame retardant may be dissolved or dispersed in water or another appropriate solvent as needed, and the solution or dispersion may be applied to the powder. A binder such as an acrylic resin may be appropriately blended with the solution or dispersion. After applying the above solution or dispersion, drying or heat treatment may be performed if necessary. Thereby, the flame retardant treatment can be performed. The amount of the flame retardant to be applied can be appropriately set according to the desired flame retardancy, the type of the granular material, and the like.
[0038]
The content of the foamed organic resin particles is 4 parts by weight or more based on 100 parts by weight of cement. The upper limit is not particularly limited, but is usually about 70 parts by weight. By defining the content within such a range, excellent heat insulating properties and strength are exhibited.
[0039]
(Organic binder)
As the organic binder (excluding the water-soluble polymer), those containing known resins, rubbers and the like can be used. For example, examples of resins include acrylic resin, vinyl acetate resin, vinyl propionate, veova, acrylic vinyl acetate resin, ethylene vinyl acetate resin, vinyl chloride resin, epoxy resin, and the like. Examples of rubbers include chloroprene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, butadiene rubber, and the like. These can be used alone or in combination of two or more. Among these, at least one of acrylic resin, vinyl acetate resin and acrylic vinyl acetate resin is preferable.
[0040]
Such an organic binder can be used in any form. For example, it can be used not only in powder form but also in emulsion state. In either case, known or commercially available products can be used.
[0041]
The content of the organic binder is 1 part by weight or more and 50 parts by weight or less, preferably 2 parts by weight or more and 30 parts by weight or less based on 100 parts by weight of cement. By defining the content within this range, sufficient strength and heat insulating properties are exhibited.
[0042]
(aggregate)
An aggregate may be added to the heat insulating material composition in addition to the cement, the foamed organic resin particles and the organic binder.
[0043]
The aggregate is not particularly limited, and can be appropriately selected from known aggregates. Of these, inorganic aggregates are particularly preferred. Examples of the inorganic aggregate include mountain sand, river sand, silica sand, and the like, as well as inorganic lightweight aggregate. These can be used alone or in combination of two or more. Among these, inorganic lightweight aggregates are particularly preferred. Examples of the inorganic lightweight aggregate include perlite, expanded shale, expanded vermiculite, pumice, shirasu balloon and the like.
[0044]
The particle size of the aggregate can be appropriately determined according to the desired heat insulation properties, strength, and the like. Usually, the average particle size is about 0.1 to 5 mm.
[0045]
The amount of the aggregate can be appropriately set according to the type (density and the like) of the aggregate and the desired heat insulation performance. For example, in the case of an inorganic lightweight aggregate, the amount is usually 5 to 200 parts by weight, preferably about 10 to 100 parts by weight, based on 100 parts by weight of cement. With such a range, excellent heat insulating properties, strength, and the like can be obtained.
[0046]
When an aggregate is mixed with the heat insulating material composition, the contents of the cement, the foamed organic resin particles, and the organic binder are preferably defined as follows. That is, the foamed organic resin powder contains not less than 4 parts by weight and less than 40 parts by weight (preferably not less than 5 parts by weight and not more than 35 parts by weight), and not less than 1 part by weight and not more than 50 parts by weight of an organic binder with respect to 100 parts by weight of cement. Further, it is preferable that the content of the foamed organic resin particles exceeds 5% by weight (preferably 6% by weight or more) in the composition.
[0047]
(Other additives that can be added to the heat insulating composition)
In addition to the above components, additives such as a surfactant, a flame retardant, a water reducing agent, a defoaming agent, and a film-forming aid can be added to the heat insulating material composition, if necessary. In particular, additives as described below can be added to the heat insulating composition.
[0048]
{Circle around (1)} An inorganic compound powder composed of acicular particles can be blended. By blending such a powder, higher strength can be provided. As such a powder, for example, acicular calcium carbonate is preferable. The amount of the powder added is not particularly limited, but is usually about 1 to 20 parts by weight based on 100 parts by weight of the cement.
[0049]
{Circle around (2)} At least one of a water-soluble polymer and a clay mineral powder can be blended. By blending these components, uniformity of the heat insulating material composition can be promoted. For example, when the heat insulating composition is pumped, the pumping efficiency can be further increased. In addition, the drying property can be improved. Therefore, when the composition of the present invention is sprayed on a member to form a heat insulating material layer, it is desirable to include a water-soluble polymer.
[0050]
Examples of the water-soluble polymer include polyvinyl alcohol, poly (meth) acrylic acid, polyalkylene oxide, biogum, galactomannan derivatives; alginic acid and its derivatives; gelatin, casein and albumin, and derivatives thereof; and cellulose derivatives. . The water-soluble polymer is more preferably a high-viscosity product, and the viscosity of a 1% aqueous solution of the water-soluble polymer is preferably 8,000 mPa · s or more (measured at 20 ° C. using a B-type viscometer: the same applies hereinafter), and is preferably 10,000 mPa · s. s or more is more preferable, and 12000 mPa · s or more is most preferable.
[0051]
Examples of the clay mineral powder include allophane, hissingelite, pyrophyllite, talc, plum, montmorillonite, vermiculite, ryokudeite, kaolin, and palygorskite. These can be used alone or in combination of two or more. Among them, cellulose derivatives and montmorillonite are preferred.
[0052]
The content of at least one of the water-soluble polymer and the clay mineral powder can be appropriately set depending on the use of the final product, etc., and is usually 1 to 30 parts by weight, preferably 2 to 30 parts by weight, based on 100 parts by weight of cement. About 15 parts by weight.
[0053]
(3) A curing accelerator can be blended. Thereby, the curing of the coating film can be promoted. Examples of the curing accelerator include alkali metal aluminates such as lithium aluminate, sodium aluminate, and potassium aluminate; alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, and potassium hydrogen carbonate; Alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide; sulfates such as sodium sulfate, potassium sulfate, magnesium sulfate, and aluminum sulfate; and slaked lime, gypsum, calcium aluminate and the like.
[0054]
The amount of the curing accelerator may be appropriately set according to the use of the final product, etc., and is usually 1 to 30 parts by weight, preferably about 2 to 20 parts by weight, based on 100 parts by weight of cement.
[0055]
(4) A water reducing agent can be added. The water reducing agent is not particularly limited, and examples thereof include aromatic sulfonic acid-based water reducing agents, polycarboxylic acid-based water reducing agents, lignin sulfone-based water reducing agents, and melamine-based water reducing agents. These may be known or commercially available products.
[0056]
The amount of the water reducing agent may be appropriately set according to the use of the final product, etc., and is usually 0.05 to 5 parts by weight, preferably about 0.1 to 4 parts by weight with respect to 100 parts by weight of the cement. is there.
[0057]
(Method of preparing heat insulating composition)
The heat insulating material composition can be prepared by uniformly mixing the cement, the foamed organic resin particles, the organic binder, and, if necessary, the aggregate and / or other additives with a mixer, a kneader, or the like. In this case, water may be added as needed. The amount of water is not limited, but may be usually about 100 to 1500 parts by weight based on 100 parts by weight of cement.
[0058]
(Method of forming heat insulating material layer)
The heat insulating material layer can be formed by, for example, spraying and applying the heat insulating material composition to the indoor side of the member, followed by drying. After applying a wet inorganic paint such as lightweight mortar to the member, the heat insulating composition may be sprayed and applied. In addition, a molded article of the heat insulating material composition may be installed and formed on the indoor side of the member. When a molded body of the heat insulating material composition is used, it is usually provided in contact with the indoor side of the member, but may be provided via a space as necessary in consideration of the structure of the building and the like.
[0059]
In the case of applying by spraying, for example, the heat insulating composition may be pumped by a snake type pump or the like, and may be applied to a desired site through a spray gun. Of course, a method other than spraying can be adopted as a method of forming the heat insulating material layer.
[0060]
The thickness of the heat-insulating material layer is not particularly limited and can be appropriately set according to desired heat-insulating properties, but is usually about 10 to 50 mm, preferably about 20 to 40 mm.
[0061]
The specific gravity of the heat insulating material layer is not particularly limited and can be appropriately set according to desired heat insulating properties.3Or less, preferably 0.2 g / cm3Or less, more preferably 0.1 g / cm3It is as follows. The specific gravity of such a heat insulating layer can be controlled, for example, by the particle size and content of the foamed organic resin particles.
[0062]
The thermal conductivity of the heat insulating material layer is usually less than 0.06 W / (m · K), preferably 0.05 W / (m · K) or less, more preferably 0.045 W / (m · K) or less. It is.
[0063]
Further, the heat insulating material layer has a heating strength of 50 kW / m in a heat generation test specified in ISO5660.2, Total heating value under heating condition of 5 minutes is 8 MJ / m2It is desirable that: In particular, the heat insulating material layer has a heating strength of 50 kW / m in a heat generation test specified in ISO5660.2, Total heating value under heating condition of 10 minutes is 8 MJ / m2It is more desirable that: That is, the heat insulating material layer desirably satisfies the performance as a flame-retardant material according to the Ministry of Construction Notification No. 1402 of 2000, and furthermore, the performance as a quasi-noncombustible material according to Notification No. 1401 of the Ministry of Construction 2000.
[0064]
【The invention's effect】
The heat insulating structure of the present invention has high safety in that it does not include a material having high combustibility such as urethane foam. That is, there is no risk of deflagration due to a fire or the like. Moreover, it exhibits the same excellent heat insulating properties as urethane foam.
[0065]
Combination with a coating layer having a coating having an infrared reflectance of 20% or more suppresses a temperature rise at the interface between the heat insulating material layer and the member as compared with a conventional product, and causes deterioration, dropout, Displacement can be reliably prevented or suppressed. Thereby, the heat insulating performance of the heat insulating material layer can be stably maintained for a long time.
[0066]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the present invention is not limited to the embodiments.
(Preparation of heat insulating material layer sample)
Reference Examples 1 to 4 and Comparative Reference Example 1
The raw materials were uniformly mixed according to the composition shown in Table 1 below to prepare four types of heat insulating material compositions. The amount of each raw material (excluding water) shown in Table 1 indicates the solid content.
[0067]
[Table 1]
Figure 2004308357
[0068]
The following materials were used as the raw materials shown in Table 1.
・ Cement: ordinary Portland cement
-Organic foamed resin powder 1: Recycled styrene foam crushed product (average particle size about 3 mm, bulk density 0.008 g / cm3)
-Organic foamed resin particles 2: Recycled styrene foam crushed product (average particle size about 3 mm, bulk density 0.011 g / cm3)
・ Organic resin foam 3: Recycled styrene foam crushed product (average particle size about 3 mm, bulk density 0.02 g / cm)3)
Organic foamed resin particles 4: A mixture of a lithium silicate solution and an acrylic styrene emulsion based on 100 parts by weight of the organic foamed resin particles 2 (lithium silicate solution (solid content: 23% by weight): acrylic styrene emulsion (solid (50% by weight) = 9: 1 (weight ratio)), 60 parts by weight, and dried at 50 ° C. for 24 hours.
・ Organic binder: vinyl acetate / acrylate copolymer emulsion (solid content 50% by weight)
・ Water-soluble polymer: methylcellulose (1% aqueous solution viscosity is 15000 mPa · s) ・ Aggregate: Shirasu balloon (average particle size 200 μm)
・ Hardening accelerator: gypsum
The heat insulating material compositions in Reference Examples 1 to 4 were sprayed onto a gypsum board (12.5 mm in thickness) and then dried to produce four types of heat insulating material layers (30 mm in thickness). Each heat insulating material layer was cut into a size of 99 mm × 99 mm × 42.5 mm to obtain a heat insulating material sample.
[0069]
Next, the test shown in the following (1) to (3) was performed using the obtained sample as a test body. The test results are shown in Table 2 below. Table 2 below also shows the physical properties of urethane foam as Comparative Reference Example 1.
(1) Thermal conductivity
The thermal conductivity (W / (m · K)) was measured by a thermal conductivity meter (trade name “Kemthrm QTM-D3” manufactured by Kyoto Electronics Industry).
(2) Exothermic test
The exothermicity was measured using a corn calorimeter defined by ISO5660. A corn calorimeter (trade name "CONE2A" manufactured by Atlas) was used.
[0070]
The exothermic test was conducted with a heating strength of 50 kW / m.2And The evaluation criteria for the exothermic test are as follows.
:: The maximum heat generation rate at a heating time of 10 minutes was 200 kW / m.2The total calorific value does not exceed 8 MJ / m2Less than
:: Maximum heat generation rate in heating time of 5 minutes is 200 kW / m2The total calorific value does not exceed 8 MJ / m2Less than
Δ: The maximum heat generation rate after heating for 5 minutes was 200 kW / m.2The total calorific value does not exceed 8 MJ / m2Exceeds
×: The maximum heat generation rate after heating for 5 minutes is 200 kW / m.2And the total calorific value is 8 MJ / m2Exceeds
(3) Welding fireball test
The specimen is placed horizontally with the heat insulating composition facing upward (the gypsum board facing downward), and welding is continuously performed for 1 minute by a welding machine (BP AC arc welding machine) at a position of 250 mm height from the specimen surface. Was. The evaluation criteria for the welding fireball test are as follows. :: Specimen did not cause deflagration
×: Specimen exploded
[0071]
[Table 2]
Figure 2004308357
[0072]
Examples 1-4 and Comparative Examples 1-2
A heat insulating material composition obtained in each of Formulation Examples 1 to 4 was coated on a metal plate (thickness: 0.6 mm, heat transfer coefficient: 7.7 W / (m2A heat insulating layer (thickness: 30 mm) was formed by spraying on one side of (K)) and drying.
[0073]
Next, the other paint 1 or 2 described below was spray-coated on the other surface of the metal plate to form a coating layer (thickness: 60 μm). The test (4) described below was performed on the test piece obtained in this manner. Table 3 below shows the combinations of the heat insulating material layers and the coating layers and the test results.
Paint 1: Non-aqueous dispersion type acrylic polyol resin (Tg: 40 ° C., hydroxyl value: 50 KOH mg / g, solvent: mineral spirit) and its curing agent (hexamethylene diisocyanate, NCO content: 12% by weight, solvent: mineral spirit) A gray paint containing 15 parts by weight of titanium oxide, 1.3 parts by weight of yellow iron oxide, 2.4 parts by weight of red iron oxide, and 0.5 parts by weight of phthalocyanine blue with respect to 100 parts by weight of the total resin solid content of . It was 66% when the infrared reflectance was measured with a spectrophotometer (trade name "UV-3100" manufactured by Shimadzu Corporation). The test plate subjected to the infrared reflectance measurement was prepared by applying a black paint (containing 11 parts by weight of carbon black to 100 parts by weight of a solid content of an acrylic resin) on an aluminum plate so that the dry film thickness became 60 μm. Is applied so that the dry film thickness becomes 60 μm.
Paint 2: Non-aqueous dispersion type acrylic polyol resin (Tg: 40 ° C., hydroxyl value: 50 KOH mg / g, solvent: mineral spirit) and its curing agent (hexamethylene diisocyanate, NCO content: 12% by weight, solvent: mineral spirit) A gray paint containing 15 parts by weight of titanium oxide, 0.8 parts by weight of yellow iron oxide, 0.5 parts by weight of red iron oxide, and 0.7 parts by weight of carbon black based on 100 parts by weight of the total resin solid content. Paint 2 had an infrared reflectance of 7%.
(4) Infrared lamp test
An infrared lamp (250 W) was installed at a distance of 200 mm from the coating layer side of the test body, and the infrared lamp was continuously irradiated for 24 hours. After the irradiation, the state of the interface between the heat insulating material layer and the metal plate was confirmed. The evaluation criteria for the infrared lamp test are as follows.
Y: No abnormality
Δ: Slight embrittlement is observed
×: Embrittlement is clearly observed
[0074]
[Table 3]
Figure 2004308357

Claims (6)

建築物の屋外と屋内とを隔てる部材の屋外側に塗膜層を有し、屋内側に断熱材層を有する断熱構造であって、
(1)塗膜層が、赤外線反射率20%以上の塗膜を有しており、
(2)断熱材層が、セメント100重量部、発泡有機樹脂粉粒体4重量部以上、有機バインダー(水溶性高分子を除く)1重量部以上50重量部以下を含有する断熱材組成物から形成されている
ことを特徴とする断熱構造。
A heat insulating structure having a coating layer on the outdoor side of a member separating the building from the outside and the indoor, and having a heat insulating material layer on the indoor side,
(1) The coating layer has a coating having an infrared reflectance of 20% or more,
(2) From a heat insulating material composition in which the heat insulating material layer contains 100 parts by weight of cement, 4 parts by weight or more of foamed organic resin particles, and 1 to 50 parts by weight of an organic binder (excluding a water-soluble polymer). A heat insulating structure characterized by being formed.
断熱材層が、セメント、骨材、発泡有機樹脂粉粒体及び有機バインダー(水溶性高分子を除く)を含む組成物であって、セメント100重量部に対して発泡有機樹脂粉粒体4重量部以上40重量部未満、有機バインダー1重量部以上50重量部以下を含有し、かつ、発泡有機樹脂粉粒体の含有量が組成物中5重量%を超える断熱材組成物から形成されている請求項1記載の断熱構造。The heat insulating material layer is a composition containing cement, aggregate, foamed organic resin particles and an organic binder (excluding a water-soluble polymer), and 4 parts by weight of foamed organic resin particles with respect to 100 parts by weight of cement. Parts by weight and less than 40 parts by weight, from 1 part by weight to 50 parts by weight of an organic binder, and is formed from a heat insulating material composition in which the content of foamed organic resin particles exceeds 5% by weight in the composition. The heat insulation structure according to claim 1. 発泡有機樹脂粉粒体のかさ密度が0.015g/cm以下である請求項1又は2記載の断熱構造。Thermal insulation structure according to claim 1 or 2 wherein the bulk density of the foamed organic resin powder or granular material is 0.015 g / cm 3 or less. 発泡有機樹脂粉粒体が発泡スチロール粉粒体である請求項1〜3のいずれかに記載の断熱構造。The heat insulating structure according to any one of claims 1 to 3, wherein the foamed organic resin particles are styrene foam particles. 発泡有機樹脂粉粒体が難燃処理されたものである請求項1〜4のいずれかに記載の断熱構造。The heat insulating structure according to any one of claims 1 to 4, wherein the foamed organic resin particles have been subjected to a flame retardant treatment. 建築物の屋外と屋内とを隔てる部材の熱貫流率が、7W/(m・K)以上である請求項1〜5のいずれかに記載の断熱構造。The heat insulation structure according to any one of claims 1 to 5, wherein the member that separates the building from the outside and the inside has a heat transmission coefficient of 7 W / (m 2 · K) or more.
JP2003106361A 2003-04-10 2003-04-10 Heat insulation structure Pending JP2004308357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003106361A JP2004308357A (en) 2003-04-10 2003-04-10 Heat insulation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003106361A JP2004308357A (en) 2003-04-10 2003-04-10 Heat insulation structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008207783A Division JP5430097B2 (en) 2008-08-12 2008-08-12 Thermal insulation structure

Publications (1)

Publication Number Publication Date
JP2004308357A true JP2004308357A (en) 2004-11-04

Family

ID=33468571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003106361A Pending JP2004308357A (en) 2003-04-10 2003-04-10 Heat insulation structure

Country Status (1)

Country Link
JP (1) JP2004308357A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205624A (en) * 2014-02-27 2016-12-08 積水化学工業株式会社 Fireproof heat insulation covering material for pipeline or equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205624A (en) * 2014-02-27 2016-12-08 積水化学工業株式会社 Fireproof heat insulation covering material for pipeline or equipment

Similar Documents

Publication Publication Date Title
US8492471B2 (en) Heat resistant and fire retardant materials and methods for preparing same
US10487218B2 (en) Fire retardant coating composition
CN104017413B (en) A kind of interior wall heat preservation putty and using method thereof
CA1097455A (en) Thermal barrier compositions
SE466154B (en) FLAMMING PROTECTIVE COATING
EP1572816A1 (en) Flame retardant coating composition and method of preparing the same
CN109836941A (en) A kind of Organic-inorganic composite nano heat-insulating fireproof coating and preparation method thereof
KR101431002B1 (en) Non-flammable coating composition for expanded polystyrene foam
CN104710893B (en) Heat-insulated painting material, constructional heat-insulating and building dressing method
JP5430097B2 (en) Thermal insulation structure
US4379857A (en) Insulation composition
JP4776201B2 (en) Thermal insulation structure and construction method thereof
JP4947869B2 (en) Insulation composition
JP4502739B2 (en) Fireproof and heat insulating structure and construction method thereof
JP2004308357A (en) Heat insulation structure
JP2000136323A (en) Flame-retardant coating film waterproofing composition
JPH10265722A (en) Thick film-form elastic heat-insulating coating material and coating heat-insulating technique using the same
JP2004315772A (en) Fireproof coating for construction
JP2000186238A (en) Thick film type elastic insulating coating material
KR101590305B1 (en) Non-Flammable Composition and thereof Bid Form and It&#39;s Manufacturing Methods
JP2000186239A (en) Heat-insulation coating material
JP4123370B2 (en) Thermal insulation structure and construction method
JP2011156799A (en) Layered body
JP5374423B2 (en) curtain wall
KR101514938B1 (en) The methode for manufacturing watersoluble fire-proof paint composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060112

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070913

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081015